

7CCSMPRJ

Individual Project Submission 2023/24

Name: Harsh Merchant
Student Number: 23033736
Degree Programme: MSc Data Science
Project Title: Enhancing Generative Tree Based Modeling
With Differential Privacy
Supervisor: Dr David Watson
Word Count: 12118

RELEASE OF PROJECT

Following the submission of your project, the Department would like to make it publicly available via the library electronic resources. You will retain copyright of the project.

I agree to the release of my project
 I do not agree to the release of my project

Signature:

Date: August 6, 2024

Department of Informatics
King's College London
United Kingdom

7CCSMPRJ Individual Project

Enhancing Generative Tree Based Modeling With Differential Privacy

Name: **Harsh Merchant**
Student Number: 23033736
Course: MSc Data Science

Supervisor: Dr David Watson

This dissertation is submitted for the degree of MSc in MSc Data Science.

Acknowledgements

I would like to thank my supervisor, Dr. David Watson, for his guidance and insights which has helped me in successfully completing this thesis. I am also very much thankful to my family, whose support and continued belief in me sustained my motivation throughout this journey. Additionally, I would like to thank all of my friends with whom I shared this adventure, making the process as memorable as the achievements. And to my beloved pets, Brownie and Luffy, thank you for the countless moments of joy.

To all of you, thank you for making this journey truly incredible and legendary.

Abstract

Synthetic data has become an essential tool across various domains, driving the need for effective generative models. Gradient Boosted Decision Trees and Random Forests are often used for the sake of synthetic data generation this is because they tend to give good results, are robust, and are effective. However, all of this, much like the generative models based on deep neural networks, pose strong possibilities of privacy breaches. These methods may potentially leak sensitive information and patterns from the original dataset into the synthetic data. To address this vulnerability, this thesis proposes integrating differential privacy into tree based generative models. This might allow for effective protection of privacy since it will retain useful information in the synthetic data with minimal risk of revealing individual data points. Differential privacy provides a firm foundation for privacy in data by ensuring that the privacy of individuals in the data is not significantly impacted due to participating in the database.

This thesis leverages the principles and methodologies of differential privacy and incorporates them into the adversarial random forest, a tree based generative model. The research successfully generates differentially private synthetic data through strategic injection of calibrated noise at critical points of the developed model. Thus, it augments differential privacy by a small factor in exchange for a little degradation of original data characteristics. This trade-off is required for the fulfilment of differential privacy

The results of the evaluations for the differentially private model over various datasets prove its effectiveness in privacy enhancement making it a promising foundation for further research into the application of differential privacy in tree based generative modeling. Thus, suggesting that a differentially private model based on trees may represent a feasible way to protect sensitive information while enabling valuable, data-driven insights and analysis. This work opens up a pathway for more secure and privacy compliant generation of data in many different domains.

Nomenclature

arfpy	Adversarial Random Forests with python
DNN	Deep Neural Network
dp arfpy	Differentially Private Adversarial Random Forests with python
DT	Decision Tree
EOGT	Ensemble Of Generative Trees
ϵ	Epsilon, a parameter for differential privacy budget
FORDE	Forests for Density Estimation
FORGE	Forests for Generative Modeling
GAN	Generative Adversarial Network
GBDT	Gradient Boosting Decision Trees
GDPR	General Data Protection Regulation
GF	Generative Forests
GT	Generative Trees
HIPAA	Health Insurance Portability and Accountability Act
IID	Independent and Identically Distributed
KDE	Kernel Density Estimation
KNN	K-Nearest Neighbors
MLE	Maximum Likelihood Estimation
RDP	Rényi Differential Privacy
RF	Random Forests
VAE	Variational Autoencoder

Contents

1	Introduction	1
1.1	Motivation and Aims	2
1.2	Objectives and Summary	3
2	Background	4
2.1	Density Estimation and Generative Modeling	4
2.2	Tree Based Models	5
2.3	Privacy	6
2.4	Federated Learning	7
3	Related Work	8
3.1	Deep Neural Networks vs Tree Based Models	8
3.2	Generative Trees and Forests	8
3.3	Adversarial Random Forests	10
3.4	Differential Privacy	11
3.5	Differential Privacy in Generative Adversarial Network	12
3.6	Differential Privacy in Federated Boosted Decision Trees	13
4	Approach	15
4.1	Design	15
4.2	Theoretical definitions and Theorems	16
4.2.1	Laplace Mechanism:	16
4.2.2	Exponential Mechanism:	16
4.3	Implementation	17
4.3.1	Enhancing Density Estimation (FORDE) with Differential Privacy	17
4.3.1.1	Steps for Adding Differential Privacy to Mean for Numeric Features	17
4.3.1.2	Steps for Adding Differential Privacy to Class Probabilities for Categorical features	19
4.3.2	Synthetic Data Generation (FORGE)	20
4.3.2.1	Objective:	20
4.3.2.2	Steps:	20
4.4	Alternate and Failed Approaches	20
4.4.1	Federated Boosted Differentially Private Generative Trees	20
4.4.2	Differentially Private Generative Trees and Forests or Adversarial Random Forest	21
4.5	Experimental Design	21
4.5.1	Data Acquisition	21
4.5.2	Metrics and Plots for Evaluation	22

5 Results and Evaluation	24
5.1 Health Insurance Dataset	24
5.1.1 Epsilon = 0.5	24
5.1.2 Epsilon = 0.1	27
5.1.3 Epsilon = 1.0	30
5.2 Healthcare Dataset	34
5.2.1 Epsilon = 0.5	34
5.2.2 Epsilon = 0.1	37
5.3 Adult Dataset	42
5.3.1 Epsilon = 0.5	42
6 Legal, Social, Ethical and Professional Issues	48
7 Conclusion	49
7.1 Future Work	49
7.2 Lessons Learned	50
References	51
A Appendix	53

List of Figures

1	Density distribution for Insurance $\epsilon = 0.5$	25
2	PCA analysis for Insurance $\epsilon = 0.5$	25
3	Density distribution for Insurance $\epsilon = 0.1$	28
4	PCA analysis for Insurance $\epsilon = 0.1$	28
5	Density distribution for Insurance $\epsilon = 1$	31
6	PCA analysis for Insurance $\epsilon = 1$	31
7	Density distribution for Healthcare $\epsilon = 0.5$	35
8	PCA analysis for Healthcare $\epsilon = 0.5$	36
9	Density distribution for Healthcare $\epsilon = 0.1$	39
10	PCA analysis for Healthcare $\epsilon = 0.1$	40
11	Density distribution for Adult Part 1 $\epsilon = 0.5$	44
12	Density distribution for Adult Part 2 $\epsilon = 0.5$	44
13	PCA analysis for Adult $\epsilon = 0.5$	45
14	Density distribution for Healthcare $\epsilon = 1$	88
15	PCA analysis for Healthcare $\epsilon = 1$	88
16	Density distribution for Adult Part 1 $\epsilon = 0.1$	91
17	Density distribution for Adult Part 2 $\epsilon = 0.1$	91
18	PCA analysis for Adult $\epsilon = 0.1$	92
19	Density distribution for Adult Part 1 $\epsilon = 1$	95
20	Density distribution for Adult Part 2 $\epsilon = 1$	95
21	PCA analysis for Adult $\epsilon = 1$	96

List of Tables

1	Original Data for Insurance $\epsilon = 0.5$	24
2	OG ARF Generated Data for Insurance $\epsilon = 0.5$	24
3	DP-ARF Generated Data for Insurance $\epsilon = 0.5$	24
4	Correlation Matrices for Insurance $\epsilon = 0.5$	26
5	Wasserstein Distance for Insurance $\epsilon = 0.5$	26
6	Chi-Square Test for Insurance $\epsilon = 0.5$	26
7	RMSE for Insurance $\epsilon = 0.5$	26
8	MAE for Insurance $\epsilon = 0.5$	26
9	Classification Accuracy for Insurance $\epsilon = 0.5$	27
10	Reconstruction Attack Error for Insurance $\epsilon = 0.5$	27
11	Original Data for Insurance $\epsilon = 0.1$	27
12	OG ARF Generated Data for Insurance $\epsilon = 0.1$	27
13	DP-ARF Generated Data for Insurance $\epsilon = 0.1$	27
14	Correlation Matrices for Insurance $\epsilon = 0.1$	29
15	Wasserstein Distance for Insurance $\epsilon = 0.1$	29
16	Chi-Square Test for Insurance $\epsilon = 0.1$	29
17	RMSE for Insurance $\epsilon = 0.1$	29

18	MAE for Insurance $\epsilon = 0.1$	29
19	Classification Accuracy for Insurance $\epsilon = 0.1$	30
20	Reconstruction Attack Error for Insurance $\epsilon = 0.1$	30
21	Original Data for Insurance $\epsilon = 1$	30
22	OG ARF Generated Data for Insurance $\epsilon = 1$	30
23	DP-ARF Generated Data for Insurance $\epsilon = 1$	30
24	Correlation Matrices for Insurance $\epsilon = 1$	32
25	Wasserstein Distance for Insurance $\epsilon = 1$	32
26	Chi-Square Test for Insurance $\epsilon = 1$	32
27	RMSE for Insurance $\epsilon = 1$	32
28	MAE for Insurance $\epsilon = 1$	32
29	Classification Accuracy for Insurance $\epsilon = 1$	33
30	Reconstruction Attack Error for Insurance $\epsilon = 1$	33
31	Original Healthcare Data Part 1 $\epsilon = 0.5$	34
32	Original Healthcare Data Part 2 $\epsilon = 0.5$	34
33	OG ARF Generated Healthcare Data Part 1 $\epsilon = 0.5$	34
34	OG ARF Generated Healthcare Data Part 2 $\epsilon = 0.5$	34
35	DP ARF Generated Healthcare Data Part 1 $\epsilon = 0.5$	35
36	DP ARF Generated Healthcare Data Part 2 $\epsilon = 0.5$	35
37	Correlation Matrices for Healthcare $\epsilon = 0.5$	36
38	Wasserstein Distance for Healthcare $\epsilon = 0.5$	36
39	Chi-Square Test for Healthcare $\epsilon = 0.5$	36
40	RMSE for Healthcare $\epsilon = 0.5$	37
41	MAE for Healthcare $\epsilon = 0.5$	37
42	Classification Accuracy for Healthcare $\epsilon = 0.5$	37
43	Reconstruction Attack Error for Healthcare $\epsilon = 0.5$	37
44	Original Healthcare Data Part 1 $\epsilon = 0.1$	37
45	Original Healthcare Data Part 2 $\epsilon = 0.1$	38
46	OG ARF Generated Healthcare Data Part 1 $\epsilon = 0.1$	38
47	OG ARF Generated Healthcare Data Part 2 $\epsilon = 0.1$	38
48	DP ARF Generated Healthcare Data Part 1 $\epsilon = 0.1$	38
49	DP ARF Generated Healthcare Data Part 2 $\epsilon = 0.1$	39
50	Correlation Matrices for Healthcare $\epsilon = 0.1$	40
51	Wasserstein Distance for Healthcare $\epsilon = 0.1$	40
52	Chi-Square Tests for Healthcare $\epsilon = 0.1$	40
53	RMSE for Healthcare $\epsilon = 0.1$	41
54	MAE for Healthcare $\epsilon = 0.1$	41
55	Classification Accuracy for Healthcare $\epsilon = 0.1$	41
56	Reconstruction Attack Error for Healthcare $\epsilon = 0.1$	41
57	Original Data Sample Part 1 for Adult $\epsilon = 0.5$	42
58	Original Data Sample Part 2 for Adult $\epsilon = 0.5$	42
59	OG ARF Generated Adult Data Part 1 $\epsilon = 0.5$	43
60	OG ARF Generated Adult Data Part 2 $\epsilon = 0.5$	43

61	DP ARF Generated Adult Data Part 1 $\epsilon = 0.5$	43
62	DP ARF Generated Adult Data Part 2 $\epsilon = 0.5$	43
63	Correlation Matrices for Adult $\epsilon = 0.5$	45
64	Wasserstein Distances for Adult $\epsilon = 0.5$	45
65	Chi-Square Tests for Adult $\epsilon = 0.5$	46
66	RMSE for Adult $\epsilon = 0.5$	46
67	MAE for Adult $\epsilon = 0.5$	46
68	Classification Accuracy for Adult $\epsilon = 0.5$	46
69	Reconstruction Attack Error for Adult $\epsilon = 0.5$	47
70	Original Healthcare Data Part 1 $\epsilon = 1$	86
71	Original Healthcare Data Part 2 $\epsilon = 1$	86
72	OG ARF Healthcare Data Part 1 $\epsilon = 1$	86
73	OG ARF Healthcare Data Part 2 $\epsilon = 1$	87
74	DP ARF Healthcare Data Part 1 $\epsilon = 1$	87
75	DP ARF Healthcare Data Part 2 $\epsilon = 1$	87
76	Correlation Matrices for Healthcare $\epsilon = 1$	89
77	Wasserstein Distance for Healthcare $\epsilon = 1$	89
78	RMSE for Healthcare $\epsilon = 1$	89
79	MAE for Healthcare $\epsilon = 1$	89
80	Classification Accuracy for Healthcare $\epsilon = 1$	89
81	Reconstruction Attack Error for Healthcare $\epsilon = 1$	89
82	Original Data for Adult $\epsilon = 0.1$	90
83	OG ARF Data for Adult $\epsilon = 0.1$	90
84	DP ARF Data for Adult $\epsilon = 0.1$	90
85	Correlation Matrices for Adult $\epsilon = 0.1$	92
86	Wasserstein Distances for Adult $\epsilon = 0.1$	92
87	Chi-Square Tests for Adult $\epsilon = 0.1$	93
88	RMSE for Adult $\epsilon = 0.1$	93
89	MAE for Adult $\epsilon = 0.1$	93
90	Classification Accuracy for Adult $\epsilon = 0.1$	93
91	Reconstruction Attack Error for Adult $\epsilon = 0.1$	94
92	Original Data Sample for Adult $\epsilon = 1.0$	94
93	OG ARF Data Sample for Adult $\epsilon = 1.0$	94
94	DP ARF Data Sample for Adult $\epsilon = 1.0$	94
95	Correlation Matrices for Adult $\epsilon = 1.0$	96
96	Wasserstein Distances for Adult $\epsilon = 1.0$	96
97	Chi-Square Tests for Adult $\epsilon = 1.0$	97
98	RMSE for Adult $\epsilon = 1.0$	97
99	MAE for Adult $\epsilon = 1.0$	97
100	Classification Accuracy for Adult $\epsilon = 1.0$	97
101	Reconstruction Attack Error for Adult $\epsilon = 1.0$	98

1 Introduction

Synthetic data generation is creating fake data to mimic the type of data that would be found in the real world. Normally, this is achieved with the use of different techniques like statistical modeling and machine learning. The generated synthetic data is purposefully designed to hold the properties of real data for using in applications such as testing, training, and analysis. It may range from helping to overcome data scarcity to mitigating bias and model training.

Over the past few decades, the generation of synthetic data has advanced quite a bit. Initially the interest was driven by big data, and later on, an even greater necessity emerged for generating large high quality datasets in machine learning and data analysis. Formerly, it was only applied under the context of simulations and tests, but its applications have already expanded to areas such as privacy preservation, algorithm development, and performance benchmarking. Deep neural networks have dramatically improved the field of machine learning, mainly concerning unstructured data, which comprises of images, audio, video, and text, where the traditional ways often fall short. This is especially evident in variational autoencoders [1] and generative adversarial nets [2], which excel at learning complicated patterns and producing new samples that closely resemble the original data points. Since the data is structured and often high-dimensional, it poses many challenges that can hinder the performance of deep learning.

In this regard, as a significant proportion of data from finance, healthcare, and business is tabular, and accurate data modeling and prediction are crucial in these fields, there is an imperative for producing samples that mimic the properties of such data accurately. To overcome this problem tree based methods are employed. The methods described are well suited to the aforementioned requirements of working with tabular data and give a very robust solution toward generating synthetic data while keeping the fundamental properties and relationships of the original datasets in place. Moreover, they need very little preprocessing and can automatically deal with missing values, which makes the task of data generation easier. Their ensemble nature and regularization techniques minimize the risk of overfitting, ensuring that the synthetic data generalizes well.

Sensitive information is always at stake when generating synthetic data, and its privacy raises concern on top of that. Privacy concerns have become increasingly important with the emergence of stricter data protection regulations and the growing awareness of data privacy issues. Traditional data anonymization techniques lack in many areas, and so this has provoked the development of advanced techniques such as differential privacy. This framework provides strong privacy guarantees, such that the privacy of any individual in the original dataset is protected. Hence, having potential to be a leading area of research in synthetic data generation.

1.1 Motivation and Aims

The need for relying on data increases as the world becomes data driven in more and more areas of society. This increases the demand for high quality datasets. However, synthetic data generation brings several risks with it, despite its many advantages. One of the major issues is related to the leakage of sensitive information from the original dataset into the synthetic data. This type of leakage can happen when the synthetic data retains some identifiable patterns or anomalies that do exist in the real data, and thus it might become possible for someone to make some inference about an individual's data. Such privacy breaches can have dire consequences.

In areas such as healthcare and finance, data privacy is crucial. The healthcare data mostly contain highly sensitive information about medical histories, conditions, and treatments of individuals. Therefore if this data is accessed by untrusted entities it may potentially lead to social stigmatization, loss of finances, and even threats to personal safety. Financial data is also said to contain important information on one's economic status, transactions, and individuals' credit history. Loss of privacy related to financial data may result in identity theft, financial impropriety, and substantial economic losses. Moreover, privacy of data in such domains is necessary not only for the sake of maintaining trust but also because of stringent regulatory requirements. For example, HIPAA in healthcare and GDPR in Europe.

This research is motivated by finding ways to overcome such privacy concerns while maintaining the good qualities of tree based models in data synthesis. Differential privacy offers a compelling solution by providing strong privacy guarantees through the introduction of controlled noise. By integrating differential privacy into tree based generative models, this research aims to create synthetic datasets, with the purpose of utility preservation while affording better privacy protection. Such datasets can then be used across various domains and in a variety of applications ensuring that there is safe and ethical usage of synthetic data. As a result, it would comply with many data protection regulations, foster trust among data providers and users, and promote the broader adoption of synthetic data technologies.

1.2 Objectives and Summary

The primary objective of this research is to explore the effective integration of differential privacy into tree based generative models, specifically Random Forests. By doing so, it will try to alleviate privacy risks associated with synthetic data generation, and most importantly, it will retain the utility of the original data. This involves the assessment of the compromise reached between maximization of essential characteristics and patterns from the original dataset and minimization of individual's risk to ensure strong privacy protection through the use of synthetic data. Additionally, this research is going to compare the performance of the differentially private model with its non private counterpart on different metrics.

This report starts with the Background chapter, which defines some of the important concepts that the study stands on: Synthetic Data Generation, Tree Based Models, Privacy, and Federated Learning accompanied by previously published literature on this subject. The section Related Work reviews and critically evaluates existing research pertinent to the study. The chapter on Approach presents the experimental design, explaining how differential privacy is integrated with tree based models and the algorithms used, in addition to this it also explores alternative approaches concluding with the explaining of the experimental setup. The Results and Evaluation chapter presents and compares the conducted experiments and their results to show how effective is the proposed method. Conclusion gathers the main findings, discusses implications, indicates directions for further research, and reflects on the study's limitations. A detailed list of references is given at the end of the report. Additional detailed notes and results supporting the main findings of this report along with supplementary materials are included in the Appendix.

2 Background

2.1 Density Estimation and Generative Modeling

A probability distribution is an assignment of probabilities to each measurable subset of the possible outcomes of a random variable. For instance, test scores can be used to indicate how many individuals were scored in what numerical range of scores. In general, density estimation describes the process of estimating the said distribution by seeing how the values are spread out and then providing a smooth, continuous approximation for the underlying distribution. We approximate the underlying probability distribution since we do not typically know the exact form of the distribution from which our data samples come from. There are two primary methodologies for density estimation one wherein we assumes the form of a distribution for a set of given parameters. For example, When fitting the data to a distribution this could be a normal, exponential, or Poisson distribution the commonly used techniques are Maximum Likelihood Estimation (MLE). This is called parametric density estimation technique. On the other hand, non-parametric density estimation does not assume any form for the distribution. Instead, it estimates the density directly from the data. Examples include Kernel Density Estimation (KDE) which has wide applications and has become very popular in recent years.

To bridge the gap between understanding a dataset's distribution and generating new samples from it, we turn to generative modeling. Generative models use density estimation to find the joint probability distribution of the data. Consequently, they can create synthetic samples that are similar to the original data. Approaches to generative modeling can be taken from different directions like Gaussian Mixture Models which models data as a mixture of several Gaussian distributions, while latent variable models assume that the observed data was generated from hidden variables. Among these, Variational Autoencoders (VAEs) [1] which encodes data into a lower dimensional latent space and decodes it, thereby enabling the generation of new samples by drawing from this latent space and Generative Adversarial Networks (GANs) [2] that have a generator network, which makes up the data, and a discriminator network, which discriminates between the real and synthetic data. Both networks learn within a competitive setup until the generator produces highly realistic samples that the discriminator cannot distinguish between are particularly notable

2.2 Tree Based Models

Tree based models are an excellent class of machine learning algorithms that work on decision trees. Decision trees help in several ways given their ease of understanding, simplicity, and interpretability which are evident while performing the classification and regression task. They can work with both numeric and categorical data, picking up complex nonlinear relationships between features and the target. Notably, Random Forests and Gradient Boosted Decision Trees are widely popular tree based models because of their effectiveness and versatility.

Random Forests (RFs) [3] are one of the ensemble learning methods. They build multiple decision trees while maintaining an ensemble learning technique that aggregates the results to make a prediction. The technique not only helps in improving the robustness of the model in accuracy but also reduces the overfitting risk, which may come in individual decision trees. In the training phase, Random Forests develop many different decision trees such that each is trained on a random subset of the data and random features. This will effectively add diversity among the trees and inject power to increase stability and performance of the model. For classification, the Random Forest will output the class mode suggested by all the trees. In a regression problem, the prediction is given as the mean of all the trees. Averaging over the decision trees smoothens down the variance and actually augments its generalization. Moreover, another reason for the popularity of Random Forests is that they can handle enormous data sets effectively and perform well when there is missing information for a dataset. Being able to give insights about which features are important adds to interpretability and allows practitioners to understand better which features contribute the most toward the predictions.

In contrast, Gradient Boosted Decision Trees (GBDTs) [4] is a type of sequential ensemble method, meaning that trees are built one after the other. Each of the new trees is fit to correct the errors of all the previous trees, but now the target of the modeling is on the residuals (differences between responses in the observed and the previous model). In other words, boosting allows GBDTs to build a strong predictive model out of a series of weak learners (decision trees), each taking care of different aspects of the data. These are highly flexible, ensuring a good predictive accuracy in almost all kinds of tasks, be it regression, classification, or ranking. They basically operate by optimizing a loss function, measuring the model's capability in performing better or poorly. The most popular versions currently are XGBoost [5] and LightGBM [6]. Each of them has speed, efficiency, and the capability of handling data that is strictly better than others. GBDTs can capture complex interactions between features and tend to achieve high accuracy. However, GBDTs easily overfit in comparison with RFs, generally requiring careful tuning of hyperparameters. Overall, both models are very suitable for synthetic data creation due to their abilities to model complex data distributions and intrinsic robustness.

2.3 Privacy

The idea of using data in machine learning really raises a critical concern which is how do you ensure sensitive information such as personal health records, financial transactions, or any other personally identifiable information are not leaked. Privacy guarantees that these individual's data are not accessed without their consent and further prevents the inference of sensitive information. Traditional approaches to privacy involve anonymization and aggregation, which make it hard to recognize the individual data points. Yet, such techniques often fail to provide strong privacy guarantees since sophisticated re-identification attacks are sometimes able to reveal the underlying data.

Several types of identifiers can reveal a person's identity like:

- **Direct Identifiers:** Information that directly identifies a person, for instance, name of an individual, social security number, and email address.
- **Indirect Identifiers (Quasi-Identifiers):** Information such as age, gender, and ZIP code when combined with other data, indirectly identify an individual.
- **Sensitive Attributes:** Certain pieces of information such as health status, financial records, and personal preferences, are held at an individual level, which should not be related back to a person and are private.

There exist attacks that potentially exploit the above information from datasets to learn about a individual's private details. The reconstruction attack tries to reconstruct original data from aggregated or anonymized datasets. Differential attacks are those that exploit subtle differences in the response to the queries on a dataset. Even in aggregated data, if an attacker can issue enough queries and see small changes in the responses, they can infer whether or not the data of a particular person exists there, thus breaking the privacy. There is also inference attacks that attempt to deduce sensitive information about individuals or specific attributes across a dataset even when such information is not explicitly available. These attacks use data that is in the public domain or any other form of information retrievable to infer more facts. For instance, an attacker might use background knowledge such as demographics.

Generative AI models can create high-quality synthetic content but are often trained on sensitive data. A set of studies shows that indeed, in such models like GPT-2, there is the possibility for generating identity revealing text, upon seeding with particular prompts. Thus when not sufficiently protected, it inadvertently reproduces and leaks private details from its training datasets. The article [7] lists several key privacy threats and attacks like the ones mentioned above and also proposes various mitigation strategies like data sanitization, obfuscation, differential privacy, deduplication, replication detection, and machine unlearning though it does not provide a deeper technical analysis, methodology and evaluation of solutions effectiveness.

2.4 Federated Learning

Federated learning is a novel machine learning paradigm that combats the privacy issue by enabling multiple parties to collaboratively train a model without sharing data. With centralized learning data from various sources is aggregated into a single location for model training which poses significant privacy risks. Federated learning, on the other hand, enables the training of a global model while distributing learning across devices or servers, each holding local data. The model parameters are then updated locally and collected centrally so that the raw data remains decentralized and private.

Some benefits to federated learning include protection of user's privacy and their data by avoiding an aggregation of the raw data thus preventing data-breaches and unauthorized access to information. There is also increase in scalability since the computational power of many devices can be employed to run complex models over large scale datasets. Personalization is another benefit in which local models can be fine-tuned in order to adapt to user or organizational data in a manner that avails more personalized and relevant predictions. On the other hand, federated learning brings additional challenges, such as managing communication overhead, the guarantee of model convergence, and dealing with non-IID (Independent and Identically Distributed) data over different devices.

3 Related Work

3.1 Deep Neural Networks vs Tree Based Models

The works of Grinsztajn in [8] and Borisov in [9] are dedicated to reviewing the weak points of Deep Neural Networks (DNNs) in tabular settings. They compare them to tree based methods like XGBoost and Random Forests. Both providing extensive benchmarks and highlighting relevant factors like data characteristics, hyperparameter tuning, and representation power.

[8] argued for tree-based models due to their robustness and interpretability, highlighting their superiority in handling medium sized tabular datasets. They also outline the three main challenges for tabular specific neural networks firstly the robustness to uninformative features, Secondly the preservation of data orientation, and lastly the capability of learning irregular functions. [9] acknowledges the power in tree-based models but finds a lot of potential with DNNs, when appropriately preprocessed and engineered to have adequate features.

Both papers concurred on one point which is research has to be done to develop models that can handle the challenge of high dimensionality and sparsity of tabular data. They also emphasize the need for a standard benchmark against which we can measure learning from tabular data, so that evaluation methodologies do not vary and results across different works can be compared. [8] found that tree-based models remain to be state-of-the-art in medium sized tabular datasets, even without considering faster training times than deep learning algorithms. They thus provide a new benchmark and baselines, allowing testing of new algorithms within a fixed budget of hyperparameter optimization. They also probe for inductive biases that differ between tree based models and neural networks, with the interpretation that neural networks fail at learning irregular patterns and their rotation invariance hurts performance on tabular data. The state-of-the-art deep learning methods for tabular data did not perform much better than the use of tree based models on newly created benchmarks depicted in [9]. This emphasizes the importance of benchmarks to ensure new models generalize well across diverse datasets. These papers have led this research to pursue tree based models instead of Deep Neural Networks for generative modeling.

3.2 Generative Trees and Forests

In their paper [10] authors articulate the issues of DNNs at hand and then put forth a new proposition, in which models based on decision trees can be used for generative tasks. This is germane to the current research insofar as it pushes further on the use of tree based models in contexts of generative models. Thus, opening up promising paths for integrating differential privacy within tree based generative models. [10] proposes Generative Trees (GTs) to try to imitate beneficial properties of Decision Trees (DT) for tabular data classification. The authors proposed an adversarial training algorithm compliant with boosting for GTs, which tackles the generative modeling of tabular data through strengths of induction of decision trees. It includes the properness condition of a

loss function so that it should reflect correctly the true nature of data and model predictions. For example, via proper scoring rules such that the model is properly calibrated on the supervised loss. This results in a variational GAN style loss formulation, which incorporates principles from variational methods optimized under calibration conditions satisfied by DTs. In simpler terms the method leverages a variational measure based divergence from the discriminator side to derive the loss for the generator, which is tight characterized in the case of the discriminator satisfying the calibration property. It gives rise to a unified loss function to train the generator. They then proposed two training algorithms for GTs: a standard adversarial training and a "copycat" training procedure. In the copycat method the generator replicates the discriminator's tree structure and thus, makes training the discriminator very easy, thereby allowing for convergence. This method can be more effective than traditional adversarial training and is simple and is designed with clear, direct guarantees of convergence. The fine grained study on well defined loss functions in their relation to training generative models gives some clues that helps implement differential privacy in a fine tuned manner in this class of models. Furthermore, the copycat training scheme sets up a new high standard regarding efficient training mechanisms that could be potentially adopted for the improvement of privacy preserving generative modeling.

In the follow up paper, [11], the authors continue their work on tree based generative models and tackle some of the challenges that arise during the generation of tabular data. This work builds on their prior work in the field of generative trees and presents new techniques and algorithms to provide better generative models in tabular data. Their main aim here is to introduce Generative Forests (GF) consisting of sets of trees so as to enhance density modeling and data generation for tabular data. They argue against the current approaches for three reasons, the difficulty in maintaining an exact sampler with respect to the underlying density, the challenge of developing powerful generative models for tabular data, and the conceptual gap between supervised learning algorithms such as boosting and their application in data generation. Their proposed solution, GF.BOOST, eases the training process by using a supervised training scheme that can be easily incorporated into popular algorithms for the induction of decision trees with minimal modifications. The architecture of the model has been elaborated, highlighting the combinatorial benefits of having more than one tree over having one tree. All the trees are being used to produce each observation. Further, it introduces Ensembles Of Generative Trees (EOGT) as an alternative to GF being more memory-efficient than the latter while preserving combinatorial properties. Experimental results show that the proposed generative forests are competitive and sometimes even outperform the state-of-the-art methods like MICE for missing data imputation and Advarsarial Random Forest for data realism.

Overall, While the contributions of authors to the work in [10] and [11] make for very fertile ground for further elaborating more potent and scalable generative models for tabular data. There is the privacy aspect that is lacking in the synthetic data generation methods proposed in both the papers. It is with these identified privacy gaps in mind that this research aims to extend these contributions to developing secure

and privacy compliant synthetic data generation methods while maintaining high data utility.

3.3 Adversarial Random Forests

The paper [12] introduces a novel approach to density estimation and data synthesis using an unsupervised form of random forests inspired by generative adversarial networks. It builds from a recursive procedure in which the trees in the forest learn structural properties of the data through generation and discrimination phases. It proves to be consistent under minimal assumptions and is especially optimized to work efficiently on tabular data with mixed attributes.

Initial Framework with Iterative Improvement: adversarial random forest starts by building an initial framework of a random forest. This framework is then trained to classify data into real and synthetically generated classes. The synthetic data at this stage is formed by simple random sampling from the marginal distributions of the data attributes. This initial setup creates a fundamental adversarial setting, where the forest’s objective is to improve its ability to classify data points correctly as either real or synthetic.

Recursive partitioning and local independence: Recursive partitioning is key to the ARFs framework, such that every tree of a forest tries to partition data space in such a way that data within each leaf node becomes locally independent. This is measured by the independence criterion inside the leaf, for which the intent is that the joint distribution of the data points must factorize into the product of the marginal distributions. The factorization is critical as it eases the difficulty of density estimation from a possibly complex multivariate problem to simple univariate distributions within each partition.

Coverage and Refinement: In the process of iterative refinement, the coverage metric is critical in quantifying the percentage of data covered by each leaf. After the initial training phase, the ARF verifies the characteristics of the coverage and independence of each leaf to learn where the model’s performance can be improved. Leaves that are poorly covered or whose variables are highly dependent on each other are then focused more on the second iteration when the partitions are more refined.

Density Estimation Approach in FORDE: For each of these segments of inter-dependent subgroups of leaves, the data is assumed to be more homogeneous, thereby making it much easier to estimate density. The technique focuses on estimating conditional distributions within each leaf, assuming that variables within these partitions can be treated as independent. The assumption of independence within the leaves allows one to consider applying much simpler statistical methods, such as Gaussian models for continuous data or categorical distributions for discrete data for density estimation. Lastly, it aggregates density estimate from all leaves taking into consideration the coverage so as to model the overall density of the dataset. Thus, to provide accurate density estimates, each segment’s contribution is weighted based on its prevalence in the dataset.

FORGE’s Synthetic Data Generation: FORGE creates new synthetic data points that resemble the learned distributions given the density estimates for leaves.

This is achieved by sampling from the estimated models for each leaf. Since these models are simplified and assume local independence, generating the new points can be carried out effectively without losing the statistical properties of the data in any given segment. In order to accomplish this, FORGE will aggregate samples across a number of leaves such that any properties and distributions learned by the forest can be taken into account to ensure that the synthetic data represents the entire dataset as closely as possible. The aggregated method does not only guarantee that diverse data samples are taken from the spectrum of the original data's characteristics but also guarantees that the complex multivariate relationships present in the original data are retained in the generated synthetic dataset.

In summary, ARF's flexibility and efficiency in handling tabular data make it a prime choice for integrating differential privacy mechanisms, a feature that is not fully explored in [12]. Thus establishing a strong basis for creating potent differential private generative models.

3.4 Differential Privacy

The seminal work on "Differential Privacy" [13] by Cynthia Dwork has established a foundational framework for constructing privacy preserving data analysis methodologies.

[13] gives proof showing that adversary having access to auxiliary information along with the access to database with the use of privacy mechanism models like non interactive(Sanitized version of the dataset is provided) and interactive(Interface for users to query the database is provided) allows the adversary to make a privacy breach. Differential privacy makes it such that "Any disclosure will be within a small multiplicative factor just as likely whether or not individual is in the database. Thus there will only be negligible to small increase in the risk to an individual in participating in the database and nominal gain by concealing one's data." [13]

In her work, she provides a precise mathematical definition of differential privacy along with strong mechanisms for maintaining individual privacy while allowing data to still be analyzed in a meaningful way. The core idea of Differential Privacy is that the "The risk should not substantially increase as a result of participating in the database." [13]

According to [13], A randomized function K provides ϵ -differential privacy for all datasets D and D' differing by at most one element, for all subsets of outputs S : This concept is mathematically formalized by the inequality:

$$\Pr[K(D) \in S] \leq e^\epsilon \Pr[K(D') \in S] \quad (3.1)$$

Here's a breakdown of the terms and their significance:

- K represents a randomized algorithm or function that processes the dataset and gets an output.
- D and D' are two datasets that differ in exactly one data point. This means D' can be obtained by adding or removing one individual's data from D .

- S is a subset of possible outputs that the function K might produce.
- $\Pr[K(D) \in S]$ denotes the probability that the function K will produce an output within the subset S when run on dataset D .
- ϵ (epsilon) is a non-negative parameter that quantifies the privacy loss. Smaller values of ϵ correspond to stronger privacy guarantees. It controls the trade-off between privacy and accuracy.

The paper introduces mechanisms for adding noise such as the Laplace Mechanism for numeric and Exponential Mechanism for non-numeric queries.

In [13], Dwork considers the use of Auxiliary information that is when the adversary may have some additional external information. It makes sure that sufficient privacy guarantees are made regardless of such knowledge, which is an important practical requirement due to the rich multifaceted nature of data contexts. Differential privacy is also safe against queries that are adaptive, wherein the type of query to be asked and its parameters rely on the output of previous analyses and queries. Dwork's framework allows prevention of these inquiries from exploiting the differential privacy mechanisms, hence shielding privacy through these sequences of requests for interlinked data.

Dwork's principles offer a very good guideline when combining differential privacy into tree based generative models such as Random Forests and Gradient Boosted Decision Trees. By doing this, the models can make use of the properties of differential privacy by adding noise during model training or data generation steps thus ensuring that it does not reveal any sensitive information about any single individual, while also making sure that synthetic datasets produced still maintain the properties of original data. This enhancement will serve the applicability of these models in sensitive applications and align with ever growing expectations and regulations over data privacy.

3.5 Differential Privacy in Generative Adversarial Network

The paper [14] sheds further light on integrating differential privacy into the architecture of Generative Adversarial Networks. Providing a significant solution to problems in generative models where potential information can be leaked out of sensitive training data, especially when such models are applied to private or sensitive datasets like medical records.

The paper firstly makes use of differential privacy to protect individual data points within the training set. The intuition behind their differential privacy is that adding one data point and removing one data point should not dramatically change the result of a GAN. This is achieved by adding noise to the gradients during the training process. Particularly it is added according to the moments accountant method, which helps in tracking the privacy loss over multiple training iterations and ensures that the overall privacy budget is maintained.

Their framework is built upon the Wasserstein GAN (WGAN). Based on the Wasserstein GAN (WGAN) framework, the distance of Wasserstein provides a more stable and

meaningful measurement for the difference between real and generated data distributions than the Jensen-Shannon divergence in traditional GANs. Gradient clipping, and Gaussian noise injection are used together to enforce the Lipschitz constraint in models so as to keep it stable during training and ensure convergence.

The authors present theoretical justifications for privacy guarantees, in addition to demonstrating the efficacy of their technique by comprehensive empirical testing on benchmarks such as MNIST and MIMIC-III. All these techniques and principles described in this study can be used to make sure that the synthetic data generated by tree-based models also preserves privacy. The fact that the DPGAN framework has already been applied successfully to sensitive data, such as medical records, illustrates both the importance and possibility of these privacy preserving techniques.

One of the strengths of [14] is that the theoretical foundation has been rigidly laid and deep empirical validation is done. The guarantees in terms of privacy are pretty strong since the use of Wasserstein distance and the moments accountant method brings good privacy, while maintaining utility in the produced data. Thus, This also shows us that the complexity of implementing differential privacy in both deep neural networks and tree-based models is high. Additionally, the impact of noise on the quality of generated data, especially in high-dimensional settings, remains a challenge that needs careful consideration. This can make it somewhat more complex to implement differential privacy. Moreover, the limitation in the usage of Neural Networks for tabular data, as presented before remain a bottleneck.

3.6 Differential Privacy in Federated Boosted Decision Trees

The paper [15] tackles the emerging requirement for scalable, safe, and efficient privacy preserving machine learning models capable of being trained over distributed data. This study examines Gradient Boosted Decision Trees (GBDTs) under Differential Privacy (DP) restrictions and in federated learning contexts. In this proposal, they present new methods to gain high utility and provide statistically stronger privacy guarantees by exploiting the flexibility of Rényi Differential Privacy (RDP), a recent refinement in differential privacy that allows more fine grained analysis by considering moments of the privacy loss distribution.

The proposed approach in the paper decomposes the GBDT algorithm into five main components, and each of them is adapted to the federated setting while satisfying RDP. The Split Method combines histogram based methodologies for scalable privacy preserving decision making while adding randomness using Partially Random(PR) and Totally Random (TR) strategies to improve privacy. Secondly, Weight Updates apply Averaging, Gradient-based, and Newton-based methods to optimize the model with gradients and Hessians. Then Split Candidate Generation independently generates candidates based on uniform distribution, and Iterative Hessian splitting enhancing data representation while enforcing privacy. After which Feature Interactions are managed by limiting the scope of data used in each decision, enhancing interpretability and privacy. Lastly, Batched Updates reduce the communication demands by collating updates to improve data efficiency and accelerate convergence.

While the authors primarily aim to improve privacy for decision making models in federated environments, the addition of generative modeling could vastly expand the utility of their framework. Generative modeling is particularly well suited to federated settings for several excellent reasons. Firstly, it facilitates data augmentation, allowing for the synthetic expansion of limited datasets across distributed nodes which is a critical need in domains where data sharing is tightly regulated due to privacy concerns. Generative models also excel at solving the problem of imbalanced or non-IID (not independently and identically distributed) data that are common in federated learning scenarios. These models can also help balance the dataset by creating synthetic examples in underrepresented classes or distributions.

More importantly, generative modeling can improve privacy of data by creating synthetic datasets statistically similar to the original dataset while not revealing any sensitive information. Possible incorporation of techniques for density estimation and sample generation in [15] in relation to the Rényi Differential Privacy (RDP) and GBDTs framework would support the generation of high fidelity synthetic data while maintaining necessary privacy constraints. Such an integration can result in more diversified and rich data interactions across federated networks. Which in turn will increase the scope and impact of federated learning programs while protecting individual privacy. Although [15] shows federated learning is beneficial in dispersed data contexts, it may not entirely address difficulties in centralised or non-federated systems.

4 Approach

4.1 Design

This research design was constructed using two main components:

- The Adversarial Random Forest Algorithm by David Watson [12] for generative modeling with tree based methods explained in subsection 3.3.
- The Differential Privacy definitions explained in subsection 3.4 and theorems proposed by Cynthia Dwork in [13].

The ARF algorithm which has been implemented in both R and Python, gives us a good foundation to build upon. For this research I used the python package arfpy [16] (Note: There were certain issues related to the alpha parameter in the original forde method of the python package which was dealt with to ensure completeness in the implementation. Details are discussed in the Appendix section A). The Differential Privacy framework provides a way to add controlled noise to the data, ensuring that the synthetic data maintains privacy guarantees. I mainly focus on integrating Laplacian and Exponential mechanisms for numeric and categorical features, respectively, into the arfpy package.

The integration of these mechanisms in the arfpy plays an important role. Raising questions like, Where to add noise ?, How to add noise ? and How much noise to add ?. The arfpy code is well structured and separable thus fewer changes were needed to generate synthetic data which follows differential privacy, Such that instead of the adversary accessing the original dataset with privacy mechanism in place now we present the adversary with a differentially private synthetically generated data which can be accessed by the adversary in a interactive or non interactive way. The point being that when the adversary is only provided with differentially private synthetic data, the need for additional privacy mechanisms on subsequent queries is generally unnecessary. The differential privacy guarantees are embedded within the synthetic data generation process, ensuring that individual privacy is protected regardless of how the synthetic data is analyzed. Adding to this the use of noise in differential privacy makes it difficult for an adversary to trace back the original data points because the noise creates uncertainty and overlaps in the possible outputs. This ensures that individual data contributions remain hidden while allowing the synthetic dataset to retain its overall utility for analysis given it completely follows the differential privacy principles at all critical stages of generation.

- **Identifying Key Queries:** Determining which operations within the arfpy are sensitive and contribute to the synthetic data generation process. The Key Queries were mean, variance, and class probabilities. All the key queries are present in the FORDE method which estimates the density of the data.
- **Calculating Sensitivity:** For each key query, calculate the sensitivity, which is the maximum change in the output due to the addition or removal of a single data record. This is essential for calibrating the amount of noise to be added.

- **Apply Differential Privacy Mechanism:** Use Laplace and Exponential mechanisms to add noise to the outputs of these queries. The amount of noise is determined by the sensitivity and the desired privacy budget.
- **Generate Differential Private Synthetic Data:** Run the modified Differentially Private arfpy(dp arfpy) to produce synthetic data. This data will inherently protect individual privacy due to the noise added during the critical steps of density estimation.

4.2 Theoretical definitions and Theorems

Differential Privacy and its definition as previously discussed in subsection 3.4 along with the below mechanisms which are part of the research from [13] will be used to add noise in the arfpy.

4.2.1 Laplace Mechanism:

To ensure differential privacy for numerical queries, the Laplace mechanism adds noise from a Laplace distribution. The noise scale is determined by the sensitivity of the function, defined as the maximum change in output by adding or removing a single data point, as stated in [13]:

$$K(x) = f(x) + \text{Lap}(\Delta f / \epsilon) \quad (4.1)$$

Here:

- $f(x)$ is the query function.
- Δf is the sensitivity of the function f .
- ϵ is the privacy parameter.
- $\text{Lap}(\Delta f / \epsilon)$ denotes the Laplace noise added to the output.

4.2.2 Exponential Mechanism:

For non-numeric outputs, the exponential mechanism as stated in [13] selects an output based on a utility function, with higher probability given to more desirable outputs. The probability of selecting an output o is proportional to:

$$\Pr[K(D) = o] \propto \exp\left(\frac{\epsilon u(D, o)}{2\Delta u}\right) \quad (4.2)$$

Where:

- $\Pr[K(D) = o]$ is the probability that the mechanism K outputs o when given the dataset D .

- ϵ is the privacy parameter that controls the trade-off between privacy and accuracy.
- $u(D, o)$ is the utility function that measures the quality or utility of the output o given the dataset D .
- Δu is the sensitivity of the utility function, defined as the maximum change in the utility function u when a single element of the dataset D is modified.

4.3 Implementation

The overall goal of integrating differential privacy (DP) into ARFPY is to generate synthetic data that protects individual privacy while preserving data utility.

4.3.1 Enhancing Density Estimation (FORDE) with Differential Privacy

4.3.1.1 Steps for Adding Differential Privacy to Mean for Numeric Features

1. Sensitivity Calculation for Continuous Variables:

Sensitivity of a function (Δf) that calculates the mean (μ) and standard deviation (σ) depends on the range of data values within each leaf node.

2. Observed Minimum and Maximum:

For each group defined by a tree, node, and variable, calculate the observed minimum (\min_{observed}) and maximum (\max_{observed}) values:

$$\min_{\text{observed}} = \min(\text{value})$$

$$\max_{\text{observed}} = \max(\text{value})$$

3. Sensitivity for Mean:

Sensitivity of the mean for each group is given by:

$$\Delta\mu = \frac{\max_{\text{observed}} - \min_{\text{observed}}}{n}$$

where n is the number of data points in the group. Here, sensitivity is defined as the maximum change in the mean that results due to the addition or removal of one data point.

4. Handling Zero Sensitivity:

To avoid zero sensitivity, which can occur if all values are identical, we replace zero sensitivity with a small positive value (1×10^{-6}).

5. Adding Laplace Noise to Mean:

The Laplace mechanism adds noise drawn from a Laplace distribution to ensure differential privacy. The noise is calibrated to the sensitivity of the function and the privacy budget (ϵ).

6. Scale of Laplace Noise:

The scale parameter (b) for the Laplace distribution is determined by the sensitivity and privacy budget:

$$b = \frac{\Delta\mu}{\epsilon}$$

where ϵ is the privacy budget, controlling the trade-off between privacy and accuracy.

7. Noisy Mean:

Add Laplace noise to the calculated mean:

$$\mu' = \mu + \text{Lap} \left(\frac{\Delta\mu}{\epsilon} \right)$$

where $\text{Lap} \left(\frac{\Delta\mu}{\epsilon} \right)$ represents a random draw from the Laplace distribution with scale $\frac{\Delta\mu}{\epsilon}$.

8. Recalculated Standard Deviation Based on Noisy Mean:

After adding noise to the mean, the standard deviation must be recalculated to reflect the new noisy mean (μ').

9. Noisy Standard Deviation:

For each group, recalculate the standard deviation using the noisy mean:

$$\sigma' = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu')^2}$$

This recalculation ensures that the variance around the noisy mean is accurately represented.

Theoretical Justification for Differential Privacy Guarantee: By adding Laplace noise proportional to the sensitivity of the mean, this approach ensures that the change in the output due to any single data point is bounded. Thus, providing ϵ -differential privacy. The recalculated standard deviation ensures that the distribution's spread is accurately maintained, preserving data utility. This approach balances privacy and utility by calibrating the noise to the sensitivity of the data. Hence providing a balanced trade-off.

4.3.1.2 Steps for Adding Differential Privacy to Class Probabilities for Categorical features

1. Calculate Initial Probabilities:

For each class within each leaf node, calculate the initial probability based on the count of data points:

$$\text{prob} = \frac{\text{count_var_val}}{\text{count_var}}$$

where `count_var_val` is the count of a specific class and `count_var` is the total count of all classes within the node.

2. Use Initial Probabilities as Utility Scores:

The initial probabilities are used as the utility scores:

$$\text{scores} = \text{prob}$$

3. Sensitivity of the Utility Function:

The sensitivity of the utility function in this context is 1. This is because the maximum change in the count (and thus the probability) when a single data point is added or removed is 1.

4. Apply the Exponential Mechanism:

The exponential mechanism is applied by adding noise to the utility scores:

$$\text{exp_noise} = \exp\left(\frac{\epsilon \times \text{scores}}{2}\right)$$

5. Update Probabilities:

Update the probabilities with the exponential noise:

$$\text{prob} = \text{exp_noise}$$

6. Normalize Probabilities:

Normalize the noisy probabilities within each group to ensure they sum to one:

$$\text{prob} / = \sum \text{prob}$$

Theoretical Justification for Differential Privacy Guarantee: By calculating initial probabilities and using them as utility scores in the exponential mechanism, this approach ensures differential privacy for class probabilities within each leaf node. This method balances privacy and utility, allowing for the generation of synthetic data that protects individual data points while preserving the statistical properties of the original dataset.

4.3.2 Synthetic Data Generation (FORGE)

4.3.2.1 Objective: Generate new synthetic data points from the noisy distributions obtained from the density estimation step.

4.3.2.2 Steps:

- **Sample Data:** For continuous features, sample from the truncated normal distribution using noisy μ' and σ' . For categorical features, sample according to the noisy class probabilities.
- **Combine Features:** Combine sampled features to create synthetic data points that preserve the statistical properties of the original dataset while ensuring privacy.

Note: In the end some post processing is required to ensure synthetic data looks exactly like the original data this is the case for both the Original arfpy (og arfpy) and (Differentially Private arfpy) dp arfpy.

4.4 Alternate and Failed Approaches

Here, I present and discuss the alternate approaches that could have been used and also the failed approaches that were used to enhance generative tree based modeling with differential privacy. Each approach had distinct strategies and implementations.

4.4.1 Federated Boosted Differentially Private Generative Trees

The goal was to implement generative modeling into [15] to for the generation of synthetic data that satisfies differential privacy guarantees.

- **Density Estimation:** After the trees was trained, densities were estimated by traversing the trees and gathering the statistics (mean, standard deviation) of the data points in each leaf node. To these statistics, I added noise to ensure differential privacy.
- **Gradient, Splits and Hessian-Based Generation:** Using noisy gradients and Hessians from the training process to guide the generation of synthetic data. The Synthetic data points were generated by randomly choosing paths in the trees and sampling data points within the defined splits. Noise was added to the decision boundaries to ensure privacy.

Overall, While integrating generative modeling within the Federated Boosted DP Trees framework is theoretically appealing, but in practice, it suffers greatly in the effort to balance privacy versus data utility, capture complex data relationships, and manage computational overhead. Further research is needed to integrate effective generative modeling into the Federated Boosted Decision Trees with differential privacy framework.

4.4.2 Differentially Private Generative Trees and Forests or Adversarial Random Forest

The goal was to enhance existing generative modeling algorithms given in [10], [11], and [12] with differential privacy to generate high-quality synthetic data that preserves the privacy of individuals in the original dataset.

When deciding to implement differential privacy (DP) in ARFPY over the generative forest, several key factors were considered. ARFPY has been well modularized, and has more distinct task separation, including density estimation and data generation phases, which helps a lot to integrate DP. Given the structure of the model it is, therefore, much easier to implement and have a low cost privacy assurance as compared to extensive code refactoring.

On the other hand, the approach with generative forests is not the favorite one but potentially plausible for elaborate multi-dimensional models of data. Its design embodies adversarial loops and tree based modeling able to handle intricate data interactions, hence being adaptive to diverse datasets. Therein lies the flexibility to adjust and fine-tune privacy parameters, which are very important for the discipline of privacy preserving data synthesis. While challenges will remain, such as balancing cumulative noise with consistent privacy preservation, the generative forest should be able to effectively calibrate with sufficient testing in order to preserve accuracy and privacy. That way, it makes it highly suitable for advanced differential privacy applications and a robust framework for future explorations in the field.

4.5 Experimental Design

4.5.1 Data Acquisition

The datasets are preprocessed, to be specific One Hot Encoding for categorical variables is done for evaluation and not for training the arfpy models because that is already handled internally in arfpy. Also I have manually ensured equal decimal digit across all numerical features and correct data type for all features as well.

- **Health Insurance Dataset for US [17]:**

- Contains insurance charges for 1338 people along with their personal data like Age, Body Mass Index (BMI), Sex, Smoker, Number of children, Region.
- It is a synthetic dataset based on US census data.

- **UCI Adult Dataset [18]:**

- The UCI Machine Learning Repository's Adult Dataset contains 48,842 instances with both continuous and categorical features, taken from the 1994 United States Census..
- This dataset includes sensitive and specific information about individuals such as age, work class, education, marital status, occupation, race, gender, native

country, and income, which is categorized as either greater than or less than \$50,000 per year.

- it is important to note that it is composed of real, anonymized data and therefore is used in compliance with privacy regulations as given by the source.

- **Healthcare Dataset [19]:**

- Contains 55,500 rows of sensitive and specific information about the patients including their age, blood type, medical condition, insurance provider, room number, billing amount, and others.
- It is entirely synthetic implying it does not contain any real patient information or violates any privacy regulations.

4.5.2 Metrics and Plots for Evaluation

Overview of the technical plots and metrics used for evaluation of original dataset, og arfpy and dp arfpy generated datasets along with their importance.

- **Density Plot:** A graphical representation of the data distribution of the numeric variables. It can be interpreted as a smoothed version of a histogram. This will help us compare the distribution of the features visually.
- **Principal Component Analysis (PCA) Plot:** PCA is a dimensionality reduction technique employed to find out the direction in which the data varies the most. This will help compare the variability and importance across the datasets showing whether the utility is preserved. The first few principal components retain most of the variation present in the original dataset. Thus doing the PCA of top 2 components.
- **Correlation:** It measures the extent to which two variables are linearly related (strength and direction). This will help compare the change in relationship between the datasets.
- **Wasserstein Distance:** It provides a way of measuring the difference between two probability distributions. The approach is expressive in measuring the differences in the distributions when considering how the synthetic data was manipulated in relation to the original one.
- **Chi-Square Test:** An exclusive categorical variable test. To identify if there is an association between the categorical variables. It checks for goodness of fit between the observed data and the expected distribution or if the differences are present in the observed and the expected frequencies between original and synthetic datasets.
- **Root Mean Square Error (RMSE) and Mean Absolute Error (MAE):** It is a measure that checks if predictions are accurate. The RMSE calculates the square root of the average of squared differences between predicted and actual

values and takes more weight on larger errors, being sensitive to outliers. Averaging absolute differences, MAE gives the average error. Since it is not so influenced by outliers, this provides a rather direct measure of average error. RMSE is sensitive to error sizes, whereas MAE gives a more reasonable and overall good accuracy of the model. It also gives us a measurable estimate of differences in distributions between the original and synthetic datasets.

- **Classification Accuracy:** It is a measure of the model's accuracy, which has been trained with original data and tested with synthetic data. It helps in understanding whether the utility is preserved.
- **Reconstruction Attack:** An attack through which the dissimilarity between an original dataset and a synthetic dataset is measured by how well the synthetic data can reconstruct the original data. The k-NN algorithm evaluates how near synthetic points are to the original points. First it initializes the k-NN model to look for the three closest neighbors in the synthetic dataset for each point in the original dataset. It then calculates distance between each of the original data points and their nearest synthetic neighbors, averaging those distances together in order to produce a measure of how well the synthetic data reconstructs the original data. The mean distance is returned by the function, meaning the smaller the value, the better the reconstruction attack is in simulating the original data with synthetic data. This is a valuable measure used in assessing the privacy of synthetically generated data.

5 Results and Evaluation

. In this section, I present the results of my evaluation of the Differential Privacy (DP) enhanced ARFPY model. I address my research questions through quantitative, qualitative, and visual analyses. Detailed comparisons among the real data, data generated with the Original ARF, and data generated with the new DP-ARF are provided in order to evaluate the ARF models. This comparison involves a number of metrics that include density distributions, overlaps in PCA, Wasserstein distance, correlation matrices, and classification accuracy. Moreover, the effectiveness of privacy preservation is incorporated in the analysis with Reconstruction Attack, all of which is explained in subsubsection 4.5.2.

5.1 Health Insurance Dataset

5.1.1 Epsilon = 0.5

age	sex	bmi	children	smoker	region	charges
19	female	27.90	0	yes	southwest	16884.92
18	male	33.77	1	no	southeast	1725.55
28	male	33.00	3	no	southeast	4449.46
33	male	22.71	0	no	northwest	21984.47
32	male	28.88	0	no	northwest	3866.86

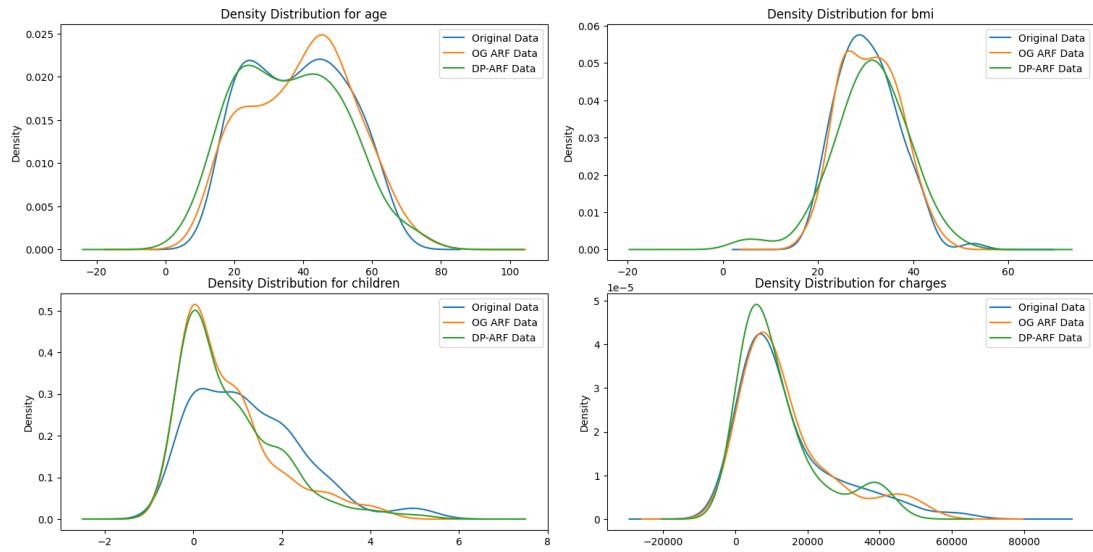
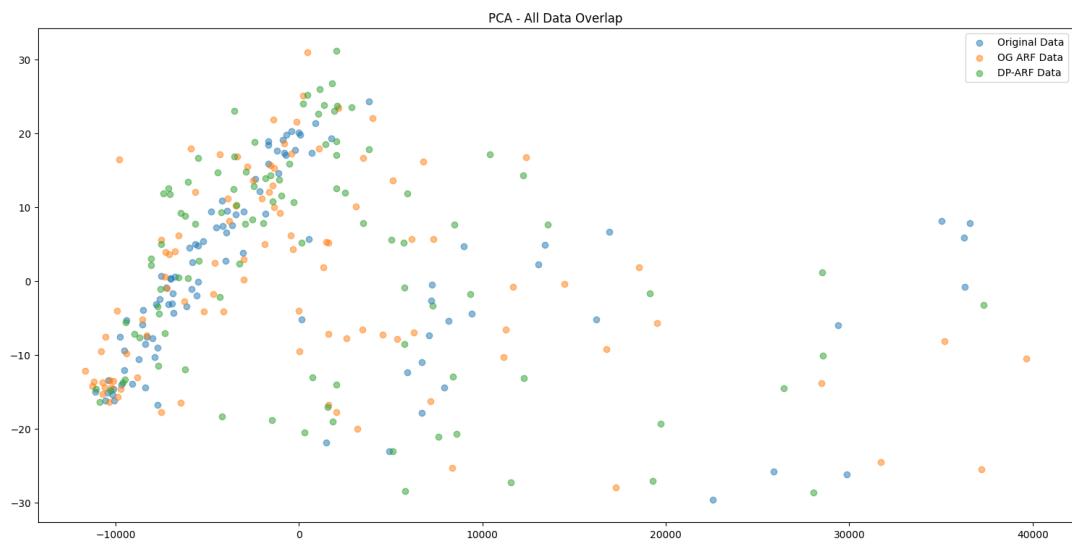
Table 1: Original Data for Insurance $\epsilon = 0.5$

age	sex	bmi	children	smoker	region	charges
76	female	31.29	0	yes	southwest	64002.06
62	female	22.88	0	no	northeast	10853.21
58	male	34.43	0	no	northwest	11382.47
55	female	20.14	0	no	southwest	11566.45
28	male	32.92	1	no	southwest	14846.36

Table 2: OG ARF Generated Data for Insurance $\epsilon = 0.5$

age	sex	bmi	children	smoker	region	charges
25	female	41.02	1	yes	southeast	41584.19
74	female	30.50	0	no	southwest	10590.04
44	male	32.58	3	no	northwest	7950.42
46	female	22.39	1	yes	southwest	19380.03
55	male	24.46	0	yes	southwest	12792.37

Table 3: DP-ARF Generated Data for Insurance $\epsilon = 0.5$

Figure 1: Density distribution for Insurance $\epsilon = 0.5$ Figure 2: PCA analysis for Insurance $\epsilon = 0.5$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs BMI	0.1093	0.1193	0.1018
Age vs Children	0.0425	0.0171	0.0832
Age vs Charges	0.2990	0.3117	0.2404
BMI vs Children	0.0128	-0.0393	0.0064
BMI vs Charges	0.1983	0.1817	0.1843
Children vs Charges	0.0680	0.0527	0.0437

Table 4: Correlation Matrices for Insurance $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	0.7108	0.7519
BMI	0.1709	0.7577
Children	0.2324	0.2840
Charges	737.2693	1173.4129

Table 5: Wasserstein Distance for Insurance $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Sex	0.0120	0.0478
Smoker	0.1132	1.9177
Region	1.4885	4.0125

Table 6: Chi-Square Test for Insurance $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	19.8058	20.5487
BMI	8.7060	9.4203
Children	1.6591	1.6656
Charges	17254.7497	17888.7417

Table 7: RMSE for Insurance $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	16.2324	16.7773
BMI	6.7161	7.3835
Children	1.2294	1.2407
Charges	12686.0164	12687.9253

Table 8: MAE for Insurance $\epsilon = 0.5$

ARF	Value
OG	0.9940
DP	0.9821

Table 9: Classification Accuracy for Insurance $\epsilon = 0.5$

ARF	Value
OG	1.1491
DP	1.1665

Table 10: Reconstruction Attack Error for Insurance $\epsilon = 0.5$

5.1.2 Epsilon = 0.1

age	sex	bmi	children	smoker	region	charges
19	female	27.90	0	yes	southwest	16884.92
18	male	33.77	1	no	southeast	1725.55
28	male	33.00	3	no	southeast	4449.46
33	male	22.71	0	no	northwest	21984.47
32	male	28.88	0	no	northwest	3866.86

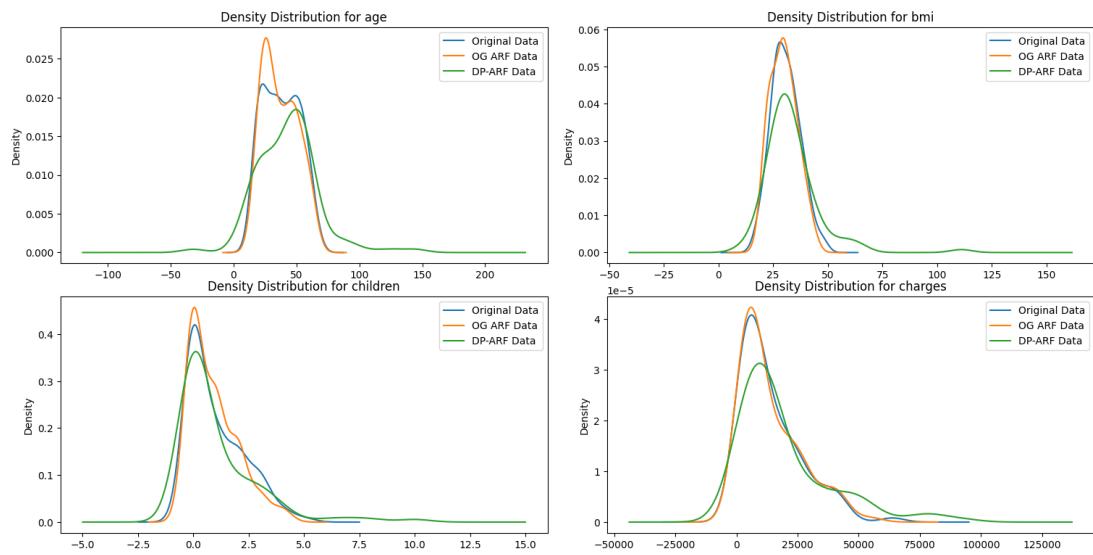
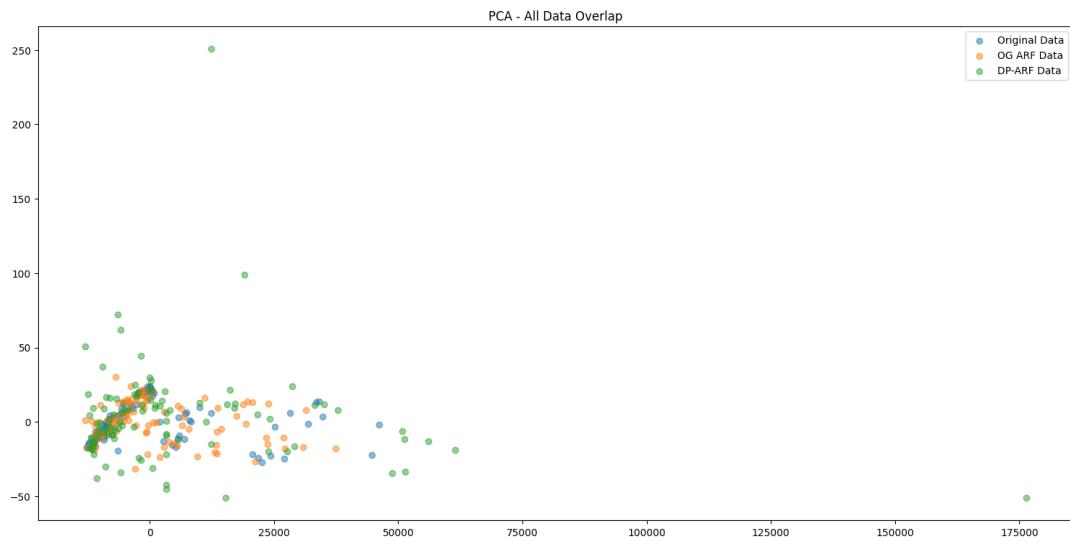
Table 11: Original Data for Insurance $\epsilon = 0.1$

age	sex	bmi	children	smoker	region	charges
28	female	34.72	1	no	southeast	3525.54
19	male	15.38	0	no	northeast	1552.01
48	female	26.94	0	no	northwest	13151.98
19	female	29.46	0	no	northwest	2164.71
52	female	38.00	1	no	northwest	39109.23

Table 12: OG ARF Generated Data for Insurance $\epsilon = 0.1$

age	sex	bmi	children	smoker	region	charges
31	male	33.68	0	no	southwest	17180.43
152	female	40.28	0	no	northwest	36628.09
47	female	33.47	4	no	southwest	8072.56
-7	male	47.51	2	yes	southwest	40062.53
33	female	34.41	2	no	southeast	8511.86

Table 13: DP-ARF Generated Data for Insurance $\epsilon = 0.1$

Figure 3: Density distribution for Insurance $\epsilon = 0.1$ Figure 4: PCA analysis for Insurance $\epsilon = 0.1$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs BMI	0.1093	0.1075	-0.0135
Age vs Children	0.0425	0.0516	0.0220
Age vs Charges	0.2990	0.2752	0.1215
BMI vs Children	0.0128	0.0765	-0.0110
BMI vs Charges	0.1983	0.1935	0.0784
Children vs Charges	0.0680	0.0898	0.0646

Table 14: Correlation Matrices for Insurance $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	0.7960	5.4372
BMI	0.1860	2.6262
Children	0.1771	0.5628
Charges	444.6989	3934.5369

Table 15: Wasserstein Distance for Insurance $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Sex	0.0030	1.7231
Smoker	1.9438	0.0410
Region	2.0303	2.1192

Table 16: Chi-Square Test for Insurance $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	19.6901	34.9413
BMI	8.6822	13.4745
Children	1.6532	3.3059
Charges	17012.1896	25427.7295

Table 17: RMSE for Insurance $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	16.2055	20.8318
BMI	7.1869	9.2910
Children	1.2773	1.6958
Charges	12064.6710	15174.2791

Table 18: MAE for Insurance $\epsilon = 0.1$

ARF	Value
OG	0.9948
DP	0.9454

Table 19: Classification Accuracy for Insurance $\epsilon = 0.1$

ARF	Value
OG	1.1301
DP	1.2600

Table 20: Reconstruction Attack Error for Insurance $\epsilon = 0.1$

5.1.3 Epsilon = 1.0

age	sex	bmi	children	smoker	region	charges
19	female	27.90	0	yes	southwest	16884.92
18	male	33.77	1	no	southeast	1725.55
28	male	33.00	3	no	southeast	4449.46
33	male	22.71	0	no	northwest	21984.47
32	male	28.88	0	no	northwest	3866.86

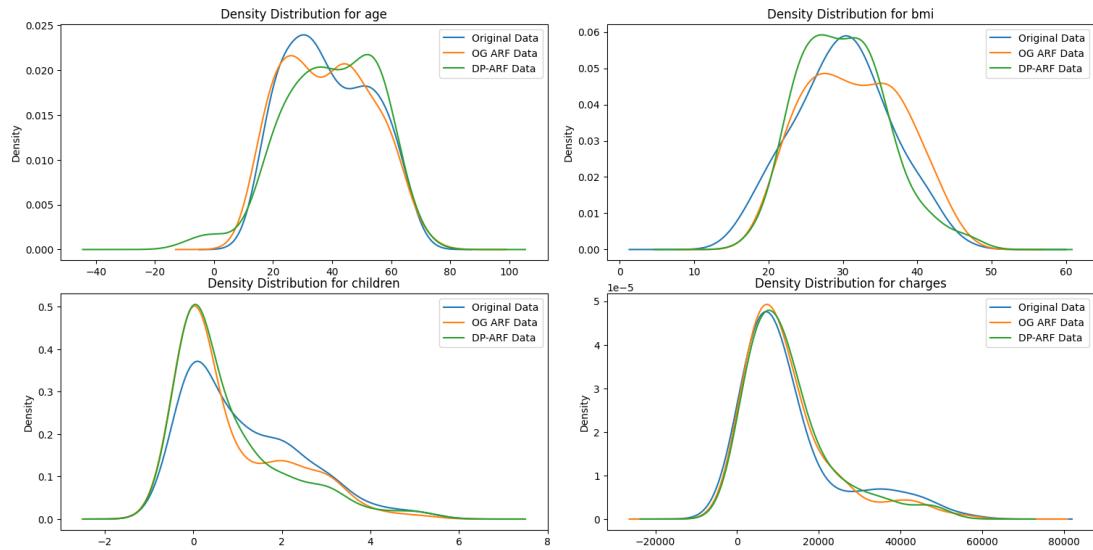
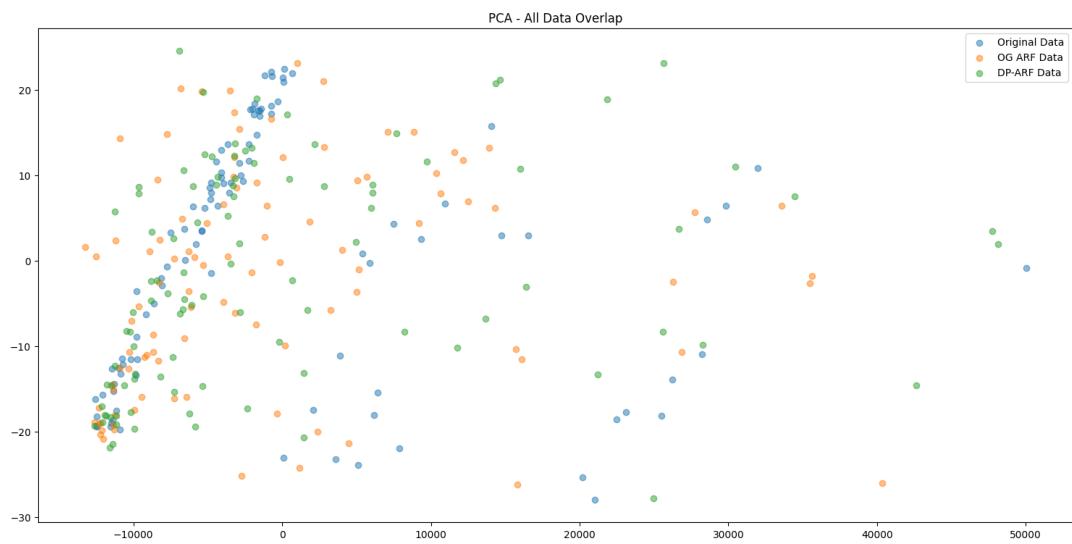
Table 21: Original Data for Insurance $\epsilon = 1$

age	sex	bmi	children	smoker	region	charges
51	female	40.59	1	no	southeast	12974.91
33	female	21.02	0	no	southwest	16722.54
27	female	27.85	0	yes	southwest	47654.03
53	female	33.83	0	no	southwest	11571.54
20	male	31.50	0	no	southwest	1150.92

Table 22: OG ARF Generated Data for Insurance $\epsilon = 1$

age	sex	bmi	children	smoker	region	charges
22	female	24.30	0	no	southeast	2654.25
26	male	27.27	1	no	southwest	3103.97
32	male	33.37	0	no	northwest	13654.07
49	male	31.00	0	no	southeast	20908.33
49	male	35.69	0	no	southeast	15504.31

Table 23: DP-ARF Generated Data for Insurance $\epsilon = 1$

Figure 5: Density distribution for Insurance $\epsilon = 1$ Figure 6: PCA analysis for Insurance $\epsilon = 1$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs BMI	0.1093	0.1136	0.1063
Age vs Children	0.0425	0.0671	0.0578
Age vs Charges	0.2990	0.2891	0.3368
BMI vs Children	0.0128	0.0323	-0.0047
BMI vs Charges	0.1983	0.1745	0.1376
Children vs Charges	0.0680	0.0672	0.0876

Table 24: Correlation Matrices for Insurance $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	0.9641	1.1121
BMI	0.2340	0.3356
Children	0.2556	0.2392
Charges	622.5091	757.9146

Table 25: Wasserstein Distance for Insurance $\epsilon = 1$

Feature	OG ARF	DP ARF
Sex	0.0120	1.7231
Smoker	0.0742	5.4413
Region	2.4009	1.5549

Table 26: Chi-Square Test for Insurance $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	19.6970	20.3337
BMI	8.7164	8.9149
Children	1.6316	1.6430
Charges	16630.1894	17068.2742

Table 27: RMSE for Insurance $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	16.1913	17.0942
BMI	7.0242	7.1800
Children	1.2407	1.2287
Charges	12397.7754	12610.3587

Table 28: MAE for Insurance $\epsilon = 1$

ARF	Value
OG	0.9955
DP	0.9851

Table 29: Classification Accuracy for Insurance $\epsilon = 1$

ARF	Mean Distance
OG	1.1295
DP	1.1449

Table 30: Reconstruction Attack Error for Insurance $\epsilon = 1$

Comparative density plots for characteristics like age, BMI, children, and charges at different DP settings (epsilon values 0.1, 0.5, and 1) are shown in Figure 1, Figure 3, and Figure 5 respectively. Overall, The plots demonstrates that the DP-ARF data generally follows the distribution of the original and non-private ARF (OG ARF) data. However, as expected with higher privacy (lower epsilon values) we get more distortion and deviation.

The graphical representation of PCA in Figure 2, Figure 4, and Figure 6 showed a pronounced overlap, implying that the principal components of synthetic data preserve the relationships and capture the important variations of variables. Although there are some increased noisy points in variance due to noise addition, especially noticeable at lower epsilon values.

Evaluation metrics such as Wasserstein distance, chi-square tests, RMSE, and MAE shows the differences between the distributions of the original and synthetic datasets. Lower values of epsilon showed increase in differences and error metrics, again its due to the trade-off between privacy and data utility.

Further validations on the utility of the synthetic data were made through classification tasks. Models performance was a little worse for the DP-ARF models compared to OG ARF in Table 9 and Table 29, but the difference is large especially at stricter privacy levels as shown in Table 19. This is because of noise negatively impacting predictive quality.

Finally, the reconstruction attack scenario tested how well an adversary could reconstruct original entries from synthetic data. The results in Table 10, Table 20 and Table 30 show an increase in mean distances. thus indicating effective increase in privacy levels.

Overall, the results for the health insurance dataset shows the effectiveness of DP-ARF in producing usable synthetic data with good privacy guarantees, The best trade-off between utility and privacy was found at epsilon 0.5.

5.2 Healthcare Dataset

5.2.1 Epsilon = 0.5

Name	Age	Gender	Blood Type	Medical Condition
Bobby Jackson	30	Male	B-	Cancer
Leslie Terry	62	Male	A+	Obesity
Danny Smith	76	Female	A-	Obesity
Andrew Watts	28	Female	O+	Diabetes
Adrienne Bell	43	Female	AB+	Cancer

Table 31: Original Healthcare Data Part 1 $\epsilon = 0.5$

Billing Amount	Room Number	Medication	Test Results
18856.28	328	Paracetamol	Normal
33643.33	265	Ibuprofen	Inconclusive
27955.10	205	Aspirin	Normal
37909.78	450	Ibuprofen	Abnormal
14238.32	458	Penicillin	Abnormal

Table 32: Original Healthcare Data Part 2 $\epsilon = 0.5$

Name	Age	Gender	Blood Type	Medical Condition
Sarah Garcia	46	Female	O-	Diabetes
Mario Moreno	44	Male	O+	Diabetes
David Sweeney	52	Male	B+	Arthritis
Donald Morrison	65	Male	B+	Diabetes
Daniel Blankenship	81	Male	A+	Asthma

Table 33: OG ARF Generated Healthcare Data Part 1 $\epsilon = 0.5$

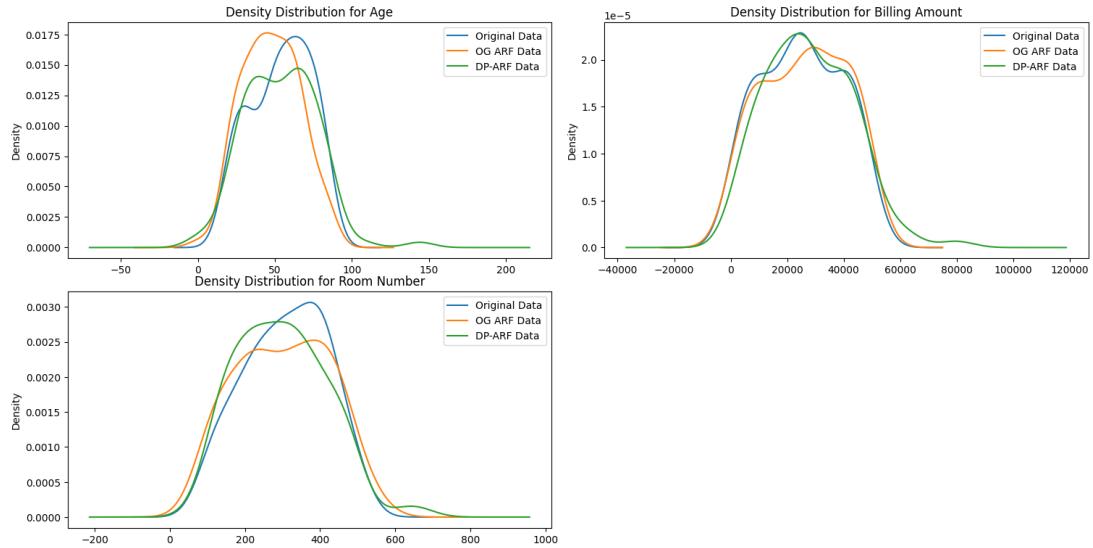
Billing Amount	Room Number	Medication	Test Results
29269.15	230	Paracetamol	Inconclusive
36451.28	225	Penicillin	Inconclusive
13229.58	196	Lipitor	Normal
2490.91	274	Aspirin	Inconclusive
39561.80	200	Paracetamol	Inconclusive

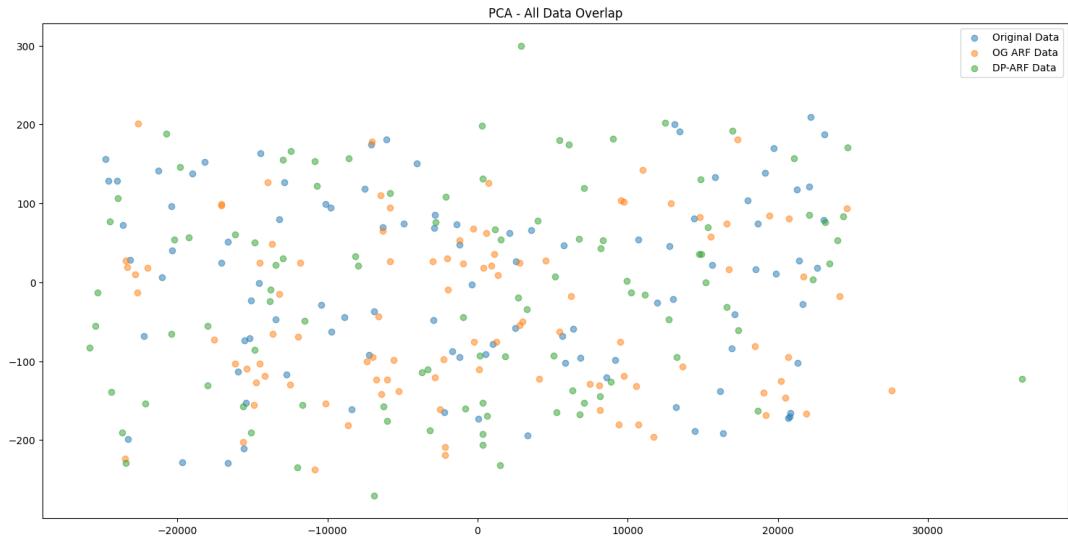
Table 34: OG ARF Generated Healthcare Data Part 2 $\epsilon = 0.5$

Name	Age	Gender	Blood Type	Medical Condition
Carolyn Rowe	76	Male	B-	Diabetes
Kevin Hendrix	54	Female	O+	Asthma
Ryan Taylor	64	Female	A-	Cancer
Ashley Walter	22	Female	AB-	Obesity
John Thompson	29	Male	O-	Arthritis

Table 35: DP ARF Generated Healthcare Data Part 1 $\epsilon = 0.5$

Billing Amount	Room Number	Medication	Test Results
50929.46	303	Aspirin	Abnormal
9633.21	247	Paracetamol	Inconclusive
21886.56	186	Paracetamol	Abnormal
8988.97	464	Aspirin	Normal
14689.24	192	Ibuprofen	Normal

Table 36: DP ARF Generated Healthcare Data Part 2 $\epsilon = 0.5$ Figure 7: Density distribution for Healthcare $\epsilon = 0.5$

Figure 8: PCA analysis for Healthcare $\epsilon = 0.5$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs BMI	0.1093	0.1193	0.1018
Age vs Children	0.0425	0.0171	0.0832
Age vs Charges	0.2990	0.3117	0.2404
BMI vs Children	0.0128	-0.0393	0.0064
BMI vs Charges	0.1983	0.1817	0.1843
Children vs Charges	0.0680	0.0527	0.0437

Table 37: Correlation Matrices for Healthcare $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	1.2378	1.4585
Billing Amount	1050.3541	1251.9999
Room Number	5.7045	7.1170

Table 38: Wasserstein Distance for Healthcare $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Sex	1.3330	2.0829
Smoker	4.1318	6.8886
Region	9.6889	5.0011

Table 39: Chi-Square Test for Healthcare $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	27.5775	29.2997
Billing Amount	19591.1242	20457.3572
Room Number	161.5081	168.8140

Table 40: RMSE for Healthcare $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	22.4694	23.3947
Billing Amount	16048.8418	16459.2068
Room Number	131.3888	135.4193

Table 41: MAE for Healthcare $\epsilon = 0.5$

ARF	Value
OG	0.8256
DP	0.8242

Table 42: Classification Accuracy for Healthcare $\epsilon = 0.5$

ARF	Value
OG	0.4409
DP	0.4673

Table 43: Reconstruction Attack Error for Healthcare $\epsilon = 0.5$

5.2.2 Epsilon = 0.1

Name	Age	Gender	Blood Type	Medical Condition
Bobby Jackson	30	Male	B-	Cancer
Leslie Terry	62	Male	A+	Obesity
Danny Smith	76	Female	A-	Obesity
Andrew Watts	28	Female	O+	Diabetes
Adrienne Bell	43	Female	AB+	Cancer

Table 44: Original Healthcare Data Part 1 $\epsilon = 0.1$

Billing Amount	Room Number	Medication	Test Results
18856.28	328	Paracetamol	Normal
33643.33	265	Ibuprofen	Inconclusive
27955.10	205	Aspirin	Normal
37909.78	450	Ibuprofen	Abnormal
14238.32	458	Penicillin	Abnormal

Table 45: Original Healthcare Data Part 2 $\epsilon = 0.1$

Name	Age	Gender	Blood Type	Medical Condition
Amanda Patel	51	Male	A+	Obesity
Karen Thomas	65	Female	B-	Diabetes
Faith Mathis	83	Female	O+	Diabetes
Jeffery Johnson	27	Male	B-	Asthma
Keith Wiley	58	Female	A+	Arthritis

Table 46: OG ARF Generated Healthcare Data Part 1 $\epsilon = 0.1$

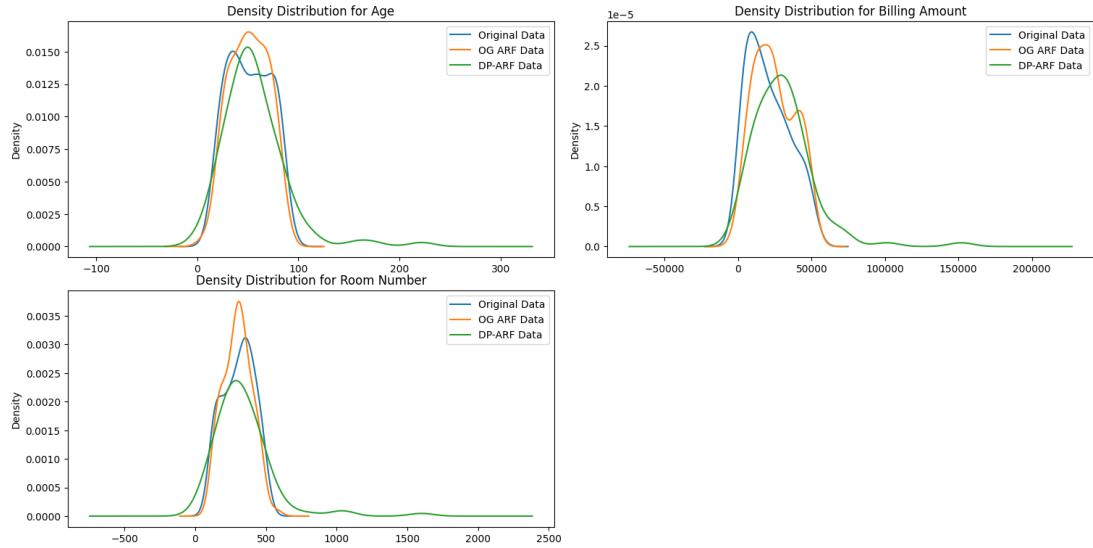
Billing Amount	Room Number	Medication	Test Results
13133.91	419	Ibuprofen	Abnormal
36187.58	407	Paracetamol	Abnormal
37165.47	380	Aspirin	Inconclusive
28384.04	149	Penicillin	Inconclusive
19314.20	496	Paracetamol	Normal

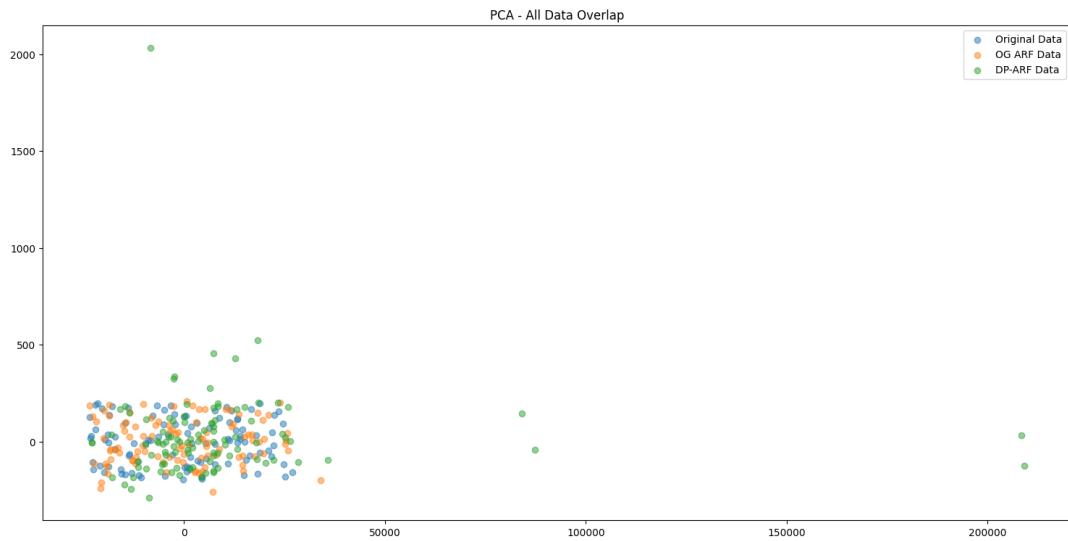
Table 47: OG ARF Generated Healthcare Data Part 2 $\epsilon = 0.1$

Name	Age	Gender	Blood Type	Medical Condition
Holly Dunn	73	Female	B-	Obesity
Keith Wheeler	67	Female	AB-	Asthma
Amanda Richmond	21	Male	AB-	Arthritis
Marissa Guzman	64	Female	AB+	Diabetes
Matthew Cooley	27	Male	AB-	Asthma

Table 48: DP ARF Generated Healthcare Data Part 1 $\epsilon = 0.1$

Billing Amount	Room Number	Medication	Test Results
14524.34	77	Penicillin	Abnormal
18283.76	1165	Ibuprofen	Inconclusive
15898.70	351	Lipitor	Abnormal
27276.49	147	Lipitor	Inconclusive
46902.64	485	Paracetamol	Inconclusive

Table 49: DP ARF Generated Healthcare Data Part 2 $\epsilon = 0.1$ Figure 9: Density distribution for Healthcare $\epsilon = 0.1$

Figure 10: PCA analysis for Healthcare $\epsilon = 0.1$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs Billing Amount	-0.0038	-0.0127	-0.0030
Age vs Room Number	-0.0007	0.0019	0.0059
Billing Amount vs Room Number	-0.0029	0.0004	0.0158

Table 50: Correlation Matrices for Healthcare $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	1.1992	8.2768
Billing Amount	1097.5450	5858.5344
Room Number	7.3377	46.9655

Table 51: Wasserstein Distance for Healthcare $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Gender	0.0348	0.1395
Blood Type	5.3213	5.3272
Medical Condition	4.7474	5.7709
Admission Type	5.1291	11.7552
Medication	4.4191	1.9580
Test Results	4.4448	1.6439

Table 52: Chi-Square Tests for Healthcare $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	27.5755	49.5280
Billing Amount	19592.9018	32565.8476
Room Number	160.7341	280.8843

Table 53: RMSE for Healthcare $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	22.4236	29.7468
Billing Amount	15965.1953	20214.3915
Room Number	130.8158	171.6214

Table 54: MAE for Healthcare $\epsilon = 0.1$

ARF	Value
OG	0.8269
DP	0.8262

Table 55: Classification Accuracy for Healthcare $\epsilon = 0.1$

ARF	Value
OG	0.4476
DP	0.5937

Table 56: Reconstruction Attack Error for Healthcare $\epsilon = 0.1$

Similar to the Insurance Dataset in subsection 5.1 we can see some of the realistic samples generated data by DP-ARF shown in Table 35, Table 36 and OG ARF shown in Table 33, Table 34. And after plotting density distributions for epsilon values of 0.1 Figure 9, 0.5 Figure 7 we can see how synthetic data aligns with the original dataset's distributions for key attributes like Age, Room Number, and Billing Amount. DP-ARF data trends very similarly to that of the original and OG ARF data in most cases and is often with remarkable fidelity even under different privacy settings. Noticeable distortions were introduced by lower epsilon values as the noise level increased, more evident at epsilon = 0.1, which, despite the noise, was determined to be the best trade-off between privacy and utility.

Principal component analysis in Figure 10 and Figure 10 demonstrates a good overlap in data points for the original, OG ARF, and DP-ARF datasets, thus showing that synthetic data holds essential relationships among variables.

The computed statistical metrics, which include Wasserstein distance, chi-square tests, Root Mean Square Error, and Mean Absolute Error, shown in their respective tables demonstrate how well synthetic data mimic the original distributions.

Results of classification task in Table 55 and Table 42 indicates that models evaluated using DP-ARF data for the healthcare dataset are as effective as those trained with OG ARF data even though there is added noise it does not deteriorate the predictive power of the models too much. Thus, retaining good accuracy values in compensation for significant increase in privacy.

Reconstruction attacks demonstrate a higher mean distance error with more stringent privacy settings shown in Table 56 with lower epsilon value of 0.1 illustrating the overall protection against possible data breaches.

In summary, the results on the healthcare dataset underline that DP-ARF can produce effective synthetic datasets that retain most of the utility while guaranteeing significant privacy levels. For the healthcare dataset the chosen epsilon value of 0.1 reflects an optimal trade-off that will maximize privacy while keeping reasonable utility. Additional results if necessary for epsilon value of 1 are shown in Appendix section A.

5.3 Adult Dataset

5.3.1 Epsilon = 0.5

age	workclass	fnlwgt
39	State-gov	77516
50	Self-emp-not-inc	83311
38	Private	215646
53	Private	234721
28	Private	338409

Table 57: Original Data Sample Part 1 for Adult $\epsilon = 0.5$

education	hours_per_week	native_country	income
Bachelors	40	United-States	$\leq 50K$
Bachelors	13	United-States	$\leq 50K$
HS-grad	40	United-States	$\leq 50K$
11th	40	United-States	$\leq 50K$
Bachelors	40	Cuba	$\leq 50K$

Table 58: Original Data Sample Part 2 for Adult $\epsilon = 0.5$

age	workclass	fnlwgt
44	Federal-gov	206408
16	Private	278898
53	Private	372365
46	Private	184376
37	Private	330176

Table 59: OG ARF Generated Adult Data Part 1 $\epsilon = 0.5$

education	hours_per_week	native_country	income
Masters	42	United-States	> 50K
HS-grad	18	United-States	$\leq 50K$
PhD	48	United-States	> 50K
Bachelors	37	United-States	$\leq 50K$
HS-grad	64	El-Salvador	$\leq 50K$

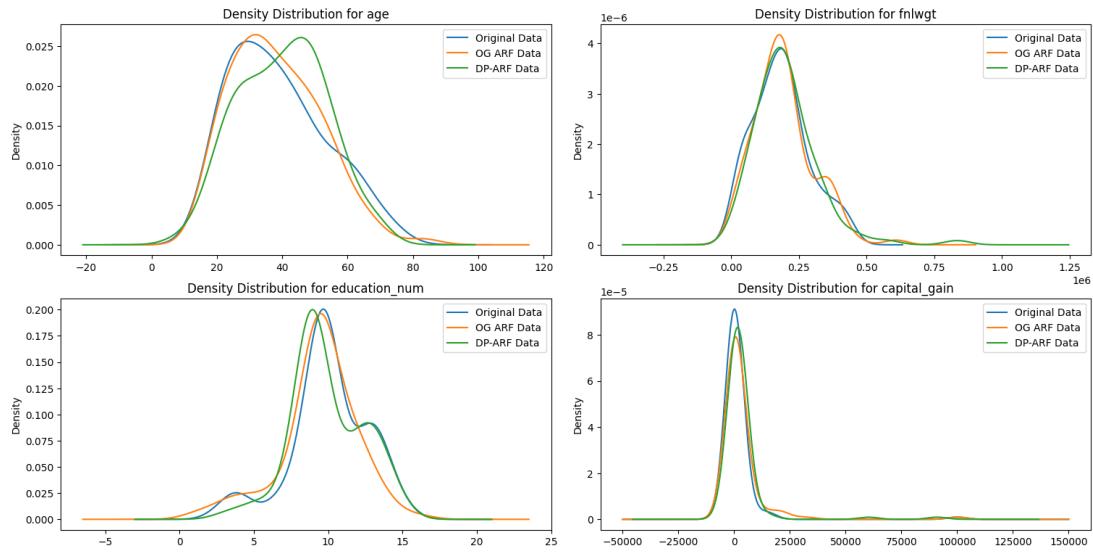
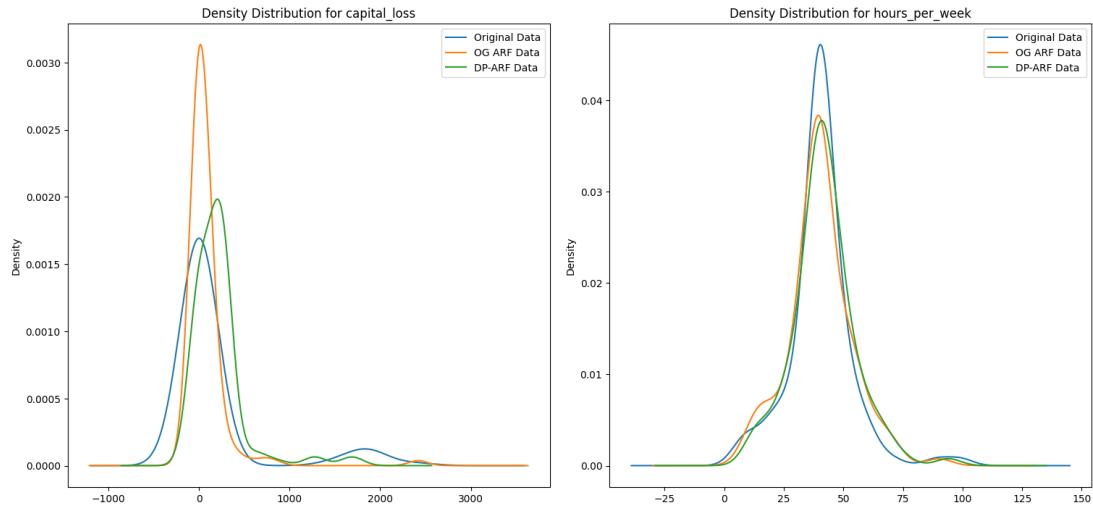
Table 60: OG ARF Generated Adult Data Part 2 $\epsilon = 0.5$

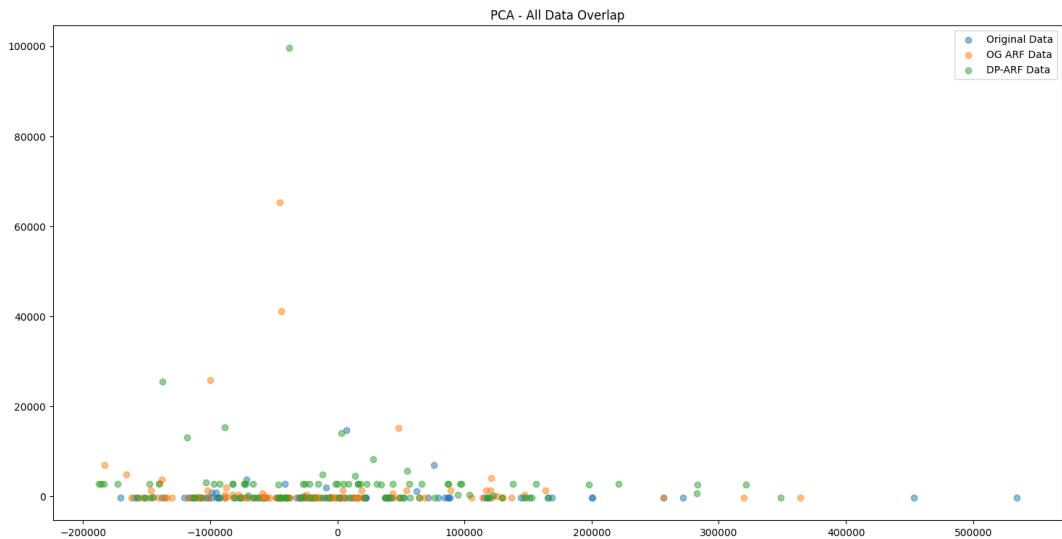
age	workclass	fnlwgt
26	Private	248347
33	Self-emp-inc	31230
53	Private	340454
38	Private	29693
109	Private	122824

Table 61: DP ARF Generated Adult Data Part 1 $\epsilon = 0.5$

education	hours_per_week	native_country	income
Assoc	48	Mexico	$\leq 50K$
Masters	42	England	$\leq 50K$
Bachelors	20	Germany	> 50K
Some-college	30	Philippines	$\leq 50K$
PhD	42	United-States	> 50K

Table 62: DP ARF Generated Adult Data Part 2 $\epsilon = 0.5$

Figure 11: Density distribution for Adult Part 1 $\epsilon = 0.5$ Figure 12: Density distribution for Adult Part 2 $\epsilon = 0.5$

Figure 13: PCA analysis for Adult $\epsilon = 0.5$

Features	Original Data	OG ARF Data	DP ARF Data
Age	1.0000	1.0000	1.0000
Fnlwgt	-0.0766	-0.0748	-0.0573
Education Num	0.0365	0.0228	0.0435
Capital Gain	0.0776	0.0885	0.0853
Capital Loss	0.0577	0.0746	0.0598
Hours per Week	0.0687	0.0898	0.0723

Table 63: Correlation Matrices for Adult $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	0.2970	0.5356
Fnlwgt	4836.6663	9087.6845
Education Num	0.3181	0.5221
Capital Gain	730.0260	2015.6014
Capital Loss	79.5174	170.4623
Hours per Week	1.5451	2.2142

Table 64: Wasserstein Distances for Adult $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Workclass	3.2510	6493.7061
Education	15.9293	1736.4526
Marital Status	1.6512	1761.5229
Occupation	7.3814	1180.0485
Relationship	2.0247	1395.9324
Race	2.1653	3478.9120
Sex	0.3323	78.3628
Native Country	inf	4747.7375
Income	0.7360	465.4520

Table 65: Chi-Square Tests for Adult $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	19.2967	20.1172
Fnlwgt	150145.8945	157823.5666
Education Num	3.6681	3.7928
Capital Gain	10679.0877	11814.0060
Capital Loss	555.6207	589.8089
Hours per Week	17.6909	18.8225

Table 66: RMSE for Adult $\epsilon = 0.5$

Feature	OG ARF	DP ARF
Age	15.4469	15.8346
Fnlwgt	113682.3628	117208.1162
Education Num	2.7879	2.9211
Capital Gain	2610.5686	3796.7102
Capital Loss	217.3906	309.4794
Hours per Week	13.0037	13.6893

Table 67: MAE for Adult $\epsilon = 0.5$

ARF	Value
OG	0.8364
DP	0.7312

Table 68: Classification Accuracy for Adult $\epsilon = 0.5$

ARF	Value
OG	239.2654
DP	268.4633

Table 69: Reconstruction Attack Error for Adult $\epsilon = 0.5$

For the adult dataset the balanced trade-off was found at epsilon 0.5 and hence its displayed above and the other results for epsilon 0.1 and 1 if necessary are displayed in the the Appendix section A.

The density plots shown in Figure 11 and Figure 12 show that it follows the original data distribution very closely for most of the features on the Adult dataset except age and capital loss though its not that deviated from the original. A lower epsilon would provide a higher level of privacy but starts diverging more from the original distribution.

Principal Component Analysis (PCA) performed on the datasets shown in Figure 13 at an epsilon of 0.5 expresses a good preservation of relationships between the variables.

Quantitative measures, such as Wasserstein distance, chi-square tests, and RMSE, show increasing errors and differences with increasing privacy. Also the model's performance, measured in terms of classification accuracy, was best for an epsilon of 0.5 in terms of difference from the OG arf shown in Table 68 thus confirming that this value offers a practically good trade off between privacy and utility.

Reconstruction attack error was good for all the values in the dp arf but the best one having a good trade off with utility was at 0.5 Table 69.

Overall, the DP-ARF was successful in generating realistic dataset from all the datasets (Insurance, Healthcare, Adult) all while preserving data utility and offering strong differential privacy guarantees.

6 Legal, Social, Ethical and Professional Issues

This project has adhered to the research and practices that match the ethical, legal, and professional standards set out by the British Computer Society (BCS) and The Institution of Engineering and Technology (IET). Public well being was at the forefront in this project as its main aim is to protect people's privacy through the use of differential privacy techniques. The methods outlined in the project support the rights and confidentiality of people represented within our datasets like the Adult dataset [18].

I have made a point of emphasizing the integrity regarding the possibilities and constraints that my algorithms can have reflecting upon my high standards for both honesty and responsibility.

This project fully supports these codes outlined above while dealing with technological innovation and ethical accountability. I meticulously reviewed each dataset to assure conformity with legal and ethical norms, as well as ensuring that my work was based on the principles of data protection and intellectual property. The project further mitigated risks of data security by using synthetic datasets in practice and encouraging trust in AI technologies. This thesis is not just a requirement for academic fulfillment but also speaks towards good use of technology in sensitive environments. With such work, I strived to set an example of how high-class data analysis should be balanced with strong ethical practices and data privacy to promote technology responsibly.

7 Conclusion

This research primarily looked into questions related to the integration of differential privacy into adversarial random forests in order to achieve data generation that is privatized. The research was centered on understanding the trade-offs of privacy against data utility, the challenges of operationalizing differential privacy in complex machine learning models.

The results demonstrated in section 5 show that DP can be embedded into ARF and will appropriately generate privacy protected synthetic data that strike a balance between privacy and utility. The DP-ARF model includes noise in the process of data generation to ensure privacy. However, this is sometimes at the expense of the statistical properties of the data. Comparative analyses with the OG ARF model showed that, while DP-ARF maintained similar trends in the distributions of generated data, privacy was significantly increased which made a slight degradation in utility performance metrics acceptable as outlined by the principles of differential privacy.

Concretely, this work contributes to the field of differential privacy and generative modeling by successfully implementing the differential privacy in the adversarial random forest framework [12]. This research has shed light on complexities and challenges involved in the integration of Differential Privacy and advanced machine learning models and has highlighted the necessary trade-offs in all these cases. The work is worth the effort since it extends the current understanding of privacy preserving synthetic data generation and constitutes the basis for future research in this area of study.

7.1 Future Work

Management of Privacy Budget

Construction of methods to track and optimize privacy budget consumption in future works can lead to sustainable and controlled usage of privacy resources. This would also lead to protection against the adaptive query attacks which is no explored in this work because the framework required to implement the adaptive queries pose significant complexity and manual intervention. Since, through the adaptive query attack, an attacker can exploit loopholes that occur during the query production process, thereby breaching the privacy of the user. Therefore, developing the DP-ARF model so as to protect it from such an attack would make it more robust and more applicable for real world scenario.

Automation of Privacy Parameters

The above privacy budget management can be further streamlined by automating the selection and tuning of privacy parameters. Thus, One way to make the model efficient and easy to use is to develop algorithms through which privacy budgets can be set in a more dynamic way according to data sensitivity and the context of their use.

Extension to Other Machine Learning Models

The extension of differential privacy techniques to other tree based machine learning models, apart from random forests, such as mentioned in section 3 can expand the applicability area of the privacy preserving data generation methods.

7.2 Lessons Learned

- **Importance of Prioritizing the Best Approach:**

- One key lesson learned was the importance of prioritizing the best approach early on. Given the multitude of potential methods, it is essential to identify and focus on the most promising one to maximize efficiency and effectiveness.

- **Finding Alternatives Under Constraints:**

- When implementation fails due to decisions taken during previous design stages, alternative approaches must be investigated quickly, this becomes very important when there are time constraints. The design of a project should be kept in mind from the beginning to strike a balance between troubleshooting to resolve current problems and moving forward to seek new techniques.

- **Project Structure:**

- Having a good project structure and established goals from the start makes tracking progress simpler and prevents those useless changes. Engagement with supervisor and their guidance can further refine your approach.

Overall, The project outlines a successful integration of differential privacy into the ARF. We have also seen that many challenges still remain, particularly in balancing privacy and utility. However, the research and methodologies in this paper provide a solid grounding for future advancements. Continued advancements in this field will further enhance the capabilities and applications of privacy preserving generative modeling techniques.

References

- [1] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
- [2] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.
- [3] L. Breiman, “Random forests,” *Machine Learning*, vol. 45, pp. 5–32, 10 2001.
- [4] J. Friedman, “Greedy function approximation: A gradient boosting machine,” *The Annals of Statistics*, vol. 29, 11 2000.
- [5] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD ’16, ACM, Aug. 2016.
- [6] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in *Advances in Neural Information Processing Systems* (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.
- [7] P. Pathak, “Generative AI: A Technical Deep Dive into Security and Privacy Concerns — scribbledata.io.” <https://www.scribbledata.io/blog/generative-ai-a-technical-deep-dive-into-security-and-privacy-concerns/>.
- [8] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based models still outperform deep learning on tabular data?,” 2022.
- [9] V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci, “Deep neural networks and tabular data: A survey,” *IEEE Transactions on Neural Networks and Learning Systems*, p. 1–21, 2024.
- [10] R. Nock and M. Guillame-Bert, “Generative trees: Adversarial and copycat,” 2022.
- [11] R. Nock and M. Guillame-Bert, “Generative forests,” 2023.
- [12] D. S. Watson, K. Blesch, J. Kapar, and M. N. Wright, “Adversarial random forests for density estimation and generative modeling,” 2023.
- [13] C. Dwork, “Differential privacy,” in *Automata, Languages and Programming* (M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, eds.), (Berlin, Heidelberg), pp. 1–12, Springer Berlin Heidelberg, 2006.
- [14] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou, “Differentially private generative adversarial network,” 2018.

- [15] S. Maddock, G. Cormode, T. Wang, C. Maple, and S. Jha, “Federated boosted decision trees with differential privacy,” in *Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security*, CCS ’22, ACM, Nov. 2022.
- [16] K. Blesch and M. N. Wright, “arfpy: A python package for density estimation and generative modeling with adversarial random forests,” 2023.
- [17] A. Datta, “US Health Insurance Dataset,” April 2020. Version 1. [Dataset; Kaggle]. Retrieved July 2024, from <https://www.kaggle.com/datasets/teertha/ushealthinsurancedataset/data?select=insurance.csv> The original source of this dataset is the 3rd edition of ”Machine Learning with R”, by Brett Lanz.
- [18] B. Becker and R. Kohavi, “Adult.” UCI Machine Learning Repository, 1996. DOI: <https://doi.org/10.24432/C5XW20>.
- [19] P. Patil, “Healthcare dataset,” 2024. Version 2. [Dataset; Kaggle]. Retrieved July 2024, from <https://www.kaggle.com/datasets/prasad22/healthcare-dataset>.

A Appendix

Appendix A: Source Code

Appendix A.1: DP-ARF Implementation Code

```

1 import numpy as np
2 import pandas as pd
3 from sklearn.ensemble import RandomForestClassifier
4 from sklearn.ensemble._forest import _generate_unsampled_indices
5 import scipy
6 from arfpy import utils
7
8 class arf:
9     """Implements Adversarial Random Forests (ARF) in python
10    Usage:
11    1. fit ARF model with arf()
12    2. estimate density with arf.forde()
13    3. generate data with arf.forge().
14
15    :param x: Input data.
16    :type x: pandas.DataFrame
17    :param num_trees: Number of trees to grow in each forest, defaults
18    to 30
19    :type num_trees: int, optional
20    :param delta: Tolerance parameter. Algorithm converges when OOB
21    accuracy is < 0.5 + 'delta', defaults to 0
22    :type delta: float, optional
23    :param max_iters: Maximum iterations for the adversarial loop,
24    defaults to 10
25    :type max_iters: int, optional
26    :param early_stop: Terminate loop if performance fails to improve
27    from one round to the next?, defaults to True
28    :type early_stop: bool, optional
29    :param verbose: Print discriminator accuracy after each round?,
30    defaults to True
31    :type verbose: bool, optional
32    :param min_node_size: minimum number of samples in terminal node,
33    defaults to 5
34    :type min_node_size: int
35    """
36
37    def __init__(self, x, num_trees=30, delta=0, max_iters=10, early_stop
38    =True, verbose=True, min_node_size=5, epsilon=1.0, **kwargs):
39        # Assertions to ensure correct input types and values
40        assert isinstance(x, pd.core.frame.DataFrame), f"expected pandas
41        DataFrame as input, got:{type(x)}"
42        assert len(set(list(x))) == x.shape[1], f"every column must have
43        a unique column name"
44        assert max_iters >= 0, f"negative number of iterations is not
45        allowed: parameter max_iters must be >= 0"
46        assert min_node_size > 0, f"minimum number of samples in terminal
47        nodes (parameter min_node_size) must be greater than zero"

```

```

37     assert num_trees > 0, f"number of trees in the random forest ("
38     parameter num_trees) must be greater than zero"
39     assert 0 <= delta <= 0.5, f"parameter delta must be in range 0 <=
40     delta <= 0.5"
41
42     # Initialize values
43     x_real = x.copy()
44     self.p = x_real.shape[1]
45     self.orig_colnames = list(x_real)
46     self.num_trees = num_trees
47
48     self.epsilon = epsilon # Privacy budget added for dp_arf by
49     Harsh Merchant
50
51     # Find object columns and convert to category
52     self.object_cols = x_real.dtypes == "object"
53     for col in list(x_real):
54         if self.object_cols[col]:
55             x_real[col] = x_real[col].astype('category')
56
57     # Find factor columns
58     self.factor_cols = x_real.dtypes == "category"
59
60     # Save factor levels
61     self.levels = {}
62     for col in list(x_real):
63         if self.factor_cols[col]:
64             self.levels[col] = x_real[col].cat.categories
65
66     # Recode factors to integers
67     for col in list(x_real):
68         if self.factor_cols[col]:
69             x_real[col] = x_real[col].cat.codes
70
71     # If no synthetic data provided, sample from marginals
72     x_synth = x_real.apply(lambda x: x.sample(frac=1).values)
73
74     # Merge real and synthetic data
75     x = pd.concat([x_real, x_synth])
76     y = np.concatenate([np.zeros(x_real.shape[0]), np.ones(x_real.
77     shape[0])])
78     # real observations = 0, synthetic observations = 1
79
80     # Pass on x_real
81     self.x_real = x_real
82
83     # Fit initial RF model
84     clf_0 = RandomForestClassifier(oob_score=True, n_estimators=self.
num_trees, min_samples_leaf=min_node_size, **kwargs)
     clf_0.fit(x, y)
85
86     iters = 0

```

```

85     acc_0 = clf_0.oob_score_ # is accuracy directly
86     acc = [acc_0]
87
88     if verbose:
89         print(f'Initial accuracy is {acc_0}')
90
91     if acc_0 > 0.5 + delta and iters < max_iters:
92         converged = False
93         while not converged: # Start adversarial loop
94             # Get nodeIDs
95             nodeIDs = clf_0.apply(self.x_real) # dimension [terminalnode, tree]
96
97             # Add observation ID to x_real
98             x_real_obs = x_real.copy()
99             x_real_obs['obs'] = range(0, x_real.shape[0])
100
101             # Add observation ID to nodeIDs
102             nodeIDs_pd = pd.DataFrame(nodeIDs)
103             tmp = nodeIDs_pd.copy()
104             tmp['obs'] = range(0, x_real.shape[0])
105             tmp = tmp.melt(id_vars=['obs'], value_name="leaf",
106 var_name="tree")
107
108             # Match real data to trees and leafs (node id for tree)
109             x_real_obs = pd.merge(left=x_real_obs, right=tmp, on=['obs'],
110 sort=False)
111             x_real_obs.drop('obs', axis=1, inplace=True)
112
113             # Sample leafs
114             tmp.drop("obs", axis=1, inplace=True)
115             tmp = tmp.sample(x_real.shape[0], axis=0, replace=True)
116             tmp = pd.Series(tmp.value_counts(sort=False), name='cnt')
117             .reset_index()
118             draw_from = pd.merge(left=tmp, right=x_real_obs, on=['tree',
119 'leaf'], sort=False)
120
121             # Sample synthetic data from leaf
122             grpdt = draw_from.groupby(['tree', 'leaf'])
123             x_synth = [grpdt.get_group(ind).apply(lambda x: x.sample(n=
124             =grpdt.get_group(ind)['cnt'].iloc[0], replace=True).values) for ind in
125             grpdt.indices]
126             x_synth = pd.concat(x_synth).drop(['cnt', 'tree', 'leaf'],
127 ], axis=1)
128
129             # Delete unnecessary objects
130             del(nodeIDs, nodeIDs_pd, tmp, x_real_obs, draw_from)
131
132             # Merge real and synthetic data
133             x = pd.concat([x_real, x_synth])
134             y = np.concatenate([np.zeros(x_real.shape[0]), np.ones(
135             x_real.shape[0])])

```

```

129         # Discriminator
130         clf_1 = RandomForestClassifier(oob_score=True,
131             n_estimators=self.num_trees, min_samples_leaf=min_node_size, **kwargs)
132         clf_1.fit(x, y)
133
134         # Update iters and check for convergence
135         acc_1 = clf_1.oob_score_
136
137         acc.append(acc_1)
138
139         iters += 1
140         plateau = True if early_stop and acc[iters] > acc[iters - 1] else False
141         if verbose:
142             print(f"Iteration number {iters} reached accuracy of {acc_1}.")
143             if acc_1 <= 0.5 + delta or iters >= max_iters or plateau:
144                 converged = True
145             else:
146                 clf_0 = clf_1
147             self.clf = clf_0
148             self.acc = acc
149
150         # Pruning
151         pred = self.clf.apply(self.x_real)
152         for tree_num in range(0, self.num_trees):
153             tree = self.clf.estimators_[tree_num]
154             left = tree.tree_.children_left
155             right = tree.tree_.children_right
156             leaves = np.where(left < 0)[0]
157
158             # Get leaves that are too small
159             unique, counts = np.unique(pred[:, tree_num], return_counts=True)
160             to_prune = unique[counts < min_node_size]
161
162             # Also add leaves with 0 obs.
163             to_prune = np.concatenate([to_prune, np.setdiff1d(leaves, unique)])
164
165             while len(to_prune) > 0:
166                 for tp in to_prune:
167                     # Find parent
168                     parent = np.where(left == tp)[0]
169                     if len(parent) > 0:
170                         # Left child
171                         left[parent] = right[parent]
172                     else:
173                         # Right child
174                         parent = np.where(right == tp)[0]
175                         right[parent] = left[parent]
176             # Prune again if child was pruned
177             to_prune = np.where(np.in1d(left, to_prune))[0]

```

```

177
178     def forde(self, dist="truncnorm", oob=False, alpha=0):
179         """This part is for density estimation (FORDE)
180
181         :param dist: Distribution to use for density estimation of
182             continuous features. Distributions implemented so far: "truncnorm",
183             defaults to "truncnorm"
184         :type dist: str, optional
185         :param oob: Only use out-of-bag samples for parameter estimation?
186             If 'True', 'x' must be the same dataset used to train 'arf', defaults
187             to False
188         :type oob: bool, optional
189         :param alpha: Optional pseudocount for Laplace smoothing of
190             categorical features. This avoids zero-mass points when test data fall
191             outside the support of training data. Effectively parametrizes a flat
192             Dirichlet prior on multinomial likelihoods, defaults to 0
193         :type alpha: float, optional
194
195         :return: Return parameters for the estimated density.
196         :rtype: dict
197
198
199         self.dist = dist
200         self.oob = oob
201         self.alpha = alpha
202
203
204         # Get terminal nodes for all observations
205         pred = self.clf.apply(self.x_real)
206
207
208         # If OOB, use only OOB trees
209         if self.oob:
210             for tree in range(self.num_trees):
211                 idx_oob = np.isin(range(self.x_real.shape[0]),
212                     _generate_unsampled_indices(self.clf.estimators_[tree].random_state,
213                     self.x_real.shape[0]))
214                 pred[np.invert(idx_oob), tree] = -1
215
216
217         # Compute leaf bounds and coverage
218         bnds = pd.concat([utils.bnd_fun(tree=j, p=self.p, forest=self.clf
219             , feature_names=self.orig_colnames) for j in range(self.num_trees)])
220         bnds['f_idx'] = bnds.groupby(['tree', 'leaf']).ngroup()
221
222
223         bnds_2 = pd.DataFrame()
224         for t in range(self.num_trees):
225             unique, freq = np.unique(pred[:, t], return_counts=True)
226             vv = pd.concat([pd.Series(unique, name='leaf'), pd.Series(
227                 freq/freq.shape[0], name='cvg')], axis=1)
228             zz = bnds[bnds['tree'] == t]
229             bnds_2 = pd.concat([bnds_2, pd.merge(left=vv, right=zz, on=['
230                 leaf'])])
231         bnds = bnds_2
232         del(bnds_2)
233
234
235         # Set coverage for nodes with single observations to zero

```

```

218     if np.invert(self.factor_cols).any():
219         bnds.loc[bnds['cvg'] == 1 / pred.shape[0], 'cvg'] = 0
220
221     # No parameters to learn for zero coverage leaves - drop zero
222     # coverage nodes
223     bnds = bnds[bnds['cvg'] > 0]
224
225     # Rename leafs to nodeids
226     bnds.rename(columns={'leaf': 'nodeid'}, inplace=True)
227
228     # Save bounds to later use coverage for drawing new samples
229     self.bnds = bnds
230     # Fit continuous distribution in all terminal nodes
231     self.params = pd.DataFrame()
232     if np.invert(self.factor_cols).any():
233         for tree in range(self.num_trees):
234             dt = self.x_real.loc[:, np.invert(self.factor_cols)].copy()
235             dt["tree"] = tree
236             dt["nodeid"] = pred[:, tree]
237             # Merge bounds and make it long format
238             long = pd.merge(right=bnds[['tree', 'nodeid', 'variable',
239             'min', 'max', 'f_idx']], left=pd.melt(dt[dt["nodeid"] >= 0], id_vars=
240             ["tree", "nodeid"], on=['tree', 'nodeid', 'variable'], how='left')
241             # Get distribution parameters
242             if self.dist == "truncnorm":
243                 # Calculate sensitivity and add noise to continuous
244                 variables for dp_arf by Harsh Merchant
245                 observed_min = long.groupby(['tree', 'nodeid', 'variable'])['value'].min().reset_index()
246                 observed_max = long.groupby(['tree', 'nodeid', 'variable'])['value'].max().reset_index()
247                 sensitivity = (observed_max['value'] - observed_min['value']).abs() / long.groupby(['tree', 'nodeid', 'variable'])['value'].size().reset_index(drop=True)
248                 sensitivity.replace(0, 1e-6, inplace=True) # Avoid
249                 zero sensitivity
250
251                 res = long.groupby(['tree', 'nodeid', 'variable'],
252                 as_index=False).agg(mean=("value", "mean"), sd=("value", "std"), min=(
253                 "min", "min"), max=("max", "max"))
254
255                 # Add Laplace noise for differential privacy
256                 scale = sensitivity / self.epsilon # Scale of
257                 Laplace noise
258                 mean_noise = np.random.laplace(0, scale, size=res["mean"].shape)
259
260                 res["mean"] += mean_noise # Adding noise to mean
261
262                 # Recalculate standard deviation based on new noisy
263                 mean
264                 for idx, row in res.iterrows():

```

```

256             variable = row["variable"]
257             tree = row["tree"]
258             nodeid = row["nodeid"]
259             group = long[(long["variable"] == variable) & (
260                 long["tree"] == tree) & (long["nodeid"] == nodeid)]
261             noisy_mean = row["mean"]
262             recalculated_sd = np.sqrt(np.mean((group["value"] [
263                 - noisy_mean]**2)))
264             res.at[idx, "sd"] = recalculated_sd
265             # Calculate sensitivity for dp_arf by Harsh Merchant
266
267         else:
268             raise ValueError('unknown distribution, make sure to
269             enter a valid value for dist')
270         self.params = pd.concat([self.params, res])
271
272         # Get class probabilities in all terminal nodes
273         self.class_probs = pd.DataFrame()
274         if self.factor_cols.any():
275             for tree in range(self.num_trees):
276                 dt = self.x_real.loc[:, self.factor_cols].copy()
277                 dt["tree"] = tree
278                 dt["nodeid"] = pred[:, tree]
279                 dt = pd.melt(dt[dt["nodeid"] >= 0], id_vars=["tree", "nodeid"])
280                 long = pd.merge(left=dt, right=bnds, on=['tree', 'nodeid',
281                     'variable'])
282                 long['count_var'] = long.groupby(['tree', 'nodeid', 'variable'])['variable'].transform('count')
283                 long['count_var_val'] = long.groupby(['tree', 'nodeid', 'variable', 'value'])['variable'].transform('count')
284                 long.drop_duplicates(inplace=True)
285                 if self.alpha == 0:
286
287                     # Calculate initial probabilities
288                     long['prob'] = long['count_var_val'] / long['count_var']
289
290                     # Changes for dp_arf by Harsh Merchant
291
292                     # Use these initial probabilities as the utility
293                     scores = long['prob']
294
295                     scale = 1 / self.epsilon # Sensitivity is 1 for
296                     # counting queries
297
298                     # Apply the exponential mechanism
299                     exp_noise = np.exp(self.epsilon * scores / 2)
300
301                     long['prob'] = exp_noise # Properly scaled
302
303                     # Normalize within groups to form a valid probability

```

```

  distribution
299      long['prob'] /= long.groupby(['tree', 'nodeid', 'variable'])['prob'].transform('sum')
300
301      # Changes for dp_arf by Harsh Merchant
302
303      else:
304          long['k'] = long.groupby(['variable'])['value'].
305          transform('nunique')
306          long.loc[long['min'] == float('-inf'), 'min'] = 0.5 -
307          1
308          long.loc[long['max'] == float('inf'), 'max'] = long['
309          k'] + 0.5 - 1
310          long.loc[round(long['min'] % 1, 2) != 0.5, 'min'] =
311          long['min'] - 0.5
312          long.loc[round(long['max'] % 1, 2) != 0.5, 'max'] =
313          long['max'] + 0.5 # Added Code{correction min to max} for same array
314          length error - Harsh Merchant
315          long['k'] = long['max'] - long['min']
316          tmp = long[['f_idx', 'tree', "nodeid", 'variable', 'min', 'max']].copy()
317          tmp['rep_min'] = tmp['min'] + 0.5
318          tmp['rep_max'] = tmp['max'] - 0.5
319          tmp['levels'] = tmp.apply(lambda row: list(range(int(
320          row['rep_min'])), int(row['rep_max'] + 1))), axis=1)
321          tmp = tmp.explode('levels')
322          # Added Code for same array length error - Harsh
323          Merchant
324          original_levels = {key: values.copy() for key, values
325          in self.levels.items()}
326          # Step 1: Find the maximum length of the lists
327          max_length = max(len(values) for values in self.
328          levels.values())
329
330          # Step 2: Fill shorter lists with None to match the
331          maximum length
332          for key, values in self.levels.items():
333              if len(values) < max_length:
334                  self.levels[key] = values.tolist() + [None] *
335                  (max_length - len(values))
336          # Added Code for same array length error - Harsh
337          Merchant
338
339          cat_val = pd.DataFrame(self.levels).melt().dropna() #
340          Added Code{.dropna()} for same array length error - Harsh Merchant
341          self.levels = original_levels # Added Code for same
342          array length error - Harsh Merchant
343          cat_val['value'] = cat_val.groupby('variable').
344          cumcount() # Added Code for same array length error - Harsh Merchant
345          cat_val['levels'] = cat_val['value']
346
347          tmp = pd.merge(left=tmp, right=cat_val, on=['variable
348          ', 'levels'])[['variable', 'f_idx', 'tree', "nodeid", 'value']]

```

```

332
333             tmp = pd.merge(left=tmp, right=long[['f_idx', 'variable', 'tree', "nodeid", 'count_var', 'k']], on=['f_idx', "nodeid", 'variable', 'tree'])
334             long = pd.merge(left=tmp, right=long, on=['f_idx', 'tree', "nodeid", 'variable', 'value'], 'count_var', 'k'], how='left')
335             long.loc[long['count_var_val'].isna(), 'count_var_val'] = 0
336             long = long[['f_idx', 'tree', "nodeid", 'variable', 'value', 'count_var_val', 'count_var', 'k']].drop_duplicates()
337             long['prob'] = (long['count_var_val'] + self.alpha) / (long['count_var'] + self.alpha*long['k'])
338
339             # Changes for dp_arf by Harsh Merchant
340             scores = long['prob']
341             scale = 1 / self.epsilon # Sensitivity is 1 for
342             counting queries
343             exp_noise = np.exp(self.epsilon * scores / 2)
344
345             long['prob'] = exp_noise # Properly scaled
346
347             long['prob'] /= long.groupby(['tree', 'nodeid', 'variable'])['prob'].transform('sum')
348             # Changes for dp_arf by Harsh Merchant
349
350             # long['value'] = long['value'].astype('int8') # Code
351             Commented for removing negative values because conversion > 128 for
352             int8 - Harsh Merchant
353
354             long = long[['f_idx', 'tree', "nodeid", 'variable', 'value', 'prob']]
355             self.class_probs = pd.concat([self.class_probs, long])
356             return {"cnt": self.params, "cat": self.class_probs, "forest": self.clf, "meta": pd.DataFrame(data={"variable": self.orig_colnames, "family": self.dist})}
357
358     def forge(self, n):
359         """This part is for data generation (FORGE)
360
361         :param n: Number of synthetic samples to generate.
362         :type n: int
363         :return: Returns generated data.
364         :rtype: pandas.DataFrame
365         """
366
367         try:
368             getattr(self, 'bnds')
369         except AttributeError:
370             raise AttributeError('need density estimates to generate data
-- run .forge() first!')
371
372         # Sample new observations and get their terminal nodes
373         # Draw random leaves with probability proportional to coverage

```

```

371     unique_bnds = self.bnds[['tree', 'nodeid', 'cvg']].drop_duplicates()
372     draws = np.random.choice(a=range(unique_bnds.shape[0]), p=
373     unique_bnds['cvg'] / self.num_trees, size=n)
374     sampled_trees_nodes = unique_bnds[['tree', 'nodeid']].iloc[draws,
375     ].reset_index(drop=True).reset_index().rename(columns={'index': 'obs',
376     })
377
378     # Get distributions parameters for each new obs.
379     if np.invert(self.factor_cols).any():
380         obs_params = pd.merge(sampled_trees_nodes, self.params, on=["tree",
381         "nodeid"]).sort_values(by=['obs'], ignore_index=True)
382
383     # Get probabilities for each new obs.
384     if self.factor_cols.any():
385         obs_probs = pd.merge(sampled_trees_nodes, self.class_probs,
386     on=["tree", "nodeid"]).sort_values(by=['obs'], ignore_index=True)
387
388     # Sample new data from mixture distribution over trees
389     data_new = pd.DataFrame(index=range(n), columns=range(self.p))
390     for j in range(self.p):
391         colname = self.orig_colnames[j]
392
393         if self.factor_cols[j]:
394             # Factor columns: Multinomial distribution
395             data_new.iloc[:, j] = obs_probs[obs_probs["variable"] == colname].groupby("obs").sample(weights="prob")["value"].reset_index(
396             drop=True)
397
398         else:
399             # Continuous columns: Match estimated distribution
400             # parameters with r...() function
401             if self.dist == "truncnorm":
402                 # sample from normal distribution, only here for
403                 # debugging
404                 # data_new.loc[:, j] = np.random.normal(obs_params.
405                 loc[obs_params["variable"] == colname, "mean"], obs_params.loc[
406                 obs_params["variable"] == colname, "sd"], size = n)
407
408                 # sample from truncated normal distribution
409                 # note: if sd == 0, truncnorm will return location
410                 # parameter -> this is desired; if we have
411                 # all obs. in that leave having the same value, we
412                 # sample a new obs. with exactly that value as well
413                 myclip_a = obs_params.loc[obs_params["variable"] == colname, "min"]
414                 myclip_b = obs_params.loc[obs_params["variable"] == colname, "max"]
415                 myloc = obs_params.loc[obs_params["variable"] == colname, "mean"]
416                 myscale = obs_params.loc[obs_params["variable"] == colname, "sd"]
417                 data_new.setItem(j, scipy.stats.truncnorm(a =
418

```

```
myclip_a - myloc) / myscale, b = (myclip_b - myloc) / myscale, loc =
myloc, scale = myscale ).rvs(size = n))
            del(myclip_a, myclip_b, myloc, myscale)
        else:
            raise ValueError('Other distributions not yet
implemented')

# Use original column names
data_new = data_new.set_axis(self.orig_colnames, axis=1, copy=
False)

# Convert categories back to category
for col in self.orig_colnames:
    if self.factor_cols[col]:
        data_new[col] = pd.Categorical.from_codes(data_new[col].
astype(int), categories=self.levels[col])

# Convert object columns back to object
for col in self.orig_colnames:
    if self.object_cols[col]:
        data_new[col] = data_new[col].astype("object")

# Return newly sampled data
return data_new
```

Appendix A.2: Modifications for alpha parameter in ARF Code

The changes below were made to the original arfpy code because passing the alpha parameter in the forde function of the original arfpy resulted in a ValueError. This error occurred because the arrays in the self.levels attribute were not all the same length.

These changes work on datasets with small to medium-sized distinct categorical feature values. For datasets with a large number of distinct categorical feature values, a High-Performance Computing Cluster would be required. Otherwise, it would throw a MemoryError due to the poor handling of categorical feature value encoding. Thus, this is a temporary solution and it requires careful calibration and ample time to tweak to make it fully functional as originally intended.

```

1 if self.alpha == 0:
2     long['prob'] = long['count_var_val'] / long['count_var']
3 else:
4     # Define the range of each variable in each leaf
5     long['k'] = long.groupby(['variable'])['value'].transform(
6         'nunique')
7     long.loc[long['min'] == float('-inf'), 'min'] = 0.5 - 1
8     long.loc[long['max'] == float('inf'), 'max'] = long['k'] + 0.5
9     - 1
10    long.loc[round(long['min'] % 1, 2) != 0.5, 'min'] = long['min']
11    - 0.5
12    long.loc[round(long['max'] % 1, 2) != 0.5, 'max'] = long['max']
13    + 0.5 # Added Code{correction min to max} for same array length
14    error = Harsh Merchant
15    long['k'] = long['max'] - long['min']
16    # Enumerate each possible leaf-variable-value combo
17    tmp = long[['f_idx', 'tree', "nodeid", 'variable', 'min', 'max']]
18    .copy()
19    tmp['rep_min'] = tmp['min'] + 0.5
20    tmp['rep_max'] = tmp['max'] - 0.5
21    tmp['levels'] = tmp.apply(lambda row: list(range(int(row['rep_min'])), int(row['rep_max']) + 1)), axis=1)
22    tmp = tmp.explode('levels')
23
24    # Added Code for same array length error - Harsh Merchant
25    original_levels = {key: values.copy() for key, values in self.
26    levels.items()}
27    # Step 1: Find the maximum length of the lists
28    max_length = max(len(values) for values in self.levels.values())
29
30    # Step 2: Fill shorter lists with None to match the maximum
31    length
32    for key, values in self.levels.items():
33        if len(values) < max_length:
34            self.levels[key] = values.tolist() + [None] * (
35            max_length - len(values))
36
37    # Added Code for same array length error - Harsh Merchant
38
39    cat_val = pd.DataFrame(self.levels).melt().dropna() # Added

```

```

 30     Code{.dropna()} for same array length error - Harsh Merchant
 31         self.levels = original_levels # Added Code for same array
 32         length error - Harsh Merchant
 33             cat_val['value'] = cat_val.groupby('variable').cumcount() #
 34             Added Code for same array length error - Harsh Merchant
 35
 36             cat_val['levels'] = cat_val['value']
 37             tmp = pd.merge(left = tmp, right = cat_val, on = ['variable',
 38 'levels'])[['variable', 'f_idx', 'tree', "nodeid", 'value']]
 39
 40             # populate count, k
 41             tmp = pd.merge(left = tmp, right = long[['f_idx', 'variable',
 42 'tree', "nodeid", 'count_var', 'k']], on = ['f_idx', "nodeid", 'variable',
 43 ', 'tree'])
 44
 45             # Merge with long, set val_count = 0 for possible but
 46             unobserved levels
 47             long = pd.merge(left = tmp, right = long, on = ['f_idx', 'tree',
 48 "nodeid", 'variable', 'value', 'count_var', 'k'], how = 'left')
 49
 50             long.loc[long['count_var_val'].isna(), 'count_var_val'] = 0
 51
 52             long = long[['f_idx', 'tree', "nodeid", 'variable', 'value',
 53 'count_var_val', 'count_var', 'k']].drop_duplicates()
 54             # Compute posterior probabilities
 55             long['prob'] = (long['count_var_val'] + self.alpha) / (long['
 56 count_var'] + self.alpha*long['k'])
 57
 58             # long['value'] = long['value'].astype('int8') # Code Commented
 59             for removing negative values because conversion > 128 for int8 -
 60             Harsh Merchant
 61
 62             long = long[['f_idx', 'tree', "nodeid", 'variable', 'value', 'prob',
 63 ]]
 64
 65             self.class_probs = pd.concat([self.class_probs, long])
 66             return {"cnt": self.params, "cat": self.class_probs,
 67                 "forest": self.clf, "meta": pd.DataFrame(data={"variable": self.orig_colnames, "family": self.dist})}
```

Appendix A.3: Evaluation Script for Insurance Dataset

```

94 def calculate_additional_metrics(original_data, og_arf_data, dp_arf_data):
95     :
96     metrics = {}
97
98     original_data_sampled = original_data.sample(n=og_arf_data.shape[0])
99
100    # Calculate Wasserstein Distance for numeric columns
101    for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
102        wasserstein_og = wasserstein_distance(original_data_sampled[col],
103                                              og_arf_data[col])
104        wasserstein_dp = wasserstein_distance(original_data_sampled[col],
105                                              dp_arf_data[col])
106        metrics[f'Wasserstein Distance {col}'] = {'OG ARF': wasserstein_og,
107                                                     'DP ARF': wasserstein_dp}
108
109    # Calculate Chi-Square Test for categorical columns
110    for col in original_data.select_dtypes(include=['category', 'object']).columns:
111        original_counts = original_data_sampled[col].value_counts().sort_index()
112        og_arf_counts = og_arf_data[col].value_counts().sort_index()
113        dp_arf_counts = dp_arf_data[col].value_counts().sort_index()
114
115        categories = original_counts.index.union(og_arf_counts.index).union(dp_arf_counts.index)
116        original_counts = original_counts.reindex(categories, fill_value=0)
117        og_arf_counts = og_arf_counts.reindex(categories, fill_value=0)
118        dp_arf_counts = dp_arf_counts.reindex(categories, fill_value=0)
119
120        chi2_stat_og, chi2_pvalue_og = chisquare(original_counts,
121                                                    og_arf_counts)
122        chi2_stat_dp, chi2_pvalue_dp = chisquare(original_counts,
123                                                    dp_arf_counts)
124        metrics[f'Chi-Square Test {col}'] = {'OG ARF': chi2_stat_og, 'DP ARF': chi2_stat_dp}
125
126    # Calculate RMSE and MAE for numeric columns
127    for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
128        rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],
129                                              og_arf_data[col]))
130        rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],
131                                              dp_arf_data[col]))
132        mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[col]))
133        mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[col]))
134        metrics[f'RMSE {col}'] = {'OG ARF': rmse_og, 'DP ARF': rmse_dp}
135        metrics[f'MAE {col}'] = {'OG ARF': mae_og, 'DP ARF': mae_dp}
136
137    return metrics

```

```

130
131 # Calculate correlation matrices for datasets
132 def get_correlation_matrices(data1, data2, data3):
133     corr_matrices = {
134         "Original Data": data1.corr(),
135         "OG ARF Data": data2.corr(),
136         "DP-ARF Data": data3.corr()
137     }
138     return corr_matrices
139
140 # Evaluate classification model on synthetic data fitted on original data
141 def model_evaluation_on_classification(original_data, synthetic_data,
142                                         target_col='class'):
143     og = original_data.copy()
144     dp = synthetic_data.copy()
145     og[target_col] = (og['smoker'] == 'yes').astype(int)
146     dp[target_col] = (dp['smoker'] == 'yes').astype(int)
147
148     X_orig = og.drop(columns=[target_col])
149     y_orig = og[target_col]
150
151     X_synth = dp.drop(columns=[target_col])
152     y_synth = dp[target_col]
153
154     categorical_features = X_orig.select_dtypes(include=['object', 'category']).columns
155     numeric_features = X_orig.select_dtypes(include=[np.number]).columns
156
157     preprocessor = ColumnTransformer(
158         transformers=[
159             ('num', 'passthrough', numeric_features),
160             ('cat', OneHotEncoder(handle_unknown='ignore'),
161              categorical_features)
162         ])
163
164     X_encoded_orig = preprocessor.fit_transform(X_orig)
165     X_encoded_synth = preprocessor.transform(X_synth)
166
167     clf = LogisticRegression(max_iter=2000)
168     clf.fit(X_encoded_orig, y_orig)
169
170     return clf.score(X_encoded_synth, y_synth)
171
172 # Preprocessing function to encode categorical variables
173 def preprocess_data(df):
174     categorical_features = df.select_dtypes(include=['category']).columns
175     numeric_features = df.select_dtypes(include=[np.number]).columns
176
177     preprocessor = ColumnTransformer(
178         transformers=[
179             ('num', 'passthrough', numeric_features),
180             ('cat', OneHotEncoder(handle_unknown='ignore'),
181              categorical_features)
182         ])
183
184     X_encoded = preprocessor.fit_transform(df)
185     X_encoded = pd.DataFrame(X_encoded, columns=categorical_features)
186
187     X_encoded['age'] = df['age'].values
188     X_encoded['cigsPerDay'] = df['cigsPerDay'].values
189     X_encoded['prevalence'] = df['prevalence'].values
190
191     return X_encoded

```

```

    categorical_features)
180     ])
181
182     return preprocessor.fit_transform(df), preprocessor
183
184 # Reconstruction Attack
185 def reconstruction_attack(original_data, synthetic_data):
186     X_orig, orig_preprocessor = preprocess_data(original_data.drop(
187         columns=['charges']))
188     X_synth, synth_preprocessor = preprocess_data(synthetic_data.drop(
189         columns=['charges']))
190
191     nn = NearestNeighbors(n_neighbors=3)
192     nn.fit(X_synth)
193     distances, indices = nn.kneighbors(X_orig)
194
195     return distances.mean()
196
197 # Post process synthetic data to ensure valid values
198 def post_process_synthetic_data(data):
199     data['age'] = data['age'].astype('int')
200     data['children'] = data['children'].astype('int')
201     data.loc[data['children'] < 0, 'children'] = 0
202     mean_bmi = data['bmi'][data['bmi'] >= 0].mean()
203     data.loc[data['bmi'] < 0, 'bmi'] = mean_bmi
204     data['bmi'] = data['bmi'].round(2)
205     mean_charges = data['charges'][data['charges'] >= 0].mean()
206     data.loc[data['charges'] < 0, 'charges'] = mean_charges
207     data['charges'] = data['charges'].round(2)
208     return data
209
210 # Main Script
211 file_path = '..\\datasets\\insurance.csv'
212 data = load_new_dataset(file_path)
213
214 # Generate synthetic data using OG ARF model
215 arf_model = OG_ARF.arf(data)
216 arf_model.forde()
217 og_arf_data = arf_model.forgo(data.shape[0])
218 og_arf_data = post_process_synthetic_data(og_arf_data)
219
220 # Generate synthetic data using DP-ARF model
221 dp_arf_model = DP_ARF(data, epsilon=0.5)
222 dp_arf_model.forde()
223 dp_arf_data = dp_arf_model.forgo(data.shape[0])
224 dp_arf_data = post_process_synthetic_data(dp_arf_data)
225
226 # Print the first few rows of the datasets
227 print('original data: ', data.head())
228 print('og arf data: ', og_arf_data.head())
229 print('dp arf data: ', dp_arf_data.head())
230

```

```

230 # Identify numeric and categorical columns
231 numeric_columns = data.select_dtypes(include=[np.number]).columns.tolist()
232     ()
233 categorical_columns = data.select_dtypes(include=['category', 'object']).columns.tolist()
234
235 print("Numeric columns:", numeric_columns)
236 print("Categorical columns:", categorical_columns)
237
238 # Plot density distributions
239 plot_density_distribution(data, og_arf_data, dp_arf_data, numeric_columns,
240     sample_size=100)
241
242 # Plot PCA results
243 numeric_data = data.select_dtypes(include=[np.number])
244 numeric_og_arf_data = og_arf_data.select_dtypes(include=[np.number])
245 numeric_dp_arf_data = dp_arf_data.select_dtypes(include=[np.number])
246
247 plot_pca(numeric_data, numeric_og_arf_data, numeric_dp_arf_data,
248     sample_size=100)
249
250 # Calculate and print correlation matrices
251 correlation_matrices = get_correlation_matrices(numeric_data,
252     numeric_og_arf_data, numeric_dp_arf_data)
253 for key, value in correlation_matrices.items():
254     print(f'{key} Correlation Matrix:')
255     print(value)
256
257 # Calculate and print additional metrics
258 additional_metrics = calculate_additional_metrics(data, og_arf_data,
259     dp_arf_data)
260 for metric, values in additional_metrics.items():
261     print(f'{metric}:')
262     for method, value in values.items():
263         print(f'    {method}: {value}')
264
265 # Evaluate classification accuracy
266 accuracy_og = model_evaluation_on_classification(data, og_arf_data)
267 accuracy_dp = model_evaluation_on_classification(data, dp_arf_data)
268 print(f'Classification Accuracy (OG ARF): {accuracy_og}')
269 print(f'Classification Accuracy (DP ARF): {accuracy_dp}')
270
271 # Evaluate Attacks
272
273 # Evaluate reconstruction attack on og arf data
274 reconstruction_error = reconstruction_attack(data, og_arf_data)
275 print(f'Reconstruction Attack Error OG ARF (Mean Distance): {reconstruction_error}')
276
277 # Evaluate reconstruction attack on dp arf data
278 reconstruction_error = reconstruction_attack(data, dp_arf_data)
279 print(f'Reconstruction Attack Error DP ARF (Mean Distance): {reconstruction_error}')

```

Appendix A.4: Evaluation Script for Healthcare Dataset

```

1 import warnings
2 warnings.filterwarnings("ignore")
3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 from sklearn.decomposition import PCA
7 from sklearn.metrics import mean_squared_error, accuracy_score,
8     roc_auc_score, precision_score, recall_score
9 from sklearn.model_selection import train_test_split
10 from sklearn.linear_model import LogisticRegression, LinearRegression
11 from sklearn.neighbors import NearestNeighbors
12 from sklearn.preprocessing import OneHotEncoder
13 from sklearn.compose import ColumnTransformer
14 from sklearn.pipeline import Pipeline
15 from sklearn.ensemble import RandomForestClassifier
16 from scipy.stats import chisquare, wasserstein_distance
17 import seaborn as sns
18 import sys
19 import os
20
21 # Add the parent directory to the system path
22 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath('dp_arf.
23     py'))))
24 from dp_arf import arf as DP_ARF # Import the DP_ARF class
25 from arfpy import arf as OG_ARF # Import the OG ARF class without
26     differential privacy
27
28 def load_new_dataset(file_path):
29     return pd.read_csv(file_path)
30
31 def plot_density_distribution(data1, data2, data3, columns, sample_size
32     =1000):
33     # Sample the data if it exceeds the sample size
34     if data1.shape[0] > sample_size:
35         data1_sample = data1.sample(n=sample_size)
36         data2_sample = data2.sample(n=sample_size)
37         data3_sample = data3.sample(n=sample_size)
38     else:
39         data1_sample = data1
40         data2_sample = data2
41         data3_sample = data3
42
43     # Initialize plot count
44     plot_count = 0
45
46     # Create subplots iteratively
47     for i in range(0, len(columns), 4):
48         num_cols = min(4, len(columns) - i)
49         if num_cols == 1:
50             fig, axs = plt.subplots(1, 1, figsize=(7, 5))
51             axs = [axs]
52
53         for j in range(num_cols):
54             if j < num_cols - 1:
55                 fig, axs = plt.subplots(1, num_cols - j, figsize=(7, 5))
56             else:
57                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
58
59             if j < num_cols - 1:
60                 axs = [axs]
61
62             if j < num_cols - 2:
63                 fig, axs = plt.subplots(1, num_cols - j - 1, figsize=(7, 5))
64             else:
65                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
66
67             if j < num_cols - 3:
68                 axs = [axs]
69
70             if j < num_cols - 4:
71                 fig, axs = plt.subplots(1, num_cols - j - 4, figsize=(7, 5))
72             else:
73                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
74
75             if j < num_cols - 5:
76                 axs = [axs]
77
78             if j < num_cols - 6:
79                 fig, axs = plt.subplots(1, num_cols - j - 6, figsize=(7, 5))
80             else:
81                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
82
83             if j < num_cols - 7:
84                 axs = [axs]
85
86             if j < num_cols - 8:
87                 fig, axs = plt.subplots(1, num_cols - j - 8, figsize=(7, 5))
88             else:
89                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
90
91             if j < num_cols - 9:
92                 axs = [axs]
93
94             if j < num_cols - 10:
95                 fig, axs = plt.subplots(1, num_cols - j - 10, figsize=(7, 5))
96             else:
97                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
98
99             if j < num_cols - 11:
100                 axs = [axs]
101
102             if j < num_cols - 12:
103                 fig, axs = plt.subplots(1, num_cols - j - 12, figsize=(7, 5))
104             else:
105                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
106
107             if j < num_cols - 13:
108                 axs = [axs]
109
110             if j < num_cols - 14:
111                 fig, axs = plt.subplots(1, num_cols - j - 14, figsize=(7, 5))
112             else:
113                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
114
115             if j < num_cols - 15:
116                 axs = [axs]
117
118             if j < num_cols - 16:
119                 fig, axs = plt.subplots(1, num_cols - j - 16, figsize=(7, 5))
120             else:
121                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
122
123             if j < num_cols - 17:
124                 axs = [axs]
125
126             if j < num_cols - 18:
127                 fig, axs = plt.subplots(1, num_cols - j - 18, figsize=(7, 5))
128             else:
129                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
130
131             if j < num_cols - 19:
132                 axs = [axs]
133
134             if j < num_cols - 20:
135                 fig, axs = plt.subplots(1, num_cols - j - 20, figsize=(7, 5))
136             else:
137                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
138
139             if j < num_cols - 21:
140                 axs = [axs]
141
142             if j < num_cols - 22:
143                 fig, axs = plt.subplots(1, num_cols - j - 22, figsize=(7, 5))
144             else:
145                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
146
147             if j < num_cols - 23:
148                 axs = [axs]
149
150             if j < num_cols - 24:
151                 fig, axs = plt.subplots(1, num_cols - j - 24, figsize=(7, 5))
152             else:
153                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
154
155             if j < num_cols - 25:
156                 axs = [axs]
157
158             if j < num_cols - 26:
159                 fig, axs = plt.subplots(1, num_cols - j - 26, figsize=(7, 5))
160             else:
161                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
162
163             if j < num_cols - 27:
164                 axs = [axs]
165
166             if j < num_cols - 28:
167                 fig, axs = plt.subplots(1, num_cols - j - 28, figsize=(7, 5))
168             else:
169                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
170
171             if j < num_cols - 29:
172                 axs = [axs]
173
174             if j < num_cols - 30:
175                 fig, axs = plt.subplots(1, num_cols - j - 30, figsize=(7, 5))
176             else:
177                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
178
179             if j < num_cols - 31:
180                 axs = [axs]
181
182             if j < num_cols - 32:
183                 fig, axs = plt.subplots(1, num_cols - j - 32, figsize=(7, 5))
184             else:
185                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
186
187             if j < num_cols - 33:
188                 axs = [axs]
189
190             if j < num_cols - 34:
191                 fig, axs = plt.subplots(1, num_cols - j - 34, figsize=(7, 5))
192             else:
193                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
194
195             if j < num_cols - 35:
196                 axs = [axs]
197
198             if j < num_cols - 36:
199                 fig, axs = plt.subplots(1, num_cols - j - 36, figsize=(7, 5))
200             else:
201                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
202
203             if j < num_cols - 37:
204                 axs = [axs]
205
206             if j < num_cols - 38:
207                 fig, axs = plt.subplots(1, num_cols - j - 38, figsize=(7, 5))
208             else:
209                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
210
211             if j < num_cols - 39:
212                 axs = [axs]
213
214             if j < num_cols - 40:
215                 fig, axs = plt.subplots(1, num_cols - j - 40, figsize=(7, 5))
216             else:
217                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
218
219             if j < num_cols - 41:
220                 axs = [axs]
221
222             if j < num_cols - 42:
223                 fig, axs = plt.subplots(1, num_cols - j - 42, figsize=(7, 5))
224             else:
225                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
226
227             if j < num_cols - 43:
228                 axs = [axs]
229
230             if j < num_cols - 44:
231                 fig, axs = plt.subplots(1, num_cols - j - 44, figsize=(7, 5))
232             else:
233                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
234
235             if j < num_cols - 45:
236                 axs = [axs]
237
238             if j < num_cols - 46:
239                 fig, axs = plt.subplots(1, num_cols - j - 46, figsize=(7, 5))
240             else:
241                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
242
243             if j < num_cols - 47:
244                 axs = [axs]
245
246             if j < num_cols - 48:
247                 fig, axs = plt.subplots(1, num_cols - j - 48, figsize=(7, 5))
248             else:
249                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
250
251             if j < num_cols - 49:
252                 axs = [axs]
253
254             if j < num_cols - 50:
255                 fig, axs = plt.subplots(1, num_cols - j - 50, figsize=(7, 5))
256             else:
257                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
258
259             if j < num_cols - 51:
260                 axs = [axs]
261
262             if j < num_cols - 52:
263                 fig, axs = plt.subplots(1, num_cols - j - 52, figsize=(7, 5))
264             else:
265                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
266
267             if j < num_cols - 53:
268                 axs = [axs]
269
270             if j < num_cols - 54:
271                 fig, axs = plt.subplots(1, num_cols - j - 54, figsize=(7, 5))
272             else:
273                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
274
275             if j < num_cols - 55:
276                 axs = [axs]
277
278             if j < num_cols - 56:
279                 fig, axs = plt.subplots(1, num_cols - j - 56, figsize=(7, 5))
280             else:
281                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
282
283             if j < num_cols - 57:
284                 axs = [axs]
285
286             if j < num_cols - 58:
287                 fig, axs = plt.subplots(1, num_cols - j - 58, figsize=(7, 5))
288             else:
289                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
290
291             if j < num_cols - 59:
292                 axs = [axs]
293
294             if j < num_cols - 60:
295                 fig, axs = plt.subplots(1, num_cols - j - 60, figsize=(7, 5))
296             else:
297                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
298
299             if j < num_cols - 61:
300                 axs = [axs]
301
302             if j < num_cols - 62:
303                 fig, axs = plt.subplots(1, num_cols - j - 62, figsize=(7, 5))
304             else:
305                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
306
307             if j < num_cols - 63:
308                 axs = [axs]
309
310             if j < num_cols - 64:
311                 fig, axs = plt.subplots(1, num_cols - j - 64, figsize=(7, 5))
312             else:
313                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
314
315             if j < num_cols - 65:
316                 axs = [axs]
317
318             if j < num_cols - 66:
319                 fig, axs = plt.subplots(1, num_cols - j - 66, figsize=(7, 5))
320             else:
321                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
322
323             if j < num_cols - 67:
324                 axs = [axs]
325
326             if j < num_cols - 68:
327                 fig, axs = plt.subplots(1, num_cols - j - 68, figsize=(7, 5))
328             else:
329                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
330
331             if j < num_cols - 69:
332                 axs = [axs]
333
334             if j < num_cols - 70:
335                 fig, axs = plt.subplots(1, num_cols - j - 70, figsize=(7, 5))
336             else:
337                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
338
339             if j < num_cols - 71:
340                 axs = [axs]
341
342             if j < num_cols - 72:
343                 fig, axs = plt.subplots(1, num_cols - j - 72, figsize=(7, 5))
344             else:
345                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
346
347             if j < num_cols - 73:
348                 axs = [axs]
349
350             if j < num_cols - 74:
351                 fig, axs = plt.subplots(1, num_cols - j - 74, figsize=(7, 5))
352             else:
353                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
354
355             if j < num_cols - 75:
356                 axs = [axs]
357
358             if j < num_cols - 76:
359                 fig, axs = plt.subplots(1, num_cols - j - 76, figsize=(7, 5))
360             else:
361                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
362
363             if j < num_cols - 77:
364                 axs = [axs]
365
366             if j < num_cols - 78:
367                 fig, axs = plt.subplots(1, num_cols - j - 78, figsize=(7, 5))
368             else:
369                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
370
371             if j < num_cols - 79:
372                 axs = [axs]
373
374             if j < num_cols - 80:
375                 fig, axs = plt.subplots(1, num_cols - j - 80, figsize=(7, 5))
376             else:
377                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
378
379             if j < num_cols - 81:
380                 axs = [axs]
381
382             if j < num_cols - 82:
383                 fig, axs = plt.subplots(1, num_cols - j - 82, figsize=(7, 5))
384             else:
385                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
386
387             if j < num_cols - 83:
388                 axs = [axs]
389
390             if j < num_cols - 84:
391                 fig, axs = plt.subplots(1, num_cols - j - 84, figsize=(7, 5))
392             else:
393                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
394
395             if j < num_cols - 85:
396                 axs = [axs]
397
398             if j < num_cols - 86:
399                 fig, axs = plt.subplots(1, num_cols - j - 86, figsize=(7, 5))
400             else:
401                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
402
403             if j < num_cols - 87:
404                 axs = [axs]
405
406             if j < num_cols - 88:
407                 fig, axs = plt.subplots(1, num_cols - j - 88, figsize=(7, 5))
408             else:
409                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
410
411             if j < num_cols - 89:
412                 axs = [axs]
413
414             if j < num_cols - 90:
415                 fig, axs = plt.subplots(1, num_cols - j - 90, figsize=(7, 5))
416             else:
417                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
418
419             if j < num_cols - 91:
420                 axs = [axs]
421
422             if j < num_cols - 92:
423                 fig, axs = plt.subplots(1, num_cols - j - 92, figsize=(7, 5))
424             else:
425                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
426
427             if j < num_cols - 93:
428                 axs = [axs]
429
430             if j < num_cols - 94:
431                 fig, axs = plt.subplots(1, num_cols - j - 94, figsize=(7, 5))
432             else:
433                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
434
435             if j < num_cols - 95:
436                 axs = [axs]
437
438             if j < num_cols - 96:
439                 fig, axs = plt.subplots(1, num_cols - j - 96, figsize=(7, 5))
440             else:
441                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
442
443             if j < num_cols - 97:
444                 axs = [axs]
445
446             if j < num_cols - 98:
447                 fig, axs = plt.subplots(1, num_cols - j - 98, figsize=(7, 5))
448             else:
449                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
450
451             if j < num_cols - 99:
452                 axs = [axs]
453
454             if j < num_cols - 100:
455                 fig, axs = plt.subplots(1, num_cols - j - 100, figsize=(7, 5))
456             else:
457                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
458
459             if j < num_cols - 101:
460                 axs = [axs]
461
462             if j < num_cols - 102:
463                 fig, axs = plt.subplots(1, num_cols - j - 102, figsize=(7, 5))
464             else:
465                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
466
467             if j < num_cols - 103:
468                 axs = [axs]
469
470             if j < num_cols - 104:
471                 fig, axs = plt.subplots(1, num_cols - j - 104, figsize=(7, 5))
472             else:
473                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
474
475             if j < num_cols - 105:
476                 axs = [axs]
477
478             if j < num_cols - 106:
479                 fig, axs = plt.subplots(1, num_cols - j - 106, figsize=(7, 5))
480             else:
481                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
482
483             if j < num_cols - 107:
484                 axs = [axs]
485
486             if j < num_cols - 108:
487                 fig, axs = plt.subplots(1, num_cols - j - 108, figsize=(7, 5))
488             else:
489                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
490
491             if j < num_cols - 109:
492                 axs = [axs]
493
494             if j < num_cols - 110:
495                 fig, axs = plt.subplots(1, num_cols - j - 110, figsize=(7, 5))
496             else:
497                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
498
499             if j < num_cols - 111:
500                 axs = [axs]
501
502             if j < num_cols - 112:
503                 fig, axs = plt.subplots(1, num_cols - j - 112, figsize=(7, 5))
504             else:
505                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
506
507             if j < num_cols - 113:
508                 axs = [axs]
509
510             if j < num_cols - 114:
511                 fig, axs = plt.subplots(1, num_cols - j - 114, figsize=(7, 5))
512             else:
513                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
514
515             if j < num_cols - 115:
516                 axs = [axs]
517
518             if j < num_cols - 116:
519                 fig, axs = plt.subplots(1, num_cols - j - 116, figsize=(7, 5))
520             else:
521                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
522
523             if j < num_cols - 117:
524                 axs = [axs]
525
526             if j < num_cols - 118:
527                 fig, axs = plt.subplots(1, num_cols - j - 118, figsize=(7, 5))
528             else:
529                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
530
531             if j < num_cols - 119:
532                 axs = [axs]
533
534             if j < num_cols - 120:
535                 fig, axs = plt.subplots(1, num_cols - j - 120, figsize=(7, 5))
536             else:
537                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
538
539             if j < num_cols - 121:
540                 axs = [axs]
541
542             if j < num_cols - 122:
543                 fig, axs = plt.subplots(1, num_cols - j - 122, figsize=(7, 5))
544             else:
545                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
546
547             if j < num_cols - 123:
548                 axs = [axs]
549
550             if j < num_cols - 124:
551                 fig, axs = plt.subplots(1, num_cols - j - 124, figsize=(7, 5))
552             else:
553                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
554
555             if j < num_cols - 125:
556                 axs = [axs]
557
558             if j < num_cols - 126:
559                 fig, axs = plt.subplots(1, num_cols - j - 126, figsize=(7, 5))
560             else:
561                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
562
563             if j < num_cols - 127:
564                 axs = [axs]
565
566             if j < num_cols - 128:
567                 fig, axs = plt.subplots(1, num_cols - j - 128, figsize=(7, 5))
568             else:
569                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
570
571             if j < num_cols - 129:
572                 axs = [axs]
573
574             if j < num_cols - 130:
575                 fig, axs = plt.subplots(1, num_cols - j - 130, figsize=(7, 5))
576             else:
577                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
578
579             if j < num_cols - 131:
580                 axs = [axs]
581
582             if j < num_cols - 132:
583                 fig, axs = plt.subplots(1, num_cols - j - 132, figsize=(7, 5))
584             else:
585                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
586
587             if j < num_cols - 133:
588                 axs = [axs]
589
590             if j < num_cols - 134:
591                 fig, axs = plt.subplots(1, num_cols - j - 134, figsize=(7, 5))
592             else:
593                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
594
595             if j < num_cols - 135:
596                 axs = [axs]
597
598             if j < num_cols - 136:
599                 fig, axs = plt.subplots(1, num_cols - j - 136, figsize=(7, 5))
600             else:
601                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
602
603             if j < num_cols - 137:
604                 axs = [axs]
605
606             if j < num_cols - 138:
607                 fig, axs = plt.subplots(1, num_cols - j - 138, figsize=(7, 5))
608             else:
609                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
610
611             if j < num_cols - 139:
612                 axs = [axs]
613
614             if j < num_cols - 140:
615                 fig, axs = plt.subplots(1, num_cols - j - 140, figsize=(7, 5))
616             else:
617                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
618
619             if j < num_cols - 141:
620                 axs = [axs]
621
622             if j < num_cols - 142:
623                 fig, axs = plt.subplots(1, num_cols - j - 142, figsize=(7, 5))
624             else:
625                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
626
627             if j < num_cols - 143:
628                 axs = [axs]
629
630             if j < num_cols - 144:
631                 fig, axs = plt.subplots(1, num_cols - j - 144, figsize=(7, 5))
632             else:
633                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
634
635             if j < num_cols - 145:
636                 axs = [axs]
637
638             if j < num_cols - 146:
639                 fig, axs = plt.subplots(1, num_cols - j - 146, figsize=(7, 5))
640             else:
641                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
642
643             if j < num_cols - 147:
644                 axs = [axs]
645
646             if j < num_cols - 148:
647                 fig, axs = plt.subplots(1, num_cols - j - 148, figsize=(7, 5))
648             else:
649                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
650
651             if j < num_cols - 149:
652                 axs = [axs]
653
654             if j < num_cols - 150:
655                 fig, axs = plt.subplots(1, num_cols - j - 150, figsize=(7, 5))
656             else:
657                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
658
659             if j < num_cols - 151:
660                 axs = [axs]
661
662             if j < num_cols - 152:
663                 fig, axs = plt.subplots(1, num_cols - j - 152, figsize=(7, 5))
664             else:
665                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
666
667             if j < num_cols - 153:
668                 axs = [axs]
669
670             if j < num_cols - 154:
671                 fig, axs = plt.subplots(1, num_cols - j - 154, figsize=(7, 5))
672             else:
673                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
674
675             if j < num_cols - 155:
676                 axs = [axs]
677
678             if j < num_cols - 156:
679                 fig, axs = plt.subplots(1, num_cols - j - 156, figsize=(7, 5))
680             else:
681                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
682
683             if j < num_cols - 157:
684                 axs = [axs]
685
686             if j < num_cols - 158:
687                 fig, axs = plt.subplots(1, num_cols - j - 158, figsize=(7, 5))
688             else:
689                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
690
691             if j < num_cols - 159:
692                 axs = [axs]
693
694             if j < num_cols - 160:
695                 fig, axs = plt.subplots(1, num_cols - j - 160, figsize=(7, 5))
696             else:
697                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
698
699             if j < num_cols - 161:
700                 axs = [axs]
701
702             if j < num_cols - 162:
703                 fig, axs = plt.subplots(1, num_cols - j - 162, figsize=(7, 5))
704             else:
705                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
706
707             if j < num_cols - 163:
708                 axs = [axs]
709
710             if j < num_cols - 164:
711                 fig, axs = plt.subplots(1, num_cols - j - 164, figsize=(7, 5))
712             else:
713                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
714
715             if j < num_cols - 165:
716                 axs = [axs]
717
718             if j < num_cols - 166:
719                 fig, axs = plt.subplots(1, num_cols - j - 166, figsize=(7, 5))
720             else:
721                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
722
723             if j < num_cols - 167:
724                 axs = [axs]
725
726             if j < num_cols - 168:
727                 fig, axs = plt.subplots(1, num_cols - j - 168, figsize=(7, 5))
728             else:
729                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
730
731             if j < num_cols - 169:
732                 axs = [axs]
733
734             if j < num_cols - 170:
735                 fig, axs = plt.subplots(1, num_cols - j - 170, figsize=(7, 5))
736             else:
737                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
738
739             if j < num_cols - 171:
740                 axs = [axs]
741
742             if j < num_cols - 172:
743                 fig, axs = plt.subplots(1, num_cols - j - 172, figsize=(7, 5))
744             else:
745                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
746
747             if j < num_cols - 173:
748                 axs = [axs]
749
750             if j < num_cols - 174:
751                 fig, axs = plt.subplots(1, num_cols - j - 174, figsize=(7, 5))
752             else:
753                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
754
755             if j < num_cols - 175:
756                 axs = [axs]
757
758             if j < num_cols - 176:
759                 fig, axs = plt.subplots(1, num_cols - j - 176, figsize=(7, 5))
760             else:
761                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
762
763             if j < num_cols - 177:
764                 axs = [axs]
765
766             if j < num_cols - 178:
767                 fig, axs = plt.subplots(1, num_cols - j - 178, figsize=(7, 5))
768             else:
769                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
770
771             if j < num_cols - 179:
772                 axs = [axs]
773
774             if j < num_cols - 180:
775                 fig, axs = plt.subplots(1, num_cols - j - 180, figsize=(7, 5))
776             else:
777                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
778
779             if j < num_cols - 181:
780                 axs = [axs]
781
782             if j < num_cols - 182:
783                 fig, axs = plt.subplots(1, num_cols - j - 182, figsize=(7, 5))
784             else:
785                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
786
787             if j < num_cols - 183:
788                 axs = [axs]
789
790             if j < num_cols - 184:
791                 fig, axs = plt.subplots(1, num_cols - j - 184, figsize=(7, 5))
792             else:
793                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
794
795             if j < num_cols - 185:
796                 axs = [axs]
797
798             if j < num_cols - 186:
799                 fig, axs = plt.subplots(1, num_cols - j - 186, figsize=(7, 5))
800             else:
801                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
802
803             if j < num_cols - 187:
804                 axs = [axs]
805
806             if j < num_cols - 188:
807                 fig, axs = plt.subplots(1, num_cols - j - 188, figsize=(7, 5))
808             else:
809                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
810
811             if j < num_cols - 189:
812                 axs = [axs]
813
814             if j < num_cols - 190:
815                 fig, axs = plt.subplots(1, num_cols - j - 190, figsize=(7, 5))
816             else:
817                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
818
819             if j < num_cols - 191:
820                 axs = [axs]
821
822             if j < num_cols - 192:
823                 fig, axs = plt.subplots(1, num_cols - j - 192, figsize=(7, 5))
824             else:
825                 fig, axs = plt.subplots(1, 1, figsize=(7, 5))
826
827             if j < num_cols - 193
```

```

48     elif num_cols == 2:
49         fig, axs = plt.subplots(1, 2, figsize=(14, 5))
50     elif num_cols == 3:
51         fig, axs = plt.subplots(2, 2, figsize=(14, 10))
52         axs[1, 1].remove() # Remove the unused subplot
53         axs = [axs[0, 0], axs[0, 1], axs[1, 0]]
54     else: # num_cols == 4
55         fig, axs = plt.subplots(2, 2, figsize=(14, 10))
56         axs = axs.flatten() # Flatten the 2D array of axes to easily
57         index them
58
58     for j, column in enumerate(columns[i:i+num_cols]):
59         if pd.api.types.is_numeric_dtype(data1_sample[column]):
60             # Plot the density distributions on the corresponding
61             subplot
62             data1_sample[column].plot(kind='density', ax=axs[j],
63             label='Original Data', legend=True)
62             data2_sample[column].plot(kind='density', ax=axs[j],
63             label='OG ARF Data', legend=True)
63             data3_sample[column].plot(kind='density', ax=axs[j],
63             label='DP-ARF Data', legend=True)
64             axs[j].set_title(f'Density Distribution for {column}')
65             axs[j].legend()
66         else:
67             axs[j].set_title(f'Skipping column {column} as it is not
68             numeric.')
68             axs[j].axis('off')
69
70     # Adjust layout
71     plt.tight_layout()
72     plt.show()
73
74 def plot_pca(data1, data2, data3, sample_size=1000):
75     if data1.shape[0] > sample_size:
76         data1_sample = data1.sample(n=sample_size)
77         data2_sample = data2.sample(n=sample_size)
78         data3_sample = data3.sample(n=sample_size)
79     else:
80         data1_sample = data1
81         data2_sample = data2
82         data3_sample = data3
83
84     # Select only numeric columns for PCA
85     data1_numeric = data1_sample.select_dtypes(include=[np.number])
86     data2_numeric = data2_sample.select_dtypes(include=[np.number])
87     data3_numeric = data3_sample.select_dtypes(include=[np.number])
88
89     # Perform PCA
90     pca = PCA(n_components=2)
91     data1_pca = pca.fit_transform(data1_numeric)
92     data2_pca = pca.transform(data2_numeric)
93     data3_pca = pca.transform(data3_numeric)
94

```

```

95     fig, ax = plt.subplots(figsize=(10, 8)) # Adjusted grid size
96
97     ax.scatter(data1_pca[:, 0], data1_pca[:, 1], alpha=0.5, label='Original Data')
98     ax.scatter(data2_pca[:, 0], data2_pca[:, 1], alpha=0.5, label='OG ARF Data')
99     ax.scatter(data3_pca[:, 0], data3_pca[:, 1], alpha=0.5, label='DP-ARF Data')
100    ax.legend()
101    ax.set_title('PCA - All Data Overlap')
102
103    plt.tight_layout()
104    plt.show()
105
106 def calculate_additional_metrics(original_data, og_arf_data, dp_arf_data):
107     :
108     metrics = {}
109
110     original_data_sampled = original_data.sample(n=og_arf_data.shape[0])
111
112     # Calculate Wasserstein Distance for numeric columns
113     for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
114         wasserstein_og = wasserstein_distance(original_data_sampled[col],
115                                             og_arf_data[col])
116         wasserstein_dp = wasserstein_distance(original_data_sampled[col],
117                                             dp_arf_data[col])
118         metrics[f'Wasserstein Distance {col}'] = {'OG ARF': wasserstein_og,
119                                                     'DP ARF': wasserstein_dp}
120
121     # Calculate Chi-Square Test for categorical columns
122     for col in original_data.select_dtypes(include=['category', 'object']).columns:
123         original_counts = original_data_sampled[col].value_counts().sort_index()
124         og_arf_counts = og_arf_data[col].value_counts().sort_index()
125         dp_arf_counts = dp_arf_data[col].value_counts().sort_index()
126
127         categories = original_counts.index.union(og_arf_counts.index).union(dp_arf_counts.index)
128         original_counts = original_counts.reindex(categories, fill_value=0)
129         og_arf_counts = og_arf_counts.reindex(categories, fill_value=0)
130         dp_arf_counts = dp_arf_counts.reindex(categories, fill_value=0)
131
132         chi2_stat_og, chi2_pvalue_og = chisquare(original_counts,
133                                                     og_arf_counts)
134         chi2_stat_dp, chi2_pvalue_dp = chisquare(original_counts,
135                                                     dp_arf_counts)
136         metrics[f'Chi-Square Test {col}'] = {'OG ARF': chi2_stat_og, 'DP ARF': chi2_stat_dp}
137
138     # Calculate RMSE and MAE for numeric columns

```

```

133     for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
134         rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],
135                                             og_arf_data[col]))
136         rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],
137                                             dp_arf_data[col]))
138         mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[
139                                             col]))
140         mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[
141                                             col]))
142         metrics[f'RMSE {col}'] = {'OG ARF': rmse_og, 'DP ARF': rmse_dp}
143         metrics[f'MAE {col}'] = {'OG ARF': mae_og, 'DP ARF': mae_dp}
144
145     return metrics
146
147
148 # Calculate correlation matrices for datasets
149 def get_correlation_matrices(data1, data2, data3):
150     corr_matrices = {
151         "Original Data": data1.corr(),
152         "OG ARF Data": data2.corr(),
153         "DP-ARF Data": data3.corr()
154     }
155     return corr_matrices
156
157
158 # Evaluate classification model on synthetic data fitted on original data
159 def model_evaluation_on_classification(original_data, synthetic_data,
160                                         target_col='Medical Condition'):
161     og = original_data.copy()
162     dp = synthetic_data.copy()
163     og[target_col] = (og['Medical Condition'] == 'Cancer').astype(int)
164     dp[target_col] = (dp['Medical Condition'] == 'Cancer').astype(int)
165
166     X_orig = og.drop(columns=[target_col])
167     y_orig = og[target_col]
168
169     X_synth = dp.drop(columns=[target_col])
170     y_synth = dp[target_col]
171
172     categorical_features = X_orig.select_dtypes(include=['object',
173                                                 'category']).columns
174     numeric_features = X_orig.select_dtypes(include=[np.number]).columns
175
176     preprocessor = ColumnTransformer(
177         transformers=[
178             ('num', 'passthrough', numeric_features),
179             ('cat', OneHotEncoder(handle_unknown='ignore'),
180              categorical_features)
181         ])
182
183     X_encoded_orig = preprocessor.fit_transform(X_orig)
184     X_encoded_synth = preprocessor.transform(X_synth)
185
186     clf = LogisticRegression(max_iter=2000)

```

```

178     clf.fit(X_encoded_orig, y_orig)
179
180     return clf.score(X_encoded_synth, y_synth)
181
182 # Preprocessing function to encode categorical variables
183 def preprocess_data(df):
184     categorical_features = df.select_dtypes(include=['category']).columns
185     numeric_features = df.select_dtypes(include=[np.number]).columns
186
187     preprocessor = ColumnTransformer(
188         transformers=[
189             ('num', 'passthrough', numeric_features),
190             ('cat', OneHotEncoder(handle_unknown='ignore'),
191             categorical_features)
192         ])
193
194     return preprocessor.fit_transform(df), preprocessor
195
196 # Reconstruction Attack
197 def reconstruction_attack(original_data, synthetic_data):
198     X_orig, orig_preprocessor = preprocess_data(original_data.drop(
199         columns=['Billing Amount']))
200     X_synth, synth_preprocessor = preprocess_data(synthetic_data.drop(
201         columns=['Billing Amount']))
202
203     nn = NearestNeighbors(n_neighbors=3)
204     nn.fit(X_synth)
205     distances, indices = nn.kneighbors(X_orig)
206
207     return distances.mean()
208
209 # Post process synthetic data to ensure valid values
210 def post_process_synthetic_data(data):
211     data.loc[data['Room Number'] < 0, 'Room Number'] = data['Room Number'].
212     mean()
213     data.loc[data['Age'] < 0, 'Age'] = data['Age'].mean()
214     data['Age'] = data['Age'].astype('int')
215     data['Room Number'] = data['Room Number'].astype('int')
216     mean_billing = data['Billing Amount'][data['Billing Amount'] >= 0].
217     mean()
218     data.loc[data['Billing Amount'] < 0, 'Billing Amount'] = mean_billing
219     data['Billing Amount'] = data['Billing Amount'].round(2)
220
221     return data
222
223 # Main Script
224 file_path = '..\\datasets\\healthcare_dataset.csv'
225 data = load_new_dataset(file_path)
226
227 # Generate synthetic data using OG ARF model
228 arf_model = OG_ARF.arf(data)
229 arf_model.forde()
230 og_arf_data = arf_model.forge(data.shape[0])

```

```

226 og_arf_data = post_process_synthetic_data(og_arf_data)
227
228 # Generate synthetic data using DP-ARF model
229 dp_arf_model = DP_ARF(data, epsilon=0.1)
230 dp_arf_model.forde()
231 dp_arf_data = dp_arf_model.forged(data.shape[0])
232 dp_arf_data = post_process_synthetic_data(dp_arf_data)
233
234 # Print the first few rows of the datasets
235 print('original data: ', data.head())
236 print('OG arf data: ', og_arf_data.head())
237 print('dp arf data: ', dp_arf_data.head())
238
239 # Identify numeric and categorical columns
240 numeric_columns = data.select_dtypes(include=[np.number]).columns.tolist()
241 categorical_columns = data.select_dtypes(include=['category', 'object']).columns.tolist()
242
243 print("Numeric columns:", numeric_columns)
244 print("Categorical columns:", categorical_columns)
245
246 # Plot density distributions
247 plot_density_distribution(data, og_arf_data, dp_arf_data, numeric_columns,
248 , sample_size=100)
249
250 numeric_data = data.select_dtypes(include=[np.number])
251 numeric_og_arf_data = og_arf_data.select_dtypes(include=[np.number])
252 numeric_dp_arf_data = dp_arf_data.select_dtypes(include=[np.number])
253
254 # Plot PCA results
255 plot_pca(numeric_data, numeric_og_arf_data, numeric_dp_arf_data,
256 sample_size=100)
257
258 # Calculate and print correlation matrices
259 correlation_matrices = get_correlation_matrices(numeric_data,
260 numeric_og_arf_data, numeric_dp_arf_data)
261 for key, value in correlation_matrices.items():
262     print(f'{key} Correlation Matrix:')
263     print(value)
264
265 # Calculate and print additional metrics
266 additional_metrics = calculate_additional_metrics(data, og_arf_data,
267 dp_arf_data)
268 for metric, values in additional_metrics.items():
269     print(f'{metric}:')
270     for method, value in values.items():
271         print(f'  {method}: {value}')
272
273 # Evaluate classification accuracy
274 accuracy_og = model_evaluation_on_classification(data, og_arf_data)
275 accuracy_dp = model_evaluation_on_classification(data, dp_arf_data)
276 print(f'Classification Accuracy (OG ARF): {accuracy_og}')

```

```
273 print(f'Classification Accuracy (DP ARF): {accuracy_dp}')
274
275 # Evaluate Attacks
276
277 # Evaluate reconstruction attack on og arf data
278 reconstruction_error = reconstruction_attack(data, og_arf_data)
279 print(f'Reconstruction Attack Error OG ARF (Mean Distance): {reconstruction_error}')
280
281 # Evaluate reconstruction attack on dp arf data
282 reconstruction_error = reconstruction_attack(data, dp_arf_data)
283 print(f'Reconstruction Attack Error DP ARF (Mean Distance): {reconstruction_error}')
```

Appendix A.5: Evaluation Script for Adult Dataset

```

1 import warnings
2 warnings.filterwarnings("ignore")
3 import numpy as np
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 from sklearn.decomposition import PCA
7 from sklearn.metrics import mean_squared_error, accuracy_score,
8     roc_auc_score, precision_score, recall_score
9 from sklearn.model_selection import train_test_split
10 from sklearn.linear_model import LogisticRegression, LinearRegression
11 from sklearn.neighbors import NearestNeighbors
12 from sklearn.preprocessing import OneHotEncoder
13 from sklearn.compose import ColumnTransformer
14 from sklearn.pipeline import Pipeline
15 from sklearn.ensemble import RandomForestClassifier
16 from scipy.stats import chisquare, wasserstein_distance
17 import seaborn as sns
18 import sys
19 import os
20
21 # Add the parent directory to the system path
22 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath('dp_arf.
23     py'))))
24 from dp_arf import arf as DP_ARF # Import the DP_ARF class
25 from arfpy import arf as OG_ARF # Import the OG ARF class without
26     differential privacy
27
28 def load_uci_adult_dataset():
29     column_names = [
30         'age', 'workclass', 'fnlwgt', 'education', 'education_num',
31         'marital_status', 'occupation', 'relationship', 'race', 'sex',
32         'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
33         'income'
34     ]
35     url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/
36         adult/adult.data'
37     data = pd.read_csv(url, header=None, names=column_names, na_values='
38         ?', skipinitialspace=True)
39
40     return data
41
42 def plot_density_distribution(data1, data2, data3, columns, sample_size
43     =1000):
44     # Sample the data if it exceeds the sample size
45     if data1.shape[0] > sample_size:
46         data1_sample = data1.sample(n=sample_size)
47         data2_sample = data2.sample(n=sample_size)
48         data3_sample = data3.sample(n=sample_size)
49     else:
50         data1_sample = data1
51         data2_sample = data2

```

```

45     data3_sample = data3
46
47     # Initialize plot count
48     plot_count = 0
49
50     # Create subplots iteratively
51     for i in range(0, len(columns), 4):
52         num_cols = min(4, len(columns) - i)
53         if num_cols == 1:
54             fig, axs = plt.subplots(1, 1, figsize=(7, 5))
55             axs = [axs]
56         elif num_cols == 2:
57             fig, axs = plt.subplots(1, 2, figsize=(14, 5))
58         elif num_cols == 3:
59             fig, axs = plt.subplots(2, 2, figsize=(14, 10))
60             axs[1, 1].remove() # Remove the unused subplot
61             axs = [axs[0, 0], axs[0, 1], axs[1, 0]]
62         else: # num_cols == 4
63             fig, axs = plt.subplots(2, 2, figsize=(14, 10))
64             axs = axs.flatten() # Flatten the 2D array of axes to easily
65             index them
66
66         for j, column in enumerate(columns[i:i+num_cols]):
67             if pd.api.types.is_numeric_dtype(data1_sample[column]):
68                 # Plot the density distributions on the corresponding
69                 subplot
70                 data1_sample[column].plot(kind='density', ax=axs[j],
71 label='Original Data', legend=True)
71                 data2_sample[column].plot(kind='density', ax=axs[j],
72 label='OG ARF Data', legend=True)
72                 data3_sample[column].plot(kind='density', ax=axs[j],
73 label='DP-ARF Data', legend=True)
73                 axs[j].set_title(f'Density Distribution for {column}')
74                 axs[j].legend()
75             else:
76                 axs[j].set_title(f'Skipping column {column} as it is not
77 numeric.')
77                 axs[j].axis('off')
78
78         # Adjust layout
79         plt.tight_layout()
80         plt.show()
81
82 def plot_pca(data1, data2, data3, sample_size=1000):
83     if data1.shape[0] > sample_size:
84         data1_sample = data1.sample(n=sample_size)
85         data2_sample = data2.sample(n=sample_size)
86         data3_sample = data3.sample(n=sample_size)
87     else:
88         data1_sample = data1
89         data2_sample = data2
90         data3_sample = data3
91

```

```

92     # Select only numeric columns for PCA
93     data1_numeric = data1_sample.select_dtypes(include=[np.number])
94     data2_numeric = data2_sample.select_dtypes(include=[np.number])
95     data3_numeric = data3_sample.select_dtypes(include=[np.number])
96
97     # Perform PCA
98     pca = PCA(n_components=2)
99     data1_pca = pca.fit_transform(data1_numeric)
100    data2_pca = pca.transform(data2_numeric)
101    data3_pca = pca.transform(data3_numeric)
102
103    fig, ax = plt.subplots(figsize=(10, 8))  # Adjusted grid size
104
105    ax.scatter(data1_pca[:, 0], data1_pca[:, 1], alpha=0.5, label='Original Data')
106    ax.scatter(data2_pca[:, 0], data2_pca[:, 1], alpha=0.5, label='OG ARF Data')
107    ax.scatter(data3_pca[:, 0], data3_pca[:, 1], alpha=0.5, label='DP-ARF Data')
108    ax.legend()
109    ax.set_title('PCA - All Data Overlap')
110
111    plt.tight_layout()
112    plt.show()
113
114 def calculate_additional_metrics(original_data, og_arf_data, dp_arf_data):
115     :
116     metrics = {}
117
118     original_data_sampled = original_data.sample(n=og_arf_data.shape[0])
119
120     # Calculate Wasserstein Distance for numeric columns
121     for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
122         wasserstein_og = wasserstein_distance(original_data_sampled[col],
123                                              og_arf_data[col])
124         wasserstein_dp = wasserstein_distance(original_data_sampled[col],
125                                              dp_arf_data[col])
126         metrics[f'Wasserstein Distance {col}'] = {'OG ARF': wasserstein_og,
127                                                     'DP ARF': wasserstein_dp}
128
129     # Calculate Chi-Square Test for categorical columns
130     for col in original_data.select_dtypes(include=['category', 'object']).columns:
131         original_counts = original_data_sampled[col].value_counts().sort_index()
132         og_arf_counts = og_arf_data[col].value_counts().sort_index()
133         dp_arf_counts = dp_arf_data[col].value_counts().sort_index()
134
135         categories = original_counts.index.union(og_arf_counts.index).
136                     union(dp_arf_counts.index)
137         original_counts = original_counts.reindex(categories, fill_value
138 =0)

```

```

133     og_arf_counts = og_arf_counts.reindex(categories, fill_value=0)
134     dp_arf_counts = dp_arf_counts.reindex(categories, fill_value=0)
135
136     chi2_stat_og, chi2_pvalue_og = chisquare(original_counts,
137         og_arf_counts)
138     chi2_stat_dp, chi2_pvalue_dp = chisquare(original_counts,
139         dp_arf_counts)
140     metrics[f'Chi-Square Test {col}'] = {'OG ARF': chi2_stat_og, 'DP
141     ARF': chi2_stat_dp}
142
143     # Calculate RMSE and MAE for numeric columns
144     for col in original_data.select_dtypes(include=['int64', 'float64']).columns:
145         rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],
146             og_arf_data[col]))
147         rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],
148             dp_arf_data[col]))
149         mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[
150             col]))
151         mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[
152             col]))
153         metrics[f'RMSE {col}'] = {'OG ARF': rmse_og, 'DP ARF': rmse_dp}
154         metrics[f'MAE {col}'] = {'OG ARF': mae_og, 'DP ARF': mae_dp}
155
156     return metrics
157
158 # Calculate correlation matrices for datasets
159 def get_correlation_matrices(data1, data2, data3):
160     corr_matrices = {
161         "Original Data": data1.corr(),
162         "OG ARF Data": data2.corr(),
163         "DP-ARF Data": data3.corr()
164     }
165     return corr_matrices
166
167 # Evaluate classification model on synthetic data fitted on original data
168 def model_evaluation_on_classification(original_data, synthetic_data,
169     target_col='income'):
170     og = original_data.copy()
171     dp = synthetic_data.copy()
172     og[target_col] = (og['income'] == '>50K').astype(int)
173     dp[target_col] = (dp['income'] == '>50K').astype(int)
174
175     X_orig = og.drop(columns=[target_col])
176     y_orig = og[target_col]
177
178     X_synth = dp.drop(columns=[target_col])
179     y_synth = dp[target_col]
180
181     categorical_features = X_orig.select_dtypes(include=['object',
182         'category']).columns
183     numeric_features = X_orig.select_dtypes(include=[np.number]).columns

```

```

176     preprocessor = ColumnTransformer(
177         transformers=[
178             ('num', 'passthrough', numeric_features),
179             ('cat', OneHotEncoder(handle_unknown='ignore')),
180         categorical_features
181     ])
182
183     X_encoded_orig = preprocessor.fit_transform(X_orig)
184     X_encoded_synth = preprocessor.transform(X_synth)
185
186     clf = LogisticRegression(max_iter=2000)
187     clf.fit(X_encoded_orig, y_orig)
188
189     return clf.score(X_encoded_synth, y_synth)
190
191 # Preprocessing function to encode categorical variables
192 def preprocess_data(df):
193     categorical_features = df.select_dtypes(include=['category']).columns
194     numeric_features = df.select_dtypes(include=[np.number]).columns
195
196     preprocessor = ColumnTransformer(
197         transformers=[
198             ('num', 'passthrough', numeric_features),
199             ('cat', OneHotEncoder(handle_unknown='ignore')),
200         categorical_features
201     ])
202
203     return preprocessor.fit_transform(df), preprocessor
204
205 # Reconstruction Attack
206 def reconstruction_attack(original_data, synthetic_data):
207     X_orig, orig_preprocessor = preprocess_data(original_data.drop(
208         columns=['income']))
209     X_synth, synth_preprocessor = preprocess_data(synthetic_data.drop(
210         columns=['income']))
211
212     nn = NearestNeighbors(n_neighbors=3)
213     nn.fit(X_synth)
214     distances, indices = nn.kneighbors(X_orig)
215
216     return distances.mean()
217
218 # Post process synthetic data to ensure valid values
219 def post_process_synthetic_data(data):
220     data.loc[data['age'] < 0, 'age'] = data['age'].mean()
221     data['age'] = data['age'].astype('int')
222
223     mean_fnlwgt = data['fnlwgt'][data['fnlwgt'] >= 0].mean()
224     data.loc[data['fnlwgt'] < 0, 'fnlwgt'] = mean_fnlwgt
225     data['fnlwgt'] = data['fnlwgt'].astype('int')
226
227     mean_education_num = data['education_num'][data['education_num'] >=
228 0].mean()

```

```

224     data.loc[data['education_num'] < 0, 'education_num'] =
225     mean_education_num
226     data['education_num'] = data['education_num'].astype('int')
227
228     mean_capital_gain = data['capital_gain'][data['capital_gain'] >= 0].
229     mean()
230     data.loc[data['capital_gain'] < 0, 'capital_gain'] =
231     mean_capital_gain
232     data['capital_gain'] = data['capital_gain'].astype('int')
233
234     mean_capital_loss = data['capital_loss'][data['capital_loss'] >= 0].
235     mean()
236     data.loc[data['capital_loss'] < 0, 'capital_loss'] =
237     mean_capital_loss
238     data['capital_loss'] = data['capital_loss'].astype('int')
239
240
241
242 # Main Script
243 data = load_uci_adult_dataset()
244
245 # Generate synthetic data using OG ARF model
246 arf_model = OG_ARF.arf(data)
247 arf_model.forde()
248 og_arf_data = arf_model.forge(data.shape[0])
249 og_arf_data = post_process_synthetic_data(og_arf_data)
250
251 # Generate synthetic data using DP-ARF model
252 dp_arf_model = DP_ARF(data, epsilon=0.5)
253 dp_arf_model.forde()
254 dp_arf_data = dp_arf_model.forge(data.shape[0])
255 dp_arf_data = post_process_synthetic_data(dp_arf_data)
256
257 # Print the first few rows of the datasets
258 print('original data: ', data.head())
259 print('OG arf data: ', og_arf_data.head())
260 print('dp arf data: ', dp_arf_data.head())
261
262 # Identify numeric and categorical columns
263 numeric_columns = data.select_dtypes(include=[np.number]).columns.tolist()
264 categorical_columns = data.select_dtypes(include=['category', 'object']).columns.tolist()
265
266 print("Numeric columns:", numeric_columns)
267 print("Categorical columns:", categorical_columns)

```

```

268
269 # Plot density distributions
270 plot_density_distribution(data, og_arf_data, dp_arf_data, numeric_columns
, sample_size=100)
271
272 # Plot PCA results
273 numeric_data = data.select_dtypes(include=[np.number])
274 numeric_og_arf_data = og_arf_data.select_dtypes(include=[np.number])
275 numeric_dp_arf_data = dp_arf_data.select_dtypes(include=[np.number])
276
277 plot_pca(numeric_data, numeric_og_arf_data, numeric_dp_arf_data,
sample_size=100)
278
279 # Calculate and print correlation matrices
280 correlation_matrices = get_correlation_matrices(numeric_data,
numeric_og_arf_data, numeric_dp_arf_data)
281 for key, value in correlation_matrices.items():
282     print(f'{key} Correlation Matrix:')
283     print(value)
284
285 # Calculate and print additional metrics
286 additional_metrics = calculate_additional_metrics(data, og_arf_data,
dp_arf_data)
287 for metric, values in additional_metrics.items():
288     print(f'{metric}:')
289     for method, value in values.items():
290         print(f'  {method}: {value}')
291
292 # Evaluate classification accuracy
293 accuracy_og = model_evaluation_on_classification(data, og_arf_data)
294 accuracy_dp = model_evaluation_on_classification(data, dp_arf_data)
295 print(f'Classification Accuracy (OG ARF): {accuracy_og}')
296 print(f'Classification Accuracy (DP ARF): {accuracy_dp}')
297
298 # Evaluate Attacks
299
300 # Evaluate reconstruction attack on og arf data
301 reconstruction_error = reconstruction_attack(data, og_arf_data)
302 print(f'Reconstruction Attack Error OG ARF (Mean Distance): {reconstruction_error}')
303
304 # Evaluate reconstruction attack on dp arf data
305 reconstruction_error = reconstruction_attack(data, dp_arf_data)
306 print(f'Reconstruction Attack Error DP ARF (Mean Distance): {reconstruction_error}')

```

Appendix B: Additional Results

Appendix B.1: Extended Results Plots

This subsection includes additional plots generated during the evaluation phase, that are not included in the main body of the report.

For healthcare $\epsilon = 1$

Name	Age	Gender	Blood Type	Medical Condition
Bobby Jackson	30	Male	B-	Cancer
Leslie Terry	62	Male	A+	Obesity
Danny Smith	76	Female	A-	Obesity
Andrew Watts	28	Female	O+	Diabetes
Adrienne Bell	43	Female	AB+	Cancer

Table 70: Original Healthcare Data Part 1 $\epsilon = 1$

Billing Amount	Room Number	Medication	Test Results
18856.28	328	Paracetamol	Normal
33643.33	265	Ibuprofen	Inconclusive
27955.10	205	Aspirin	Normal
37909.78	450	Ibuprofen	Abnormal
14238.32	458	Penicillin	Abnormal

Table 71: Original Healthcare Data Part 2 $\epsilon = 1$

Name	Age	Gender	Blood Type	Medical Condition
Jamie Hammond	27	Male	AB+	Obesity
David Wright	33	Male	B-	Diabetes
Jesse Sanchez	29	Female	A-	Hypertension
Sandy Camacho	60	Female	O-	Cancer
Manuel Barber	56	Male	A+	Asthma

Table 72: OG ARF Healthcare Data Part 1 $\epsilon = 1$

Billing Amount	Room Number	Medication	Test Results
22586.63	362	Aspirin	Inconclusive
39095.18	236	Paracetamol	Abnormal
11122.12	550	Paracetamol	Inconclusive
11836.36	175	Penicillin	Normal
5696.55	481	Penicillin	Abnormal

Table 73: OG ARF Healthcare Data Part 2 $\epsilon = 1$

Name	Age	Gender	Blood Type	Medical Condition
Kenneth Leonard	57	Male	A+	Hypertension
Kevin Williams	106	Male	O-	Arthritis
Christina Gentry	44	Male	AB-	Arthritis
Danielle Daniels	52	Female	B-	Diabetes
Brooke Burns	82	Male	AB-	Cancer

Table 74: DP ARF Healthcare Data Part 1 $\epsilon = 1$

Billing Amount	Room Number	Medication	Test Results
31822.23	390	Aspirin	Normal
34732.82	352	Aspirin	Abnormal
25458.48	245	Lipitor	Inconclusive
36739.01	241	Lipitor	Abnormal
6654.31	237	Aspirin	Inconclusive

Table 75: DP ARF Healthcare Data Part 2 $\epsilon = 1$

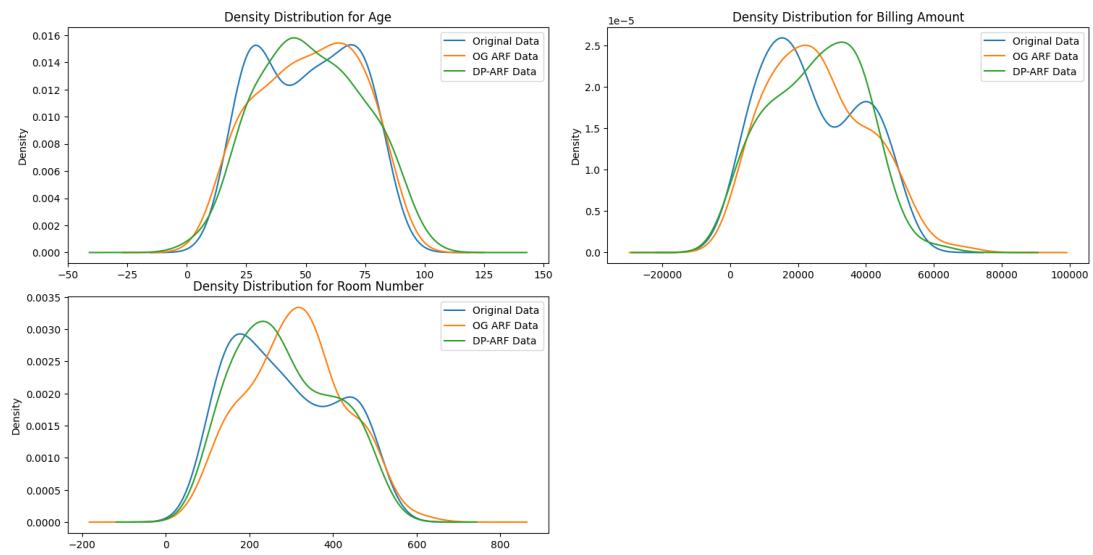


Figure 14: Density distribution for Healthcare $\epsilon = 1$

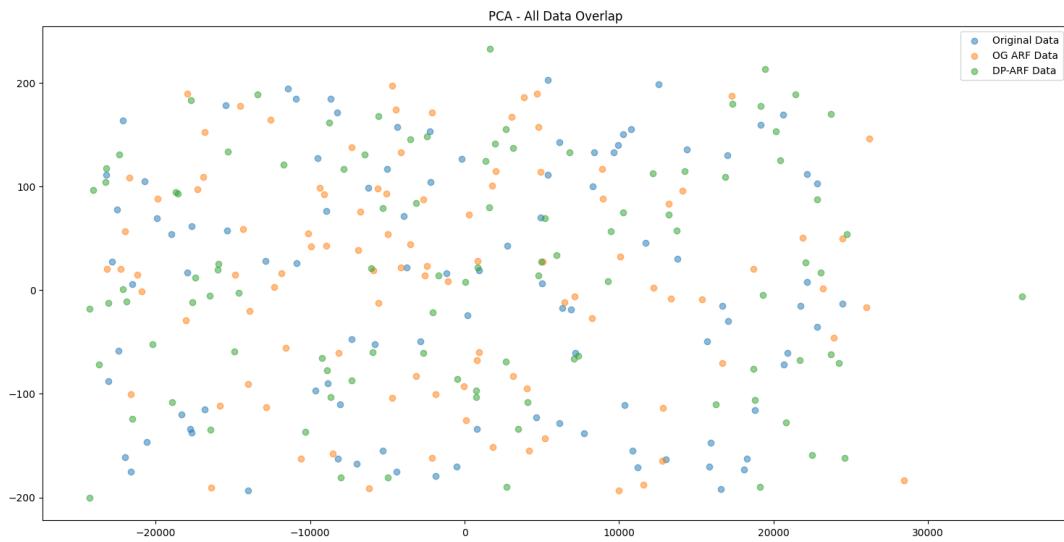


Figure 15: PCA analysis for Healthcare $\epsilon = 1$

Features	Original Data	OG ARF Data	DP ARF Data
Age vs Billing Amount	-0.0038	-0.0064	-0.0019
Age vs Room Number	-0.0007	-0.0034	0.0027
Billing Amount vs Room Number	-0.0029	-0.0024	-0.0051

Table 76: Correlation Matrices for Healthcare $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	1.2608	1.2965
Billing Amount	1149.3753	1099.1245
Room Number	6.6086	5.3032

Table 77: Wasserstein Distance for Healthcare $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	27.5540	27.8962
Billing Amount	19564.2468	19789.1707
Room Number	161.8494	163.3155

Table 78: RMSE for Healthcare $\epsilon = 1$

Feature	OG ARF	DP ARF
Age	22.4777	22.6945
Billing Amount	15948.3541	16147.0625
Room Number	131.76081	132.8233

Table 79: MAE for Healthcare $\epsilon = 1$

ARF	Value
OG	0.8253
DP	0.8245

Table 80: Classification Accuracy for Healthcare $\epsilon = 1$

ARF	Value
OG	0.4428
DP	0.4515

Table 81: Reconstruction Attack Error for Healthcare $\epsilon = 1$

For adult $\epsilon = 0.1$

Age	Workclass	Education	Occupation
39	State-gov	Bachelors	Adm-clerical
50	Self-emp-not-inc	Bachelors	Exec-managerial
38	Private	HS-grad	Handlers-cleaners
53	Private	11th	Handlers-cleaners
28	Private	Bachelors	Prof-specialty

Table 82: Original Data for Adult $\epsilon = 0.1$

Age	Workclass	Education	Occupation
74	?	Masters	?
49	Private	Assoc-acdm	Tech-support
39	Private	Some-college	Exec-managerial
47	Local-gov	10th	Protective-serv
41	Private	HS-grad	Craft-repair

Table 83: OG ARF Data for Adult $\epsilon = 0.1$

Age	Workclass	Education	Occupation
48	State-gov	Masters	Adm-clerical
47	Federal-gov	HS-grad	Adm-clerical
55	Private	Some-college	Exec-managerial
48	Self-emp-not-inc	Bachelors	Exec-managerial
39	Private	HS-grad	Sales

Table 84: DP ARF Data for Adult $\epsilon = 0.1$

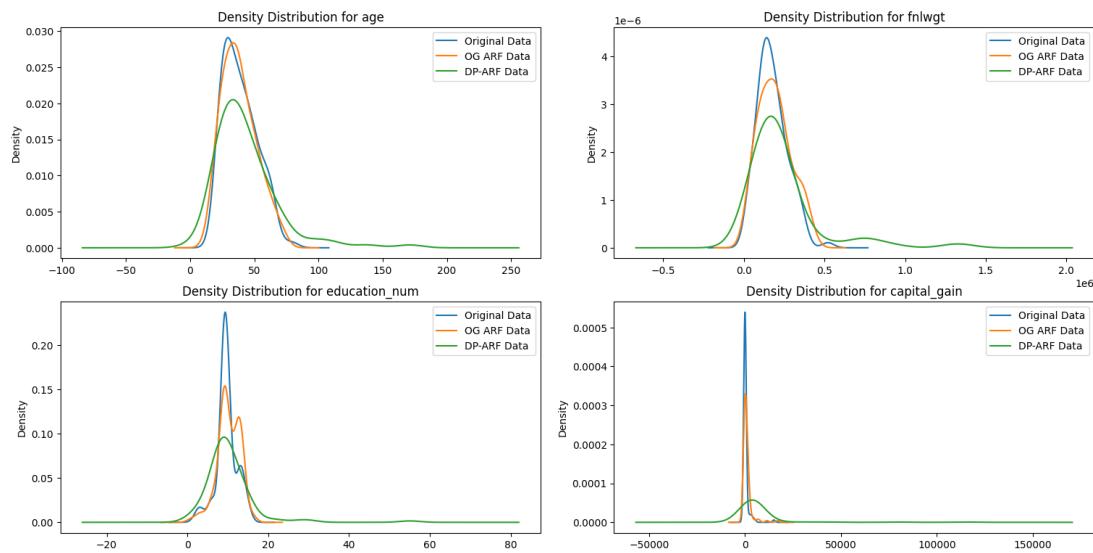


Figure 16: Density distribution for Adult Part 1 $\epsilon = 0.1$

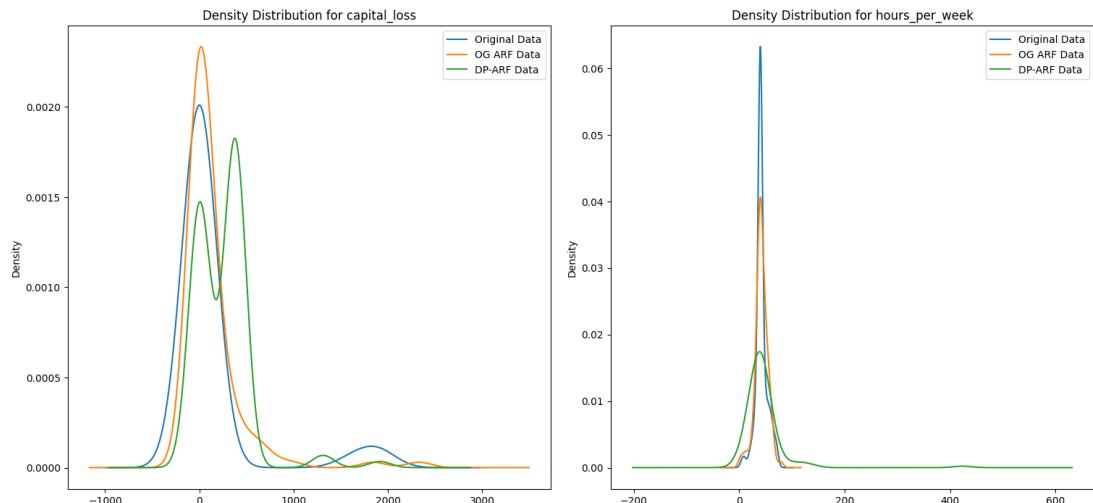
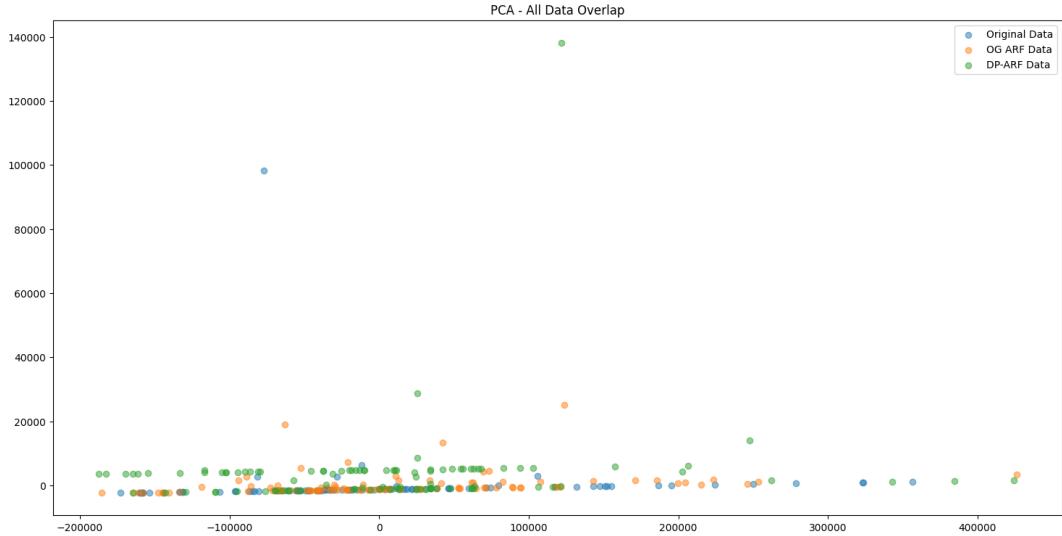


Figure 17: Density distribution for Adult Part 2 $\epsilon = 0.1$

Figure 18: PCA analysis for Adult $\epsilon = 0.1$

Features	Original Data	OG ARF Data	DP ARF Data
Age	1.0000	1.0000	1.0000
Fnlwgt	-0.0766	-0.0721	0.0059
Education Num	0.0365	0.0194	0.0413
Capital Gain	0.0777	0.0972	0.0504
Capital Loss	0.0578	0.0625	0.0348
Hours per Week	0.0688	0.0768	0.0355

Table 85: Correlation Matrices for Adult $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	0.2214	3.7907
Fnlwgt	5414.3372	37159.7450
Education Num	0.3016	0.9178
Capital Gain	749.7283	4935.6195
Capital Loss	69.9394	292.7822
Hours per Week	1.5807	6.3299

Table 86: Wasserstein Distances for Adult $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Workclass	3.8369	7911.3941
Education	18.7182	1615.2482
Marital Status	4.3219	1885.0502
Occupation	12.6491	1309.0290
Relationship	4.4634	1286.4095
Race	3.5649	3962.1131
Sex	1.9867	41.5534
Native Country	∞	6387.2342
Income	0.1619	624.3457

Table 87: Chi-Square Tests for Adult $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	19.3568	29.6035
Fnlwgt	149636.8829	249691.3420
Education Num	3.6857	5.4593
Capital Gain	10300.8001	25770.0017
Capital Loss	553.3943	1041.7032
Hours per Week	17.4520	30.8195

Table 88: RMSE for Adult $\epsilon = 0.1$

Feature	OG ARF	DP ARF
Age	15.4966	18.7283
Fnlwgt	114600.2252	140842.3979
Education Num	2.8013	3.4639
Capital Gain	2565.5560	6585.2397
Capital Loss	208.3861	436.7987
Hours per Week	12.9424	17.4454

Table 89: MAE for Adult $\epsilon = 0.1$

ARF	Value
OG	0.8240
DP	0.6686

Table 90: Classification Accuracy for Adult $\epsilon = 0.1$

ARF	Value
OG	250.1662
DP	269.4452

Table 91: Reconstruction Attack Error for Adult $\epsilon = 0.1$ **For adult epsilon = 1**

Age	Workclass	Education	Marital Status
39	State-gov	Bachelors	Never-married
50	Self-emp-not-inc	Bachelors	Married-civ-spouse
38	Private	HS-grad	Divorced
53	Private	11th	Married-civ-spouse
28	Private	Bachelors	Married-civ-spouse

Table 92: Original Data Sample for Adult $\epsilon = 1.0$

Age	Workclass	Education	Marital Status
21	Private	HS-grad	Married-civ-spouse
46	Private	Assoc	Married-civ-spouse
27	?	Some-college	Married-civ-spouse
75	?	Some-college	Married-civ-spouse
42	State-gov	HS-grad	Married-civ-spouse

Table 93: OG ARF Data Sample for Adult $\epsilon = 1.0$

Age	Workclass	Education	Marital Status
24	Private	Masters	Divorced
27	Local-gov	HS-grad	Never-married
45	Private	Assoc	Married-civ-spouse
21	Private	Some-college	Never-married
56	Self-emp-not-inc	HS-grad	Married-civ-spouse

Table 94: DP ARF Data Sample for Adult $\epsilon = 1.0$

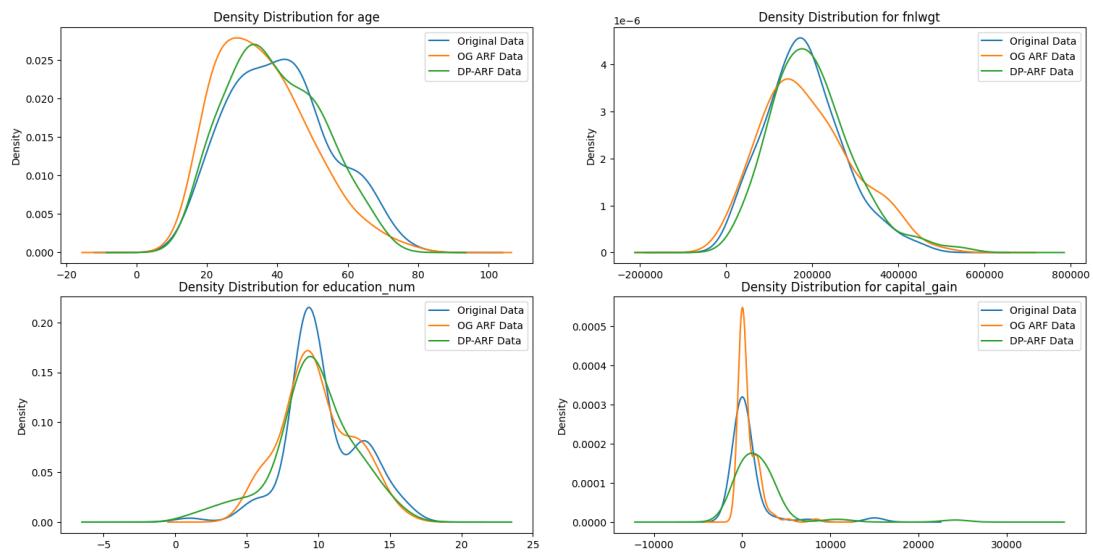


Figure 19: Density distribution for Adult Part 1 $\epsilon = 1$

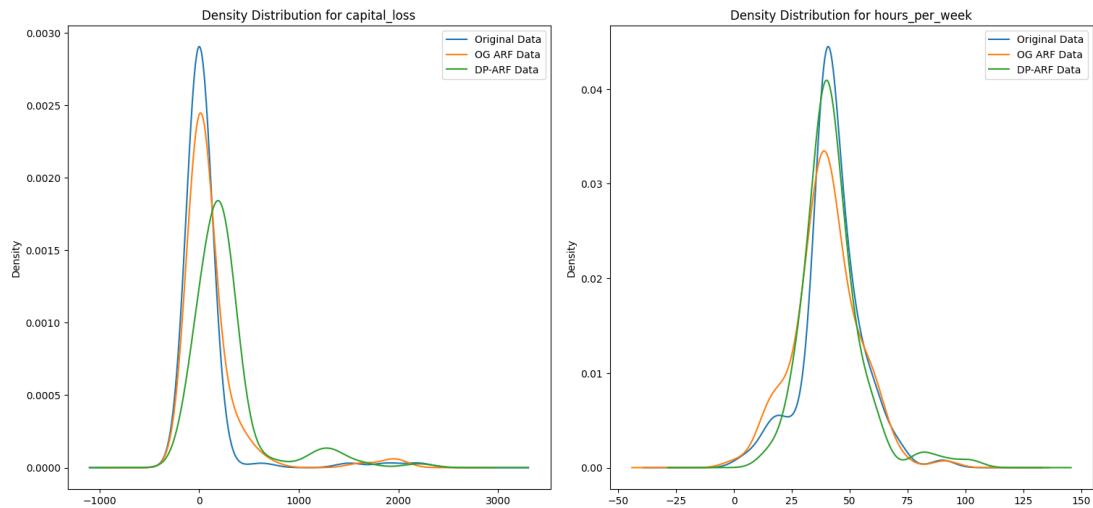
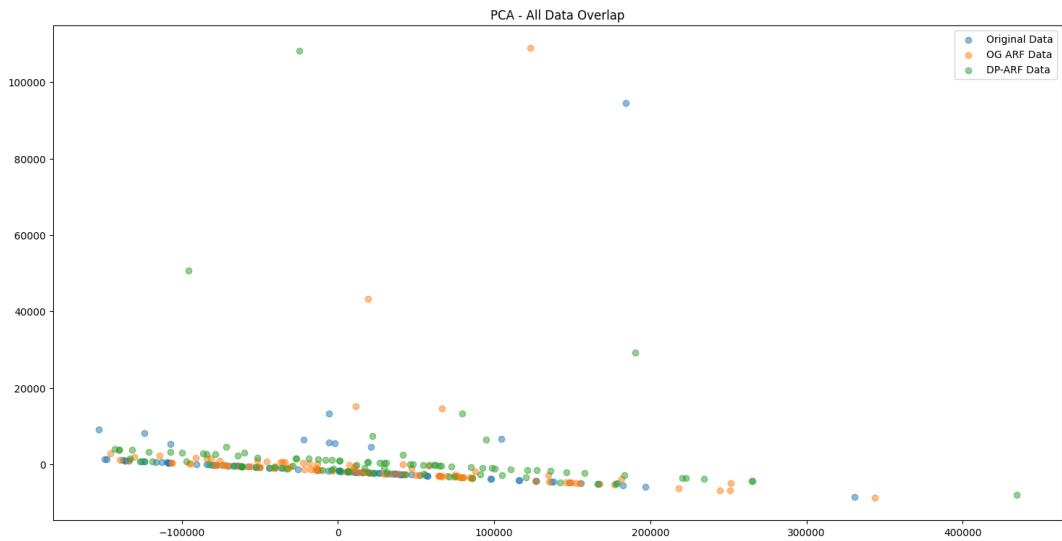


Figure 20: Density distribution for Adult Part 2 $\epsilon = 1$

Figure 21: PCA analysis for Adult $\epsilon = 1$

Features	Original Data	OG ARF Data	DP ARF Data
Age	1.0000	1.0000	1.0000
Fnlwgt	-0.0766	-0.0697	-0.0677
Education Num	0.0365	0.0245	0.0403
Capital Gain	0.0777	0.1020	0.0915
Capital Loss	0.0578	0.0648	0.0684
Hours per Week	0.0688	0.0765	0.0589

Table 95: Correlation Matrices for Adult $\epsilon = 1.0$

Feature	OG ARF	DP ARF
Age	0.3221	0.3377
Fnlwgt	4851.0239	6277.4043
Education Num	0.3251	0.4910
Capital Gain	740.1327	1826.7626
Capital Loss	86.0784	163.6468
Hours per Week	1.5608	1.6994

Table 96: Wasserstein Distances for Adult $\epsilon = 1.0$

Feature	OG ARF	DP ARF
Workclass	11.9714	4751.8106
Education	13.1787	1359.2558
Marital Status	3.6137	1698.6054
Occupation	11.2638	961.6070
Relationship	5.4163	1291.7518
Race	5.1088	2822.8779
Sex	0.5349	115.6228
Native Country	53.9169	4331.7595
Income	0.0284	312.0827

Table 97: Chi-Square Tests for Adult $\epsilon = 1.0$

Feature	OG ARF	DP ARF
Age	19.2654	19.4251
Fnlwgt	151081.7418	151746.2248
Education Num	3.6755	3.7139
Capital Gain	10537.4007	10968.1428
Capital Loss	550.0625	564.7148
Hours per Week	17.5370	17.7166

Table 98: RMSE for Adult $\epsilon = 1.0$

Feature	OG ARF	DP ARF
Age	15.3875	15.4439
Fnlwgt	113848.5477	114413.2851
Education Num	2.8206	2.8668
Capital Gain	2577.9933	3558.1125
Capital Loss	219.2349	296.3991
Hours per Week	13.0036	13.0327

Table 99: MAE for Adult $\epsilon = 1.0$

ARF	Value
OG	0.8268
DP	0.7469

Table 100: Classification Accuracy for Adult $\epsilon = 1.0$

ARF	Value
OG	248.3583
DP	311.3938

Table 101: Reconstruction Attack Error for Adult $\epsilon = 1.0$

Appendix C: User Manual for running the scripts

```

1 By following the below directory structure after downloading the
2 supplementary materials and ensuring the given packages are installed
3 you can run the test scripts.
4
5 Note: to change the epsilon value edit the epsilon parameter in the
      DP_ARF constructor of the test scripts.
6
7 ## Directory Structure
8
9 Supplementary material/
10      dp_arf.py
11      datasets/
12          <dataset_files>
13          testscripts/
14              adult.py
15              health.py
16              insurance.py
17
18 - 'datasets/': Directory containing the dataset files.
19 - 'dp_arf.py': Python file containing the ARF class with implemented
      Differential Privacy.
20 - 'testscripts/': Directory containing the scripts to generate and
      evaluate synthetic data.
21
22 ## Prerequisites
23
24 Ensure you have the following packages installed:
25
26 - numpy
27 - pandas
28 - matplotlib
29 - seaborn
30 - scikit-learn
31 - scipy
32 - arfpy
33
34 You can install these packages using pip:
35 'pip install numpy pandas matplotlib seaborn scikit-learn scipy arfpy'
36
37
38 ## Running the Scripts
39
40

```

```
41 1. Adult Dataset Script
42 To run the script for the UCI Adult dataset:
43 'python testscripts/adult.py'
44
45 2. Health Dataset Script
46 To run the script for the Healthcare dataset:
47 'python testscripts/health.py'
48
49 3. Insurance Dataset Script
50 To run the script for the Insurance dataset:
51 'python testscripts/insurance.py'
```