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Abstract

Synthetic data has become an essential tool across various domains, driving the need
for effective generative models. Gradient Boosted Decision Trees and Random Forests
are often used for the sake of synthetic data generation this is because they tend to
give good results, are robust, and are effective. However, all of this, much like the
generative models based on deep neural networks, pose strong possibilities of privacy
breaches. These methods may potentially leak sensitive information and patterns from
the original dataset into the synthetic data. To address this vulnerability, this thesis
proposes integrating differential privacy into tree based generative models. This might
allow for effective protection of privacy since it will retain useful information in the
synthetic data with minimal risk of revealing individual data points. Differential privacy
provides a firm foundation for privacy in data by ensuring that the privacy of individuals
in the data is not significantly impacted due to participating in the database.

This thesis leverages the principles and methodologies of differential privacy and
incorporates them into the adversarial random forest, a tree based generative model.
The research successfully generates differentially private synthetic data through strategic
injection of calibrated noise at critical points of the developed model. Thus, it augments
differential privacy by a small factor in exchange for a little degradation of original data
characteristics. This trade-off is required for the fulfilment of differential privacy

The results of the evaluations for the differentially private model over various datasets
prove its effectiveness in privacy enhancement making it a promising foundation for fur-
ther research into the application of differential privacy in tree based generative model-
ing. Thus, suggesting that a differentially private model based on trees may represent
a feasible way to protect sensitive information while enabling valuable, data-driven in-
sights and analysis. This work opens up a pathway for more secure and privacy compliant
generation of data in many different domains.
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MLE Maximum Likelihood Estimation
RDP Rényi Differential Privacy
RF Random Forests
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1

1 Introduction

Synthetic data generation is creating fake data to mimic the type of data that would be
found in the real world. Normally, this is achieved with the use of different techniques like
statistical modeling and machine learning. The generated synthetic data is purposefully
designed to hold the properties of real data for using in applications such as testing,
training, and analysis. It may range from helping to overcome data scarcity to mitigating
bias and model training.

Over the past few decades, the generation of synthetic data has advanced quite a
bit. Initially the interest was driven by big data, and later on, an even greater neces-
sity emerged for generating large high quality datasets in machine learning and data
analysis. Formerly, it was only applied under the context of simulations and tests, but
its applications have already expanded to areas such as privacy preservation, algorithm
development, and performance benchmarking. Deep neural networks have dramatically
improved the field of machine learning, mainly concerning unstructured data, which com-
prises of images, audio, video, and text, where the traditional ways often fall short. This
is especially evident in variational autoencoders [1] and generative adversarial nets [2],
which excel at learning complicated patterns and producing new samples that closely re-
semble the original data points. Since the data is structured and often high-dimensional,
it poses many challenges that can hinder the performance of deep learning.

In this regard, as a significant proportion of data from finance, healthcare, and
business is tabular, and accurate data modeling and prediction are crucial in these
fields, there is an imperative for producing samples that mimic the properties of such
data accurately. To overcome this problem tree based methods are employed. The
methods described are well suited to the aforementioned requirements of working with
tabular data and give a very robust solution toward generating synthetic data while
keeping the fundamental properties and relationships of the original datasets in place.
Moreover, they need very little preprocessing and can automatically deal with missing
values, which makes the task of data generation easier. Their ensemble nature and
regularization techniques minimize the risk of overfitting, ensuring that the synthetic
data generalizes well.

Sensitive information is always at stake when generating synthetic data, and its pri-
vacy raises concern on top of that. Privacy concerns have become increasingly important
with the emergence of stricter data protection regulations and the growing awareness of
data privacy issues. Traditional data anonymization techniques lack in many areas, and
so this has provoked the development of advanced techniques such as differential pri-
vacy. This framework provides strong privacy guarantees, such that the privacy of any
individual in the original dataset is protected. Hence, having potential to be a leading
area of research in synthetic data generation.
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1.1 Motivation and Aims

The need for relying on data increases as the world becomes data driven in more and
more areas of society. This increases the demand for high quality datasets. However,
synthetic data generation brings several risks with it , despite its many advantages. One
of the major issues is related to the leakage of sensitive information from the original
dataset into the synthetic data. This type of leakage can happen when the synthetic
data retains some identifiable patterns or anomalies that do exist in the real data, and
thus it might become possible for someone to make some inference about an individual’s
data. Such privacy breaches can have dire consequences.

In areas such as healthcare and finance, data privacy is crucial. The healthcare
data mostly contain highly sensitive information about medical histories, conditions,
and treatments of individuals. Therefore if this data is accessed by untrusted entities
it may potentially lead to social stigmatization, loss of finances, and even threats to
personal safety. Financial data is also said to contain important information on one’s
economic status, transactions, and individuals’ credit history. Loss of privacy related
to financial data may result in identity theft, financial impropriety, and substantial
economic losses. Moreover, privacy of data in such domains is necessary not only for
the sake of maintaining trust but also because of stringent regulatory requirements. For
example, HIPAA in healthcare and GDPR in Europe.

This research is motivated by finding ways to overcome such privacy concerns while
maintaining the good qualities of tree based models in data synthesis. Differential pri-
vacy offers a compelling solution by providing strong privacy guarantees through the
introduction of controlled noise. By integrating differential privacy into tree based gen-
erative models, this research aims to create synthetic datasets, with the purpose of utility
preservation while affording better privacy protection. Such datasets can then be used
across various domains and in a variety of applications ensuring that there is safe and
ethical usage of synthetic data. As a result, it would comply with with many data
protection regulations, foster trust among data providers and users, and promote the
broader adoption of synthetic data technologies.
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1.2 Objectives and Summary

The primary objective of this research is to explore the effective integration of differential
privacy into tree based generative models, specifically Random Forests. By doing so, it
will try to alleviate privacy risks associated with synthetic data generation, and most
importantly, it will retain the utility of the original data. This involves the assessment of
the compromise reached between maximization of essential characteristics and patterns
from the original dataset and minimization of individual’s risk to ensure strong privacy
protection through the use of synthetic data. Additionally, this research is going to com-
pare the performance of the differentially private model with its non private counterpart
on different metrics.

This report starts with the Background chapter, which defines some of the impor-
tant concepts that the study stands on: Synthetic Data Generation, Tree Based Models,
Privacy, and Federated Learning accompanied by previously published literature on this
subject. The section Related Work reviews and critically evaluates existing research
pertinent to the study. The chapter on Approach presents the experimental design, ex-
plaining how differential privacy is integrated with tree based models and the algorithms
used, in addition to this it also explores alternative approaches concluding with the ex-
plaining of the experimental setup. The Results and Evaluation chapter presents and
compares the conducted experiments and their results to show how effective is the pro-
posed method. Conclusion gathers the main findings, discusses implications, indicates
directions for further research, and reflects on the study’s limitations. A detailed list of
references is given at the end of the report. Additional detailed notes and results sup-
porting the main findings of this report along with supplementary materials are included
in the Appendix.



4

2 Background

2.1 Density Estimation and Generative Modeling

A probability distribution is an assignment of probabilities to each measurable subset
of the possible outcomes of a random variable. For instance, test scores can be used to
indicate how many individuals were scored in what numerical range of scores. In general,
density estimation describes the process of estimating the said distribution by seeing how
the values are spread out and then providing a smooth, continuous approximation for the
underlying distribution. We approximate the underlying probability distribution since
we do not typically know the exact form of the distribution from which our data samples
come from. There are two primary methodologies for density estimation one wherein we
assumes the form of a distribution for a set of given parameters. For example, When
fitting the data to a distribution this could be a normal, exponential, or Poisson distri-
bution the commonly used techniques are Maximum Likelihood Estimation (MLE). This
is called parametric density estimation technique. On the other hand, non-parametric
density estimation does not assume any form for the distribution. Instead, it estimates
the density directly from the data. Examples include Kernel Density Estimation (KDE)
which has wide applications and has become very popular in recent years.

To bridge the gap between understanding a dataset’s distribution and generating
new samples from it, we turn to generative modeling. Generative models use density
estimation to find the joint probability distribution of the data. Consequently, they can
create synthetic samples that are similar to the original data. Approaches to generative
modeling can be taken from different directions like Gaussian Mixture Models which
models data as a mixture of several Gaussian distributions, while latent variable mod-
els assume that the observed data was generated from hidden variables. Among these,
Variational Autoencoders (VAEs) [1] which encodes data into a lower dimensional latent
space and decodes it, thereby enabling the generation of new samples by drawing from
this latent space and Generative Adversarial Networks (GANs) [2] that have a generator
network, which makes up the data, and a discriminator network, which discriminates be-
tween the real and synthetic data. Both networks learn within a competitive setup until
the generator produces highly realistic samples that the discriminator cannot distinguish
between are particularly notable
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2.2 Tree Based Models

Tree based models are an excellent class of machine learning algorithms that work on
decision trees. Decision trees help in several ways given their ease of understanding,
simplicity, and interpretability which are evident while performing the classification and
regression task. They can work with both numeric and categorical data, picking up
complex nonlinear relationships between features and the target. Notably, Random
Forests and Gradient Boosted Decision Trees are widely popular tree based models
because of their effectiveness and versatility.

Random Forests (RFs) [3] are one of the ensemble learning methods. They build mul-
tiple decision trees while maintaining an ensemble learning technique that aggregates the
results to make a prediction. The technique not only helps in improving the robustness
of the model in accuracy but also reduces the overfitting risk, which may come in in-
dividual decision trees. In the training phase, Random Forests develop many different
decision trees such that each is trained on a random subset of the data and random
features. This will effectively add diversity among the trees and inject power to increase
stability and performance of the model. For classification, the Random Forest will out-
put the class mode suggested by all the trees. In a regression problem, the prediction
is given as the mean of all the trees. Averaging over the decision trees smoothens down
the variance and actually augments its generalization. Moreover, another reason for the
popularity of Random Forests is that they can handle enormous data sets effectively and
perform well when there is missing information for a dataset. Being able to give insights
about which features are important adds to interpretability and allows practitioners to
understand better which features contribute the most toward the predictions.

In contrast, Gradient Boosted Decision Trees (GBDTs) [4] is a type of sequential
ensemble method, meaning that trees are built one after the other. Each of the new trees
is fit to correct the errors of all the previous trees, but now the target of the modeling is
on the residuals (differences between responses in the observed and the previous model).
In other words, boosting allows GBDTs to build a strong predictive model out of a
series of weak learners (decision trees), each taking care of different aspects of the data.
These are highly flexible, ensuring a good predictive accuracy in almost all kinds of
tasks, be it regression, classification, or ranking. They basically operate by optimizing
a loss function, measuring the model’s capability in performing better or poorly. The
most popular versions currently are XGBoost [5] and LightGBM [6]. Each of them has
speed, efficiency, and the capability of handling data that is strictly better than others.
GBDTs can capture complex interactions between features and tend to achieve high
accuracy. However, GBDTs easily overfit in comparison with RFs, generally requiring
careful tuning of hyperparameters. Overall, both models are very suitable for synthetic
data creation due to their abilities to model complex data distributions and intrinsic
robustness.
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2.3 Privacy

The idea of using data in machine learning really raises a critical concern which is how do
you ensure sensitive information such as personal health records, financial transactions,
or any other personally identifiable information are not leaked. Privacy guarantees that
these individual’s data are not accessed without their consent and further prevents the
inference of sensitive information. Traditional approaches to privacy involve anonymiza-
tion and aggregation, which make it hard to recognize the individual data points. Yet,
such techniques often fail to provide strong privacy guarantees since sophisticated re-
identification attacks are sometimes able to reveal the underlying data.

Several types of identifiers can reveal a person’s identity like:

• Direct Identifiers: Information that directly identifies a person, for instance,
name of an individual, social security number, and email address.

• Indirect Identifiers (Quasi-Identifiers): Information such as age, gender, and
ZIP code when combined with other data, indirectly identify an individual.

• Sensitive Attributes: Certain pieces of information such as health status, finan-
cial records, and personal preferences, are held at an individual level, which should
not be related back to a person and are private.

There exist attacks that potentially exploit the above information from datasets to learn
about a individual’s private details. The reconstruction attack tries to reconstruct orig-
inal data from aggregated or anonymized datasets. Differential attacks are those that
exploit subtle differences in the response to the queries on a dataset. Even in aggregated
data, if an attacker can issue enough queries and see small changes in the responses,
they can infer whether or not the data of a particular person exists there, thus breaking
the privacy. There is also inference attacks that attempt to deduce sensitive information
about individuals or specific attributes across a dataset even when such information is
not explicitly available. These attacks use data that is in the public domain or any other
form of information retrievable to infer more facts. For instance, an attacker might use
background knowledge such as demographics.

Generative AI models can create high-quality synthetic content but are often trained
on sensitive data. A set of studies shows that indeed, in such models like GPT-2, there
is the possibility for generating identity revealing text, upon seeding with particular
prompts. Thus when not sufficiently protected, it inadvertently reproduces and leaks
private details from its training datasets. The article [7] lists several key privacy threats
and attacks like the ones mentioned above and also proposes various mitigation strategies
like data sanitization, obfuscation, differential privacy, deduplication, replication detec-
tion, and machine unlearning though it does not provide a deeper technical analysis,
methodology and evaluation of solutions effectiveness.



2.4 Federated Learning 7

2.4 Federated Learning

Federated learning is a novel machine learning paradigm that combats the privacy issue
by enabling multiple parties to collaboratively train a model without sharing data. With
centralized learning data from various sources is aggregated into a single location for
model training which poses significant privacy risks. Federated learning, on the other
hand, enables the training of a global model while distributing learning across devices
or servers, each holding local data. The model parameters are then updated locally and
collected centrally so that the raw data remains decentralized and private.

Some benefits to federated learning include protection of user’s privacy and their
data by avoiding an aggregation of the raw data thus preventing data-breaches and
unauthorized access to information. There is also increase in scalability since the com-
putational power of many devices can be employed to run complex models over large
scale datasets. Personalization is another benefit in which local models can be fine-tuned
in order to adapt to user or organizational data in a manner that avails more personal-
ized and relevant predictions. On the other hand, federated learning brings additional
challenges, such as managing communication overhead, the guarantee of model conver-
gence, and dealing with non-IID (Independent and Identically Distributed) data over
different devices.
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3 Related Work

3.1 Deep Neural Networks vs Tree Based Models

The works of Grinsztajn in [8] and Borisov in [9] are dedicated to reviewing the weak
points of Deep Neural Networks (DNNs) in tabular settings. They compare them to tree
based methods like XGBoost and Random Forests. Both providing extensive benchmarks
and highlighting relevant factors like data characteristics, hyperparameter tuning, and
representation power.

[8] argued for tree-based models due to their robustness and interpretability, high-
lighting their superiority in handling medium sized tabular datasets. They also outline
the three main challenges for tabular specific neural networks firstly the robustness to
uninformative features, Secondly the preservation of data orientation, and lastly the ca-
pability of learning irregular functions. [9] acknowledges the power in tree-based models
but finds a lot of potential with DNNs, when appropriately preprocessed and engineered
to have adequate features.

Both papers concurred on one point which is research has to be done to develop
models that can handle the challenge of high dimensionality and sparsity of tabular
data. They also emphasize the need for a standard benchmark against which we can
measure learning from tabular data, so that evaluation methodologies do not vary and
results across different works can be compared. [8] found that tree-based models remain
to be state-of-the-art in medium sized tabular datasets, even without considering faster
training times than deep learning algorithms. They thus provide a new benchmark and
baselines, allowing testing of new algorithms within a fixed budget of hyperparameter
optimization. They also probe for inductive biases that differ between tree based mod-
els and neural networks, with the interpretation that neural networks fail at learning
irregular patterns and their rotation invariance hurts performance on tabular data. The
state-of-the-art deep learning methods for tabular data did not perform much better
than the use of tree based models on newly created benchmarks depicted in [9]. This
emphasizes the importance of benchmarks to ensure new models generalize well across
diverse datasets. These papers have led this research to pursue tree based models instead
of Deep Neural Networks for generative modeling.

3.2 Generative Trees and Forests

In their paper [10] authors articulate the issues of DNNs at hand and then put forth
a new proposition, in which models based on decision trees can be used for generative
tasks. This is germane to the current research insofar as it pushes further on the use of
tree based models in contexts of generative models. Thus, opening up promising paths
for integrating differential privacy within tree based generative models. [10] proposes
Generative Trees (GTs) to try to imitate beneficial properties of Decision Trees (DT)
for tabular data classification. The authors proposed an adversarial training algorithm
compliant with boosting for GTs, which tackles the generative modeling of tabular data
through strengths of induction of decision trees. It includes the properness condition of a
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loss function so that it should reflect correctly the true nature of data and model predic-
tions. For example, via proper scoring rules such that the model is properly calibrated
on the supervised loss. This results in a variational GAN style loss formulation, which
incorporates principles from variational methods optimized under calibration conditions
satisfied by DTs. In simpler terms the method leverages a variational measure based
divergence from the discriminator side to derive the loss for the generator, which is tight
characterized in the case of the discriminator satisfying the calibration property. It gives
rise to a unified loss function to train the generator. They then proposed two training
algorithms for GTs: a standard adversarial training and a ”copycat” training procedure.
In the copycat method the generator replicates the discriminator’s tree structure and
thus, makes training the discriminator very easy, thereby allowing for convergence. This
method can be more effective than traditional adversarial training and is simple and is
designed with clear, direct guarantees of convergence. The fine grained study on well
defined loss functions in their relation to training generative models gives some clues
that helps implement differential privacy in a fine tuned manner in this class of models.
Furthermore, the copycat training scheme sets up a new high standard regarding efficient
training mechanisms that could be potentially adopted for the improvement of privacy
preserving generative modeling.

In the follow up paper, [11], the authors continue their work on tree based generative
models and tackle some of the challenges that arise during the generation of tabular data.
This work builds on their prior work in the field of generative trees and presents new
techniques and algorithms to provide better generative models in tabular data. Their
main aim here is to introduce Generative Forests (GF) consisting of sets of trees so as
to enhance density modeling and data generation for tabular data. They argue against
the current approaches for three reasons, the difficulty in maintaining an exact sampler
with respect to the underlying density, the challenge of developing powerful generative
models for tabular data, and the conceptual gap between supervised learning algorithms
such as boosting and their application in data generation. Their proposed solution,
GF.BOOST, eases the training process by using a supervised training scheme that can
be easily incorporated into popular algorithms for the induction of decision trees with
minimal modifications. The architecture of the model has been elaborated, highlighting
the combinatorial benefits of having more than one tree over having one tree. All the
trees are being used to produce each observation. Further, it introduces Ensembles Of
Generative Trees (EOGT) as an alternative to GF being more memory-efficient than
the latter while preserving combinatorial properties. Experimental results show that the
proposed generative forests are competitive and sometimes even outperform the state-of-
the-art methods like MICE for missing data imputation and Advarsarial Random Forest
for data realism.

Overall, While the contributions of authors to the work in [10] and [11] make for
very fertile ground for further elaborating more potent and scalable generative models
for tabular data. There is the privacy aspect that is lacking in the synthetic data
generation methods proposed in both the papers. It is with these identified privacy
gaps in mind that this research aims to extend these contributions to developing secure
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and privacy compliant synthetic data generation methods while maintaining high data
utility.

3.3 Adversarial Random Forests

The paper [12] introduces a novel approach to density estimation and data synthesis using
an unsupervised form of random forests inspired by generative adversarial networks.
It builds from a recursive procedure in which the trees in the forest learn structural
properties of the data through generation and discrimination phases. It proves to be
consistent under minimal assumptions and is especially optimized to work efficiently on
tabular data with mixed attributes.

Initial Framework with Iterative Improvement: adversarial random forest
starts by building an initial framework of a random forest. This framework is then
trained to classify data into real and synthetically generated classes. The synthetic data
at this stage is formed by simple random sampling from the marginal distributions of
the data attributes. This initial setup creates a fundamental adversarial setting, where
the forest’s objective is to improve its ability to classify data points correctly as either
real or synthetic.

Recursive partitioning and local independence: Recursive partitioning is key
to the ARFs framework, such that every tree of a forest tries to partition data space
in such a way that data within each leaf node becomes locally independent. This is
measured by the independence criterion inside the leaf, for which the intent is that the
joint distribution of the data points must factorize into the product of the marginal
distributions. The factorization is critical as it eases the difficulty of density estimation
from a possibly complex multivariate problem to simple univariate distributions within
each partition.

Coverage and Refinement: In the process of iterative refinement, the coverage
metric is critical in quantifying the percentage of data covered by each leaf. After the
initial training phase, the ARF verifies the characteristics of the coverage and indepen-
dence of each leaf to learn where the model’s performance can be improved. Leaves
that are poorly covered or whose variables are highly dependent on each other are then
focused more on the second iteration when the partitions are more refined.

Density Estimation Approach in FORDE: For each of these segments of inter-
dependent subgroups of leaves, the data is assumed to be more homogeneous, thereby
making it much easier to estimate density. The technique focuses on estimating condi-
tional distributions within each leaf, assuming that variables within these partitions can
be treated as independent. The assumption of independence within the leaves allows one
to consider applying much simpler statistical methods, such as Gaussian models for con-
tinuous data or categorical distributions for discrete data for density estimation. Lastly,
it aggregates density estimate from all leaves taking into consideration the coverage so as
to model the overall density of the dataset. Thus, to provide accurate density estimates,
each segment’s contribution is weighted based on its prevalence in the dataset.

FORGE’s Synthetic Data Generation: FORGE creates new synthetic data
points that resemble the learned distributions given the density estimates for leaves.
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This is achieved by sampling from the estimated models for each leaf. Since these
models are simplified and assume local independence, generating the new points can be
carried out effectively without losing the statistical properties of the data in any given
segment. In order to accomplish this, FORGE will aggregate samples across a number
of leaves such that any properties and distributions learned by the forest can be taken
into account to ensure that the synthetic data represents the entire dataset as closely as
possible. The aggregated method does not only guarantee that diverse data samples are
taken from the spectrum of the original data’s characteristics but also guarantees that
the complex multivariate relationships present in the original data are retained in the
generated synthetic dataset.

In summary, ARF’s flexibility and efficiency in handling tabular data make it a prime
choice for integrating differential privacy mechanisms, a feature that is not fully explored
in [12]. Thus establishing a strong basis for creating potent differential private generative
models.

3.4 Differential Privacy

The seminal work on ”Differential Privacy” [13] by Cynthia Dwork has established a
foundational framework for constructing privacy preserving data analysis methodologies.

[13] gives proof showing that adversary having access to auxiliary information along
with the access to database with the use of privacy mechanism models like non interac-
tive(Sanatized version of the dataset is provided) and interactive(Interface for users to
query the database is provided) allows the adversary to make a privacy breach. Differ-
ential privacy makes it such that ”Any disclosure will be within a small multiplicative
factor just as likely whether or not individual is in the database. Thus there will only be
negligible to small increase in the risk to an individual in participating in the database
and nominal gain by concealing one’s data.” [13]

In her work, she provides a precise mathematical definition of differential privacy
along with strong mechanisms for maintaining individual privacy while allowing data
to still be analyzed in a meaningful way. The core idea of Differential Privacy is
that the ”The risk should not substantially increase as a result of participating in the
database.” [13]

According to [13], A randomized function K provides ϵ-differential privacy for all
datasets D and D′ differing by at most one element, for all subsets of outputs S: This
concept is mathematically formalized by the inequality:

Pr[K(D) ∈ S] ≤ eϵ Pr[K(D′) ∈ S] (3.1)

Here’s a breakdown of the terms and their significance:

• K represents a randomized algorithm or function that processes the dataset and
gets an output.

• D and D′ are two datasets that differ in exactly one data point. This means D′

can be obtained by adding or removing one individual’s data from D.
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• S is a subset of possible outputs that the function K might produce.

• Pr[K(D) ∈ S] denotes the probability that the function K will produce an output
within the subset S when run on dataset D.

• ϵ (epsilon) is a non-negative parameter that quantifies the privacy loss. Smaller
values of ϵ correspond to stronger privacy guarantees. It controls the trade-off
between privacy and accuracy.

The paper introduces mechanisms for adding noise such as the Laplace Mechanism
for numeric and Exponential Mechanism for non-numeric queries.

In [13], Dwork considers the use of Auxiliary information that is when the adversary
may have some additional external information. It makes sure that sufficient privacy
guarantees are made regardless of such knowledge, which is an important practical re-
quirement due to the rich multifaceted nature of data contexts. Differential privacy is
also safe against queries that are adaptive, wherein the type of query to be asked and
its parameters rely on the output of previous analyses and queries. Dwork’s framework
allows prevention of these inquiries from exploiting the differential privacy mechanisms,
hence shielding privacy through these sequences of requests for interlinked data.

Dwork’s principles offer a very good guideline when combining differential privacy
into tree based generative models such as Random Forests and Gradient Boosted De-
cision Trees. By doing this, the models can make use of the properties of differential
privacy by adding noise during model training or data generation steps thus ensuring
that it does not reveal any sensitive information about any single individual, while also
making sure that synthetic datasets produced still maintain the properties of original
data. This enhancement will serve the applicability of these models in sensitive applica-
tions and align with ever growing expectations and regulations over data privacy.

3.5 Differential Privacy in Generative Adversarial Network

The paper [14] sheds further light on integrating differential privacy into the architecture
of Generative Adversarial Networks. Providing a significant solution to problems in
generative models where potential information can be leaked out of sensitive training
data, especially when such models are applied to private or sensitive datasets like medical
records.

The paper firstly makes use of differential privacy to protect individual data points
within the training set. The intuition behind their differential privacy is that adding
one data point and removing one data point should not dramatically change the result
of a GAN. This is achieved by adding noise to the gradients during the training process.
Particularly it is added according to the moments accountant method, which helps in
tracking the privacy loss over multiple training iterations and ensures that the overall
privacy budget is maintained.

Their framework is built upon the Wasserstein GAN (WGAN). Based on the Wasser-
stein GAN (WGAN) framework, the distance of Wasserstein provides a more stable and
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meaningful measurement for the difference between real and generated data distribu-
tions than the Jensen-Shannon divergence in traditional GANs. Gradient clipping, and
Gaussian noise injection are used together to enforce the Lipschitz constraint in models
so as to keep it stable during training and ensure convergence.

The authors present theoretical justifications for privacy guarantees, in addition to
demonstrating the efficacy of their technique by comprehensive empirical testing on
benchmarks such as MNIST and MIMIC-III. All these techniques and principles de-
scribed in this study can be used to make sure that the synthetic data generated by
tree-based models also preserves privacy. The fact that the DPGAN framework has
already been applied successfully to sensitive data, such as medical records, illustrates
both the importance and possibility of these privacy preserving techniques.

One of the strengths of [14] is that the theoretical foundation has been rigidly laid
and deep empirical validation is done. The guarantees in terms of privacy are pretty
strong since the use of Wasserstein distance and the moments accountant method brings
good privacy, while maintaining utility in the produced data. Thus, This also shows us
that the complexity of implementing differential privacy in both deep neural networks
and tree-based models is high. Additionally, the impact of noise on the quality of gener-
ated data, especially in high-dimensional settings, remains a challenge that needs careful
consideration. This can make it somewhat more complex to implement differential pri-
vacy. Moreover, the limitation in the usage of Neural Networks for tabular data, as
presented before remain a bottleneck.

3.6 Differential Privacy in Federated Boosted Decision Trees

The paper [15] tackles the emerging requirement for scalable, safe, and efficient privacy
preserving machine learning models capable of being trained over distributed data. This
study examines Gradient Boosted Decision Trees (GBDTs) under Differential Privacy
(DP) restrictions and in federated learning contexts. In this proposal, they present new
methods to gain high utility and provide statistically stronger privacy guarantees by
exploiting the flexibility of Rényi Differential Privacy (RDP), a recent refinement in
differential privacy that allows more fine grained analysis by considering moments of the
privacy loss distribution.

The proposed approach in the paper decomposes the GBDT algorithm into five main
components, and each of them is adapted to the federated setting while satisfying RDP.
The Split Method combines histogram based methodologies for scalable privacy preserv-
ing decision making while adding randomness using Partially Random(PR) and Totally
Random (TR) strategies to improve privacy. Secondly, Weight Updates apply Averag-
ing, Gradient-based, and Newton-based methods to optimize the model with gradients
and Hessians. Then Split Candidate Generation independently generates candidates
based on uniform distribution, and Iterative Hessian splitting enhancing data represen-
tation while enforcing privacy. After which Feature Interactions are managed by limiting
the scope of data used in each decision, enhancing interpretability and privacy. Lastly,
Batched Updates reduce the communication demands by collating updates to improve
data efficiency and accelerate convergence.
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While the authors primarily aim to improve privacy for decision making models in
federated environments, the addition of generative modeling could vastly expand the
utility of their framework. Generative modeling is particularly well suited to federated
settings for several excellent reasons. Firstly, it facilitates data augmentation, allowing
for the synthetic expansion of limited datasets across distributed nodes which is a crit-
ical need in domains where data sharing is tightly regulated due to privacy concerns.
Generative models also excel at solving the problem of imbalanced or non-IID (not
independently and identically distributed) data that are common in federated learning
scenarios. These models can also help balance the dataset by creating synthetic examples
in underrepresented classes or distributions.

More importantly, generative modeling can improve privacy of data by creating syn-
thetic datasets statistically similar to the original dataset while not revealing any sensi-
tive information. Possible incorporation of techniques for density estimation and sam-
ple generation in [15] in relation to the Rényi Differential Privacy (RDP) and GBDTs
framework would support the generation of high fidelity synthetic data while maintain-
ing necessary privacy constraints. Such an integration can result in more diversified
and rich data interactions across federated networks. Which inturn will increases the
scope and impact of federated learning programs while protecting individual privacy.
Although [15] shows federated learning is beneficial in dispersed data contexts, it may
not entirely address difficulties in centralised or non-federated systems.
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4 Approach

4.1 Design

This research design was constructed using two main components:

• The Adversarial Random Forest Algorithm by David Watson [12] for generative
modeling with tree based methods explained in subsection 3.3.

• The Differential Privacy definitions explained in subsection 3.4 and theorems pro-
posed by Cynthia Dwork in [13].

The ARF algorithm which has been implemented in both R and Python, gives us a
good foundation to build upon. For this research I used the python package arfpy [16]
(Note: There were certain issues related to the alpha parameter in the original forde
method of the python package which was dealt with to ensure completeness in the
implementation. Details are discussed in the Appendix section A). The Differential
Privacy framework provides a way to add controlled noise to the data, ensuring that the
synthetic data maintains privacy guarantees. I mainly focus on integrating Laplacian
and Exponential mechanisms for numeric and categorical features, respectively, into the
arfpy package.

The integration of these mechanisms in the arfpy plays an important role. Raising
questions like, Where to add noise ?, How to add noise ? and How much noise to add
?. The arfpy code is well structured and separable thus fewer changes were needed
to generate synthetic data which follows differential privacy, Such that instead of the
adversary accessing the original dataset with privacy mechanism in place now we present
the adversary with a differentially private synthetically generated data which can be
accessed by the adversary in a interactive or non interactive way. The point being
that when the adversary is only provided with differentially private synthetic data, the
need for additional privacy mechanisms on subsequent queries is generally unnecessary.
The differential privacy guarantees are embedded within the synthetic data generation
process, ensuring that individual privacy is protected regardless of how the synthetic data
is analyzed. Adding to this the use of noise in differential privacy makes it difficult for an
adversary to trace back the original data points because the noise creates uncertainty and
overlaps in the possible outputs. This ensures that individual data contributions remain
hidden while allowing the synthetic dataset to retain its overall utility for analysis given
it completely follows the differential privacy principles at all critical stages of generation.

• Identifying Key Queries: Determining which operations within the arfpy are
sensitive and contribute to the synthetic data generation process. The Key Queries
were mean, variance, and class probabilities. All the key queries are present in the
FORDE method which estimates the density of the data.

• Calculating Sensitivity: For each key query, calculate the sensitivity, which is
the maximum change in the output due to the addition or removal of a single data
record. This is essential for calibrating the amount of noise to be added.
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• Apply Differential Privacy Mechanism: Use Laplace and Exponential mech-
anisms to add noise to the outputs of these queries. The amount of noise is
determined by the sensitivity and the desired privacy budget.

• Generate Differential Private Synthetic Data: Run the modified Differen-
tially Private arfpy(dp arfpy) to produce synthetic data. This data will inherently
protect individual privacy due to the noise added during the critical steps of density
estimation.

4.2 Theoretical definitions and Theorems

Differential Privacy and its definition as previously discussed in subsection 3.4 along
with the below mechanisms which are part of the research from [13] will be used to add
noise in the arfpy.

4.2.1 Laplace Mechanism:

To ensure differential privacy for numerical queries, the Laplace mechanism adds noise
from a Laplace distribution. The noise scale is determined by the sensitivity of the
function, defined as the maximum change in output by adding or removing a single data
point, as stated in [13]:

K(x) = f(x) + Lap(∆f/ϵ) (4.1)

Here:

• f(x) is the query function.

• ∆f is the sensitivity of the function f .

• ϵ is the privacy parameter.

• Lap(∆f/ϵ) denotes the Laplace noise added to the output.

4.2.2 Exponential Mechanism:

For non-numeric outputs, the exponential mechanism as stated in [13] selects an output
based on a utility function, with higher probability given to more desirable outputs. The
probability of selecting an output o is proportional to:

Pr[K(D) = o] ∝ exp

(
ϵu(D, o)

2∆u

)
(4.2)

Where:

• Pr[K(D) = o] is the probability that the mechanism K outputs o when given the
dataset D.
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• ϵ is the privacy parameter that controls the trade-off between privacy and accuracy.

• u(D, o) is the utility function that measures the quality or utility of the output o
given the dataset D.

• ∆u is the sensitivity of the utility function, defined as the maximum change in the
utility function u when a single element of the dataset D is modified.

4.3 Implementation

The overall goal of integrating differential privacy (DP) into ARFPY is to generate
synthetic data that protects individual privacy while preserving data utility.

4.3.1 Enhancing Density Estimation (FORDE) with Differential Privacy

4.3.1.1 Steps for Adding Differential Privacy to Mean for Numeric Features

1. Sensitivity Calculation for Continuous Variables:

Sensitivity of a function (∆f) that calculates the mean (µ) and standard deviation
(σ) depends on the the range of data values within each leaf node.

2. Observed Minimum and Maximum:

For each group defined by a tree, node, and variable, calculate the observed mini-
mum (minobserved) and maximum (maxobserved) values:

min
observed

= min(value)

max
observed

= max(value)

3. Sensitivity for Mean:

Sensitivity of the mean for each group is given by:

∆µ =
maxobserved−minobserved

n

where n is the number of data points in the group. Here, sensitivity is defined as
the maximum change in the mean that results due to the addition or removal of
one data point.

4. Handling Zero Sensitivity:

To avoid zero sensitivity, which can occur if all values are identical, we replace zero
sensitivity with a small positive value (1× 10−6).

5. Adding Laplace Noise to Mean:

The Laplace mechanism adds noise drawn from a Laplace distribution to ensure
differential privacy. The noise is calibrated to the sensitivity of the function and
the privacy budget (ϵ).
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6. Scale of Laplace Noise:

The scale parameter (b) for the Laplace distribution is determined by the sensitivity
and privacy budget:

b =
∆µ

ϵ

where ϵ is the privacy budget, controlling the trade-off between privacy and accu-
racy.

7. Noisy Mean:

Add Laplace noise to the calculated mean:

µ′ = µ+ Lap

(
∆µ

ϵ

)
where Lap

(
∆µ
ϵ

)
represents a random draw from the Laplace distribution with

scale ∆µ
ϵ .

8. Recalculated Standard Deviation Based on Noisy Mean:

After adding noise to the mean, the standard deviation must be recalculated to
reflect the new noisy mean (µ′).

9. Noisy Standard Deviation:

For each group, recalculate the standard deviation using the noisy mean:

σ′ =

√√√√ 1

n

n∑
i=1

(xi − µ′)2

This recalculation ensures that the variance around the noisy mean is accurately
represented.

Theoretical Justification for Differential Privacy Guarantee: By adding
Laplace noise proportional to the sensitivity of the mean, this approach ensures that
the change in the output due to any single data point is bounded. Thus, providing ϵ-
differential privacy. The recalculated standard deviation ensures that the distribution’s
spread is accurately maintained, preserving data utility. This approach balances privacy
and utility by calibrating the noise to the sensitivity of the data. Hence providing a
balanced trade-off.
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4.3.1.2 Steps for Adding Differential Privacy to Class Probabilities for Cat-
egorical features

1. Calculate Initial Probabilities:

For each class within each leaf node, calculate the initial probability based on the
count of data points:

prob =
count var val

count var

where count var val is the count of a specific class and count var is the total count
of all classes within the node.

2. Use Initial Probabilities as Utility Scores:

The initial probabilities are used as the utility scores:

scores = prob

3. Sensitivity of the Utility Function:

The sensitivity of the utility function in this context is 1. This is because the
maximum change in the count (and thus the probability) when a single data point
is added or removed is 1.

4. Apply the Exponential Mechanism:

The exponential mechanism is applied by adding noise to the utility scores:

exp noise = exp

(
ϵ× scores

2

)
5. Update Probabilities:

Update the probabilities with the exponential noise:

prob = exp noise

6. Normalize Probabilities:

Normalize the noisy probabilities within each group to ensure they sum to one:

prob/ =
∑

prob

Theoretical Justification for Differential Privacy Guarantee: By calculating
initial probabilities and using them as utility scores in the exponential mechanism, this
approach ensures differential privacy for class probabilities within each leaf node. This
method balances privacy and utility, allowing for the generation of synthetic data that
protects individual data points while preserving the statistical properties of the original
dataset.
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4.3.2 Synthetic Data Generation (FORGE)

4.3.2.1 Objective: Generate new synthetic data points from the noisy distributions
obtained from the density estimation step.

4.3.2.2 Steps:

• Sample Data: For continuous features, sample from the truncated normal dis-
tribution using noisy µ′ and σ′. For categorical features, sample according to the
noisy class probabilities.

• Combine Features: Combine sampled features to create synthetic data points
that preserve the statistical properties of the original dataset while ensuring pri-
vacy.

Note: In the end some post processing is required to ensure synthetic data looks
exactly like the original data this is the case for both the Original arfpy (og arfpy) and
(Differentially Private arfpy) dp arfpy.

4.4 Alternate and Failed Approaches

Here, I present and discuss the alternate approaches that could have been used and also
the failed approaches that were used to enhance generative tree based modeling with
differential privacy. Each approach had distinct strategies and implementations.

4.4.1 Federated Boosted Differentially Private Generative Trees

The goal was to implement generative modeling into [15] to for the generation of synthetic
data that satisfies differential privacy guarantees.

• Density Estimation: After the trees was trained, densities were estimated by
traversing the trees and gathering the statistics (mean, standard deviation) of the
data points in each leaf node. To these statistics, I added noise to ensure differential
privacy.

• Gradient, Splits and Hessian-Based Generation: Using noisy gradients and
Hessians from the training process to guide the generation of synthetic data. The
Synthetic data points were generated by randomly choosing paths in the trees and
sampling data points within the defined splits. Noise was added to the decision
boundaries to ensure privacy.

Overall, While integrating generative modeling within the Federated Boosted DP
Trees framework is theoretically appealing, but in practice, it suffers greatly in the effort
to balance privacy versus data utility, capture complex data relationships, and manage
computational overhead. Further research is needed to integrate effective generative
modeling into the Federated Boosted Decision Trees with differential privacy framework.
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4.4.2 Differentially Private Generative Trees and Forests or Adversarial
Random Forest

The goal was to enhance existing generative modeling algorithms given in [10], [11],
and [12] with differential privacy to generate high-quality synthetic data that preserves
the privacy of individuals in the original dataset.

When deciding to implement differential privacy (DP) in ARFPY over the generative
forest, several key factors were considered. ARFPY has been well modularized, and has
more distinct task separation, including density estimation and data generation phases,
which helps a lot to integrate DP. Given the structure of the model it is, therefore, much
easier to implement and have a low cost privacy assurance as compared to extensive
code refactoring.

On the other hand, the approach with generative forests is not the favorite one but
potentially plausible for elaborate multi-dimensional models of data. Its design embod-
ies adversarial loops and tree based modeling able to handle intricate data interactions,
hence being adaptive to diverse datasets. Therein lies the flexibility to adjust and fine-
tune privacy parameters, which are very important for the discipline of privacy preserv-
ing data synthesis. While challenges will remain, such as balancing cumulative noise
with consistent privacy preservation, the generative forest should be able to effectively
calibrate with sufficient testing in order to preserve accuracy and privacy. That way,
it makes it highly suitable for advanced differential privacy applications and a robust
framework for future explorations in the field.

4.5 Experimental Design

4.5.1 Data Acquisition

The datasets are preprocessed, to be specific One Hot Encoding for categorical variables
is done for evaluation and not for training the arfpy models because that is already
handled internally in arfpy. Also I have manually ensured equal decimal digit across all
numerical features and correct data type for all features as well.

• Health Insurance Dataset for US [17]:

– Contains insurance charges for 1338 people along with their personal data
like Age, Body Mass Index (BMI), Sex, Smoker, Number of children, Region.

– It is a synthetic dataset based on US census data.

• UCI Adult Dataset [18]:

– The UCI Machine Learning Repository’s Adult Dataset contains 48,842 in-
stances with both continuous and categorical features, taken from the 1994
United States Census..

– This dataset includes sensitive and specific information about individuals such
as age, work class, education, marital status, occupation, race, gender, native
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country, and income, which is categorized as either greater than or less than
$50,000 per year.

– it is important to note that it is composed of real, anonymized data and
therefore is used in compliance with privacy regulations as given by the source.

• Healthcare Dataset [19]:

– Contains 55,500 rows of sensitive and specific information about the patients
including their age, blood type, medical condition, insurance provider, room
number, billing amount, and others.

– It is entirely synthetic implying it does not contain any real patient informa-
tion or violates any privacy regulations.

4.5.2 Metrics and Plots for Evaluation

Overview of the technical plots and metrics used for evaluation of original dataset, og
arfpy and dp arfpy generated datasets along with their importance.

• Density Plot: A graphical representation of the data distribution of the numeric
variables. It can be interpreted as a smoothed version of a histogram. This will
help us compare the distribution of the features visually.

• Principal Component Analysis (PCA) Plot: PCA is a dimensionality re-
duction technique employed to find out the direction in which the data varies the
most. This will help compare the variability and importance across the datasets
showing whether the utility is preserved. The first few principal components retain
most of the variation present in the original dataset. Thus doing the PCA of top
2 components.

• Correlation: It measures the extent to which two variables are linearly related
(strength and direction). This will help compare the change in relationship between
the datasets.

• Wasserstein Distance: It provides a way of measuring the difference between two
probability distributions. The approach is expressive in measuring the differences
in the distributions when considering how the synthetic data was manipulated in
relation to the original one.

• Chi-Square Test: An exclusive categorical variable test. To identify if there is an
association between the categorical variables. It checks for goodness of fit between
the observed data and the expected distribution or if the differences are present in
the observed and the expected frequencies between original and synthetic datasets.

• Root Mean Square Error (RMSE) and Mean Absolute Error (MAE):
It is a measure that checks if predictions are accurate. The RMSE calculates
the square root of the average of squared differences between predicted and actual
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values and takes more weight on larger errors, being sensitive to outliers. Averaging
absolute differences, MAE gives the average error. Since it is not so influenced by
outliers, this provides a rather direct measure of average error. RMSE is sensitive
to error sizes, whereas MAE gives a more reasonable and overall good accuracy of
the model. It also gives us a measurable estimate of differences in distributions
between the original and synthetic datasets.

• Classification Accuracy: It is a measure of the model’s accuracy, which has been
trained with original data and tested with synthetic data. It helps in understanding
whether the utility is preserved.

• Reconstruction Attack: An attack through which the dissimilarity between an
original dataset and a synthetic dataset is measured by how well the synthetic
data can reconstruct the original data. The k-NN algorithm evaluates how near
synthetic points are to the original points. First it initializes the k-NN model
to look for the three closest neighbors in the synthetic dataset for each point in
the original dataset. It then calculates distance between each of the original data
points and their nearest synthetic neighbors, averaging those distances together
in order to produce a measure of how well the synthetic data reconstructs the
original data. The mean distance is returned by the function, meaning the smaller
the value, the better the reconstruction attack is in simulating the original data
with synthetic data. This is a valuable measure used in assessing the privacy of
synthetically generated data.
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5 Results and Evaluation

. In this section, I present the results of my evaluation of the Differential Privacy (DP)
enhanced ARFPY model. I address my research questions through quantitative, quali-
tative, and visual analyses. Detailed comparisons among the real data, data generated
with the Original ARF, and data generated with the new DP-ARF are provided in or-
der to evaluate the ARF models. This comparison involves a number of metrics that
include density distributions, overlaps in PCA, Wasserstein distance, correlation matri-
ces, and classification accuracy. Moreover, the effectiveness of privacy preservation is
incorporated in the analysis with Reconstruction Attack, all of which is explained in
subsubsection 4.5.2.

5.1 Health Insurance Dataset

5.1.1 Epsilon = 0.5

age sex bmi children smoker region charges

19 female 27.90 0 yes southwest 16884.92
18 male 33.77 1 no southeast 1725.55
28 male 33.00 3 no southeast 4449.46
33 male 22.71 0 no northwest 21984.47
32 male 28.88 0 no northwest 3866.86

Table 1: Original Data for Insurance ϵ = 0.5

age sex bmi children smoker region charges

76 female 31.29 0 yes southwest 64002.06
62 female 22.88 0 no northeast 10853.21
58 male 34.43 0 no northwest 11382.47
55 female 20.14 0 no southwest 11566.45
28 male 32.92 1 no southwest 14846.36

Table 2: OG ARF Generated Data for Insurance ϵ = 0.5

age sex bmi children smoker region charges

25 female 41.02 1 yes southeast 41584.19
74 female 30.50 0 no southwest 10590.04
44 male 32.58 3 no northwest 7950.42
46 female 22.39 1 yes southwest 19380.03
55 male 24.46 0 yes southwest 12792.37

Table 3: DP-ARF Generated Data for Insurance ϵ = 0.5
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Figure 1: Density distribution for Insurance ϵ = 0.5

Figure 2: PCA analysis for Insurance ϵ = 0.5
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Features Original Data OG ARF Data DP ARF Data

Age vs BMI 0.1093 0.1193 0.1018
Age vs Children 0.0425 0.0171 0.0832
Age vs Charges 0.2990 0.3117 0.2404
BMI vs Children 0.0128 -0.0393 0.0064
BMI vs Charges 0.1983 0.1817 0.1843

Children vs Charges 0.0680 0.0527 0.0437

Table 4: Correlation Matrices for Insurance ϵ = 0.5

Feature OG ARF DP ARF

Age 0.7108 0.7519
BMI 0.1709 0.7577

Children 0.2324 0.2840
Charges 737.2693 1173.4129

Table 5: Wasserstein Distance for Insurance ϵ = 0.5

Feature OG ARF DP ARF

Sex 0.0120 0.0478
Smoker 0.1132 1.9177
Region 1.4885 4.0125

Table 6: Chi-Square Test for Insurance ϵ = 0.5

Feature OG ARF DP ARF

Age 19.8058 20.5487
BMI 8.7060 9.4203

Children 1.6591 1.6656
Charges 17254.7497 17888.7417

Table 7: RMSE for Insurance ϵ = 0.5

Feature OG ARF DP ARF

Age 16.2324 16.7773
BMI 6.7161 7.3835

Children 1.2294 1.2407
Charges 12686.0164 12687.9253

Table 8: MAE for Insurance ϵ = 0.5
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ARF Value

OG 0.9940
DP 0.9821

Table 9: Classification Accuracy for Insurance ϵ = 0.5

ARF Value

OG 1.1491
DP 1.1665

Table 10: Reconstruction Attack Error for Insurance ϵ = 0.5

5.1.2 Epsilon = 0.1

age sex bmi children smoker region charges

19 female 27.90 0 yes southwest 16884.92
18 male 33.77 1 no southeast 1725.55
28 male 33.00 3 no southeast 4449.46
33 male 22.71 0 no northwest 21984.47
32 male 28.88 0 no northwest 3866.86

Table 11: Original Data for Insurance ϵ = 0.1

age sex bmi children smoker region charges

28 female 34.72 1 no southeast 3525.54
19 male 15.38 0 no northeast 1552.01
48 female 26.94 0 no northwest 13151.98
19 female 29.46 0 no northwest 2164.71
52 female 38.00 1 no northwest 39109.23

Table 12: OG ARF Generated Data for Insurance ϵ = 0.1

age sex bmi children smoker region charges

31 male 33.68 0 no southwest 17180.43
152 female 40.28 0 no northwest 36628.09
47 female 33.47 4 no southwest 8072.56
-7 male 47.51 2 yes southwest 40062.53
33 female 34.41 2 no southeast 8511.86

Table 13: DP-ARF Generated Data for Insurance ϵ = 0.1
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Figure 3: Density distribution for Insurance ϵ = 0.1

Figure 4: PCA analysis for Insurance ϵ = 0.1
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Features Original Data OG ARF Data DP ARF Data

Age vs BMI 0.1093 0.1075 -0.0135
Age vs Children 0.0425 0.0516 0.0220
Age vs Charges 0.2990 0.2752 0.1215
BMI vs Children 0.0128 0.0765 -0.0110
BMI vs Charges 0.1983 0.1935 0.0784

Children vs Charges 0.0680 0.0898 0.0646

Table 14: Correlation Matrices for Insurance ϵ = 0.1

Feature OG ARF DP ARF

Age 0.7960 5.4372
BMI 0.1860 2.6262

Children 0.1771 0.5628
Charges 444.6989 3934.5369

Table 15: Wasserstein Distance for Insurance ϵ = 0.1

Feature OG ARF DP ARF

Sex 0.0030 1.7231
Smoker 1.9438 0.0410
Region 2.0303 2.1192

Table 16: Chi-Square Test for Insurance ϵ = 0.1

Feature OG ARF DP ARF

Age 19.6901 34.9413
BMI 8.6822 13.4745

Children 1.6532 3.3059
Charges 17012.1896 25427.7295

Table 17: RMSE for Insurance ϵ = 0.1

Feature OG ARF DP ARF

Age 16.2055 20.8318
BMI 7.1869 9.2910

Children 1.2773 1.6958
Charges 12064.6710 15174.2791

Table 18: MAE for Insurance ϵ = 0.1
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ARF Value

OG 0.9948
DP 0.9454

Table 19: Classification Accuracy for Insurance ϵ = 0.1

ARF Value

OG 1.1301
DP 1.2600

Table 20: Reconstruction Attack Error for Insurance ϵ = 0.1

5.1.3 Epsilon = 1.0

age sex bmi children smoker region charges

19 female 27.90 0 yes southwest 16884.92
18 male 33.77 1 no southeast 1725.55
28 male 33.00 3 no southeast 4449.46
33 male 22.71 0 no northwest 21984.47
32 male 28.88 0 no northwest 3866.86

Table 21: Original Data for Insurance ϵ = 1

age sex bmi children smoker region charges

51 female 40.59 1 no southeast 12974.91
33 female 21.02 0 no southwest 16722.54
27 female 27.85 0 yes southwest 47654.03
53 female 33.83 0 no southwest 11571.54
20 male 31.50 0 no southwest 1150.92

Table 22: OG ARF Generated Data for Insurance ϵ = 1

age sex bmi children smoker region charges

22 female 24.30 0 no southeast 2654.25
26 male 27.27 1 no southwest 3103.97
32 male 33.37 0 no northwest 13654.07
49 male 31.00 0 no southeast 20908.33
49 male 35.69 0 no southeast 15504.31

Table 23: DP-ARF Generated Data for Insurance ϵ = 1
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Figure 5: Density distribution for Insurance ϵ = 1

Figure 6: PCA analysis for Insurance ϵ = 1
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Features Original Data OG ARF Data DP ARF Data

Age vs BMI 0.1093 0.1136 0.1063
Age vs Children 0.0425 0.0671 0.0578
Age vs Charges 0.2990 0.2891 0.3368
BMI vs Children 0.0128 0.0323 -0.0047
BMI vs Charges 0.1983 0.1745 0.1376

Children vs Charges 0.0680 0.0672 0.0876

Table 24: Correlation Matrices for Insurance ϵ = 1

Feature OG ARF DP ARF

Age 0.9641 1.1121
BMI 0.2340 0.3356

Children 0.2556 0.2392
Charges 622.5091 757.9146

Table 25: Wasserstein Distance for Insurance ϵ = 1

Feature OG ARF DP ARF

Sex 0.0120 1.7231
Smoker 0.0742 5.4413
Region 2.4009 1.5549

Table 26: Chi-Square Test for Insurance ϵ = 1

Feature OG ARF DP ARF

Age 19.6970 20.3337
BMI 8.7164 8.9149

Children 1.6316 1.6430
Charges 16630.1894 17068.2742

Table 27: RMSE for Insurance ϵ = 1

Feature OG ARF DP ARF

Age 16.1913 17.0942
BMI 7.0242 7.1800

Children 1.2407 1.2287
Charges 12397.7754 12610.3587

Table 28: MAE for Insurance ϵ = 1
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ARF Value

OG 0.9955
DP 0.9851

Table 29: Classification Accuracy for Insurance ϵ = 1

ARF Mean Distance

OG 1.1295
DP 1.1449

Table 30: Reconstruction Attack Error for Insurance ϵ = 1

Comparative density plots for characteristics like age, BMI, children, and charges at
different DP settings (epsilon values 0.1, 0.5, and 1) are shown in Figure 1, Figure 3,
and Figure 5 respectively. Overall, The plots demonstrates that the DP-ARF data
generally follows the distribution of the original and non-private ARF (OG ARF) data.
However, as expected with higher privacy (lower epsilon values) we get more distortion
and deviation.

The graphical representation of PCA in Figure 2, Figure 4, and Figure 6 showed a
pronounced overlap, implying that the principal components of synthetic data preserve
the relationships and capture the important variations of variables. Although there are
some increased noisy points in variance due to noise addition, especially noticeable at
lower epsilon values.

Evaluation metrics such as Wasserstein distance, chi-square tests, RMSE, and MAE
shows the differences between the distributions of the original and synthetic datasets.
Lower values of epsilon showed increase in differences and error metrics, again its due
to the trade-off between privacy and data utility.

Further validations on the utility of the synthetic data were made through classifica-
tion tasks. Models performance was a little worse for the DP-ARF models compared to
OG ARF in Table 9 and Table 29, but the difference is large especially at stricter pri-
vacy levels as shown in Table 19. This is because of noise negatively impacting predictive
quality.

Finally, the reconstruction attack scenario tested how well an adversary could re-
construct original entries from synthetic data. The results in Table 10, Table 20 and
Table 30 show an increase in mean distances. thus indicating effective increase in privacy
levels.

Overall, the results for the health insurance dataset shows the effectiveness of DP-
ARF in producing usable synthetic data with good privacy guarantees, The best trade-off
between utility and privacy was found at epsilon 0.5.
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5.2 Healthcare Dataset

5.2.1 Epsilon = 0.5

Name Age Gender Blood Type Medical Condition

Bobby Jackson 30 Male B- Cancer
Leslie Terry 62 Male A+ Obesity
Danny Smith 76 Female A- Obesity
Andrew Watts 28 Female O+ Diabetes
Adrienne Bell 43 Female AB+ Cancer

Table 31: Original Healthcare Data Part 1 ϵ = 0.5

Billing Amount Room Number Medication Test Results

18856.28 328 Paracetamol Normal
33643.33 265 Ibuprofen Inconclusive
27955.10 205 Aspirin Normal
37909.78 450 Ibuprofen Abnormal
14238.32 458 Penicillin Abnormal

Table 32: Original Healthcare Data Part 2 ϵ = 0.5

Name Age Gender Blood Type Medical Condition

Sarah Garcia 46 Female O- Diabetes
Mario Moreno 44 Male O+ Diabetes
David Sweeney 52 Male B+ Arthritis
Donald Morrison 65 Male B+ Diabetes

Daniel Blankenship 81 Male A+ Asthma

Table 33: OG ARF Generated Healthcare Data Part 1 ϵ = 0.5

Billing Amount Room Number Medication Test Results

29269.15 230 Paracetamol Inconclusive
36451.28 225 Penicillin Inconclusive
13229.58 196 Lipitor Normal
2490.91 274 Aspirin Inconclusive
39561.80 200 Paracetamol Inconclusive

Table 34: OG ARF Generated Healthcare Data Part 2 ϵ = 0.5
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Name Age Gender Blood Type Medical Condition

Carolyn Rowe 76 Male B- Diabetes
Kevin Hendrix 54 Female O+ Asthma
Ryan Taylor 64 Female A- Cancer
Ashley Walter 22 Female AB- Obesity
John Thompson 29 Male O- Arthritis

Table 35: DP ARF Generated Healthcare Data Part 1 ϵ = 0.5

Billing Amount Room Number Medication Test Results

50929.46 303 Aspirin Abnormal
9633.21 247 Paracetamol Inconclusive
21886.56 186 Paracetamol Abnormal
8988.97 464 Aspirin Normal
14689.24 192 Ibuprofen Normal

Table 36: DP ARF Generated Healthcare Data Part 2 ϵ = 0.5

Figure 7: Density distribution for Healthcare ϵ = 0.5
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Figure 8: PCA analysis for Healthcare ϵ = 0.5

Features Original Data OG ARF Data DP ARF Data

Age vs BMI 0.1093 0.1193 0.1018
Age vs Children 0.0425 0.0171 0.0832
Age vs Charges 0.2990 0.3117 0.2404
BMI vs Children 0.0128 -0.0393 0.0064
BMI vs Charges 0.1983 0.1817 0.1843

Children vs Charges 0.0680 0.0527 0.0437

Table 37: Correlation Matrices for Healthcare ϵ = 0.5

Feature OG ARF DP ARF

Age 1.2378 1.4585
Billing Amount 1050.3541 1251.9999
Room Number 5.7045 7.1170

Table 38: Wasserstein Distance for Healthcare ϵ = 0.5

Feature OG ARF DP ARF

Sex 1.3330 2.0829
Smoker 4.1318 6.8886
Region 9.6889 5.0011

Table 39: Chi-Square Test for Healthcare ϵ = 0.5
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Feature OG ARF DP ARF

Age 27.5775 29.2997
Billing Amount 19591.1242 20457.3572
Room Number 161.5081 168.8140

Table 40: RMSE for Healthcare ϵ = 0.5

Feature OG ARF DP ARF

Age 22.4694 23.3947
Billing Amount 16048.8418 16459.2068
Room Number 131.3888 135.4193

Table 41: MAE for Healthcare ϵ = 0.5

ARF Value

OG 0.8256
DP 0.8242

Table 42: Classification Accuracy for Healthcare ϵ = 0.5

ARF Value

OG 0.4409
DP 0.4673

Table 43: Reconstruction Attack Error for Healthcare ϵ = 0.5

5.2.2 Epsilon = 0.1

Name Age Gender Blood Type Medical Condition

Bobby Jackson 30 Male B- Cancer
Leslie Terry 62 Male A+ Obesity
Danny Smith 76 Female A- Obesity
Andrew Watts 28 Female O+ Diabetes
Adrienne Bell 43 Female AB+ Cancer

Table 44: Original Healthcare Data Part 1 ϵ = 0.1
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Billing Amount Room Number Medication Test Results

18856.28 328 Paracetamol Normal
33643.33 265 Ibuprofen Inconclusive
27955.10 205 Aspirin Normal
37909.78 450 Ibuprofen Abnormal
14238.32 458 Penicillin Abnormal

Table 45: Original Healthcare Data Part 2 ϵ = 0.1

Name Age Gender Blood Type Medical Condition

Amanda Patel 51 Male A+ Obesity
Karen Thomas 65 Female B- Diabetes
Faith Mathis 83 Female O+ Diabetes

Jeffery Johnson 27 Male B- Asthma
Keith Wiley 58 Female A+ Arthritis

Table 46: OG ARF Generated Healthcare Data Part 1 ϵ = 0.1

Billing Amount Room Number Medication Test Results

13133.91 419 Ibuprofen Abnormal
36187.58 407 Paracetamol Abnormal
37165.47 380 Aspirin Inconclusive
28384.04 149 Penicillin Inconclusive
19314.20 496 Paracetamol Normal

Table 47: OG ARF Generated Healthcare Data Part 2 ϵ = 0.1

Name Age Gender Blood Type Medical Condition

Holly Dunn 73 Female B- Obesity
Keith Wheeler 67 Female AB- Asthma

Amanda Richmond 21 Male AB- Arthritis
Marissa Guzman 64 Female AB+ Diabetes
Matthew Cooley 27 Male AB- Asthma

Table 48: DP ARF Generated Healthcare Data Part 1 ϵ = 0.1
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Billing Amount Room Number Medication Test Results

14524.34 77 Penicillin Abnormal
18283.76 1165 Ibuprofen Inconclusive
15898.70 351 Lipitor Abnormal
27276.49 147 Lipitor Inconclusive
46902.64 485 Paracetamol Inconclusive

Table 49: DP ARF Generated Healthcare Data Part 2 ϵ = 0.1

Figure 9: Density distribution for Healthcare ϵ = 0.1
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Figure 10: PCA analysis for Healthcare ϵ = 0.1

Features Original Data OG ARF Data DP ARF Data

Age vs Billing Amount -0.0038 -0.0127 -0.0030
Age vs Room Number -0.0007 0.0019 0.0059

Billing Amount vs Room Number -0.0029 0.0004 0.0158

Table 50: Correlation Matrices for Healthcare ϵ = 0.1

Feature OG ARF DP ARF

Age 1.1992 8.2768
Billing Amount 1097.5450 5858.5344
Room Number 7.3377 46.9655

Table 51: Wasserstein Distance for Healthcare ϵ = 0.1

Feature OG ARF DP ARF

Gender 0.0348 0.1395
Blood Type 5.3213 5.3272

Medical Condition 4.7474 5.7709
Admission Type 5.1291 11.7552

Medication 4.4191 1.9580
Test Results 4.4448 1.6439

Table 52: Chi-Square Tests for Healthcare ϵ = 0.1
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Feature OG ARF DP ARF

Age 27.5755 49.5280
Billing Amount 19592.9018 32565.8476
Room Number 160.7341 280.8843

Table 53: RMSE for Healthcare ϵ = 0.1

Feature OG ARF DP ARF

Age 22.4236 29.7468
Billing Amount 15965.1953 20214.3915
Room Number 130.8158 171.6214

Table 54: MAE for Healthcare ϵ = 0.1

ARF Value

OG 0.8269
DP 0.8262

Table 55: Classification Accuracy for Healthcare ϵ = 0.1

ARF Value

OG 0.4476
DP 0.5937

Table 56: Reconstruction Attack Error for Healthcare ϵ = 0.1

Similar to the Insurance Dataset in subsection 5.1 we can see some of the realistic
samples generated data by DP-ARF shown in Table 35, Table 36 and OG ARF shown
in Table 33, Table 34. And after plotting density distributions for epsilon values of 0.1
Figure 9, 0.5 Figure 7 we can see how synthetic data aligns with the original dataset’s
distributions for key attributes like Age, Room Number, and Billing Amount. DP-ARF
data trends very similarly to that of the original and OG ARF data in most cases
and is often with remarkable fidelity even under different privacy settings. Noticeable
distortions were introduced by lower epsilon values as the noise level increased, more
evident at epsilon = 0.1, which, despite the noise, was determined to be the best trade-
off between privacy and utility.

Principal component analysis in Figure 10 and Figure 10 demonstrates a good overlap
in data points for the original, OG ARF, and DP-ARF datasets, thus showing that
synthetic data holds essential relationships among variables.

The computed statistical metrics, which include Wasserstein distance, chi-square
tests, Root Mean Square Error, and Mean Absolute Error, shown in their respective
tables demonstrate how well synthetic data mimic the original distributions.
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Results of classification task in Table 55 and Table 42 indicates that models evaluated
using DP-ARF data for the healthcare dataset are as effective as those trained with OG
ARF data even though there is added noise it does not deteriorate the predictive power
of the models too much. Thus, retaining good accuracy values in compensation for
significant increase in privacy.

Reconstruction attacks demonstrate a higher mean distance error with more stringent
privacy settings shown in Table 56 with lower epsilon value of 0.1 illustrating the overall
protection against possible data breaches.

In summary, the results on the healthcare dataset underline that DP-ARF can pro-
duce effective synthetic datasets that retain most of the utility while guaranteeing signif-
icant privacy levels. For the healthcare dataset the chosen epsilon value of 0.1 reflects an
optimal trade-off that will maximize privacy while keeping reasonable utility. Additional
results if necessary for epsilon value of 1 are shown in Appendix section A.

5.3 Adult Dataset

5.3.1 Epsilon = 0.5

age workclass fnlwgt

39 State-gov 77516
50 Self-emp-not-inc 83311
38 Private 215646
53 Private 234721
28 Private 338409

Table 57: Original Data Sample Part 1 for Adult ϵ = 0.5

education hours per week native country income

Bachelors 40 United-States ≤ 50K
Bachelors 13 United-States ≤ 50K
HS-grad 40 United-States ≤ 50K
11th 40 United-States ≤ 50K

Bachelors 40 Cuba ≤ 50K

Table 58: Original Data Sample Part 2 for Adult ϵ = 0.5
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age workclass fnlwgt

44 Federal-gov 206408
16 Private 278898
53 Private 372365
46 Private 184376
37 Private 330176

Table 59: OG ARF Generated Adult Data Part 1 ϵ = 0.5

education hours per week native country income

Masters 42 United-States > 50K
HS-grad 18 United-States ≤ 50K
PhD 48 United-States > 50K

Bachelors 37 United-States ≤ 50K
HS-grad 64 El-Salvador ≤ 50K

Table 60: OG ARF Generated Adult Data Part 2 ϵ = 0.5

age workclass fnlwgt

26 Private 248347
33 Self-emp-inc 31230
53 Private 340454
38 Private 29693
109 Private 122824

Table 61: DP ARF Generated Adult Data Part 1 ϵ = 0.5

education hours per week native country income

Assoc 48 Mexico ≤ 50K
Masters 42 England ≤ 50K
Bachelors 20 Germany > 50K

Some-college 30 Philippines ≤ 50K
PhD 42 United-States > 50K

Table 62: DP ARF Generated Adult Data Part 2 ϵ = 0.5
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Figure 11: Density distribution for Adult Part 1 ϵ = 0.5

Figure 12: Density distribution for Adult Part 2 ϵ = 0.5
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Figure 13: PCA analysis for Adult ϵ = 0.5

Features Original Data OG ARF Data DP ARF Data

Age 1.0000 1.0000 1.0000
Fnlwgt -0.0766 -0.0748 -0.0573

Education Num 0.0365 0.0228 0.0435
Capital Gain 0.0776 0.0885 0.0853
Capital Loss 0.0577 0.0746 0.0598

Hours per Week 0.0687 0.0898 0.0723

Table 63: Correlation Matrices for Adult ϵ = 0.5

Feature OG ARF DP ARF

Age 0.2970 0.5356
Fnlwgt 4836.6663 9087.6845

Education Num 0.3181 0.5221
Capital Gain 730.0260 2015.6014
Capital Loss 79.5174 170.4623

Hours per Week 1.5451 2.2142

Table 64: Wasserstein Distances for Adult ϵ = 0.5
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Feature OG ARF DP ARF

Workclass 3.2510 6493.7061
Education 15.9293 1736.4526

Marital Status 1.6512 1761.5229
Occupation 7.3814 1180.0485
Relationship 2.0247 1395.9324

Race 2.1653 3478.9120
Sex 0.3323 78.3628

Native Country inf 4747.7375
Income 0.7360 465.4520

Table 65: Chi-Square Tests for Adult ϵ = 0.5

Feature OG ARF DP ARF

Age 19.2967 20.1172
Fnlwgt 150145.8945 157823.5666

Education Num 3.6681 3.7928
Capital Gain 10679.0877 11814.0060
Capital Loss 555.6207 589.8089

Hours per Week 17.6909 18.8225

Table 66: RMSE for Adult ϵ = 0.5

Feature OG ARF DP ARF

Age 15.4469 15.8346
Fnlwgt 113682.3628 117208.1162

Education Num 2.7879 2.9211
Capital Gain 2610.5686 3796.7102
Capital Loss 217.3906 309.4794

Hours per Week 13.0037 13.6893

Table 67: MAE for Adult ϵ = 0.5

ARF Value

OG 0.8364
DP 0.7312

Table 68: Classification Accuracy for Adult ϵ = 0.5
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ARF Value

OG 239.2654
DP 268.4633

Table 69: Reconstruction Attack Error for Adult ϵ = 0.5

For the adult dataset the balanced trade-off was found at epsilon 0.5 and hence its
displayed above and the other results for epsilon 0.1 and 1 if necessary are displayed in
the the Appendix section A.

The density plots shown in Figure 11 and Figure 12 show that it follows the original
data distribution very closely for most of the features on the Adult dataset except age
and capital loss though its not that deviated from the original. A lower epsilon would
provide a higher level of privacy but starts diverging more from the original distribution.

Principal Component Analysis (PCA) performed on the datasets shown in Figure 13
at an epsilon of 0.5 expresses a good preservation of relationships between the variables.

Quantitative measures, such as Wasserstein distance, chi-square tests, and RMSE,
show increasing errors and differences with increasing privacy. Also the model’s perfor-
mance, measured in terms of classification accuracy, was best for an epsilon of 0.5 in
terms of difference from the OG arf shown in Table 68 thus confirming that this value
offers a practically good trade off between privacy and utility.

Reconstruction attack error was good for all the values in the dp arf but the best
one having a good trade off with utility was at 0.5 Table 69.

Overall, the DP-ARF was successful in generating realistic dataset from all the
datasets (Insurance, Healthcare, Adult) all while preserving data utility and offering
strong differential privacy guarantees.
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6 Legal, Social, Ethical and Professional Issues

This project has adhered to the research and practices that match the ethical, legal,
and professional standards set out by the British Computer Society (BCS) and The In-
stitution of Engineering and Technology (IET). Public well being was at the forefront
in this project as its main aim is to protect people’s privacy through the use of differ-
ential privacy techniques. The methods outlined in the project support the rights and
confidentiality of people represented within our datasets like the Adult dataset [18].

I have made a point of emphasizing the integrity regarding the possibilities and
constraints that my algorithms can have reflecting upon my high standards for both
honesty and responsibility.

This project fully supports these codes outlined above while dealing with techno-
logical innovation and ethical accountability. I meticulously reviewed each dataset to
assure conformity with legal and ethical norms, as well as ensuring that my work was
based on the principles of data protection and intellectual property. The project further
mitigated risks of data security by using synthetic datasets in practice and encouraging
trust in AI technologies. This thesis is not just a requirement for academic fulfillment
but also speaks towards good use of technology in sensitive environments. With such
work, I strived to set an example of how high-class data analysis should be balanced
with strong ethical practices and data privacy to promote technology responsibly.
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7 Conclusion

This research primarily looked into questions related to the integration of differential
privacy into adversarial random forests in order to achieve data generation that is pri-
vatized. The research was centered on understanding the trade-offs of privacy against
data utility, the challenges of operationalizing differential privacy in complex machine
learning models.

The results demonstrated in section 5 show that DP can be embedded into ARF
and will appropriately generate privacy protected synthetic data that strike a balance
between privacy and utility. The DP-ARF model includes noise in the process of data
generation to ensure privacy. However, this is sometimes at the expense of the statisti-
cal properties of the data. Comparative analyses with the OG ARF model showed that,
while DP-ARF maintained similar trends in the distributions of generated data, pri-
vacy was significantly increased which made a slight degradation in utility performance
metrics acceptable as outlined by the principles of differential privacy.

Concretely, this work contributes to the field of differential privacy and generative
modeling by successfully implementing the differential privacy in the adversarial random
forest framework [12]. This research has shed light on complexities and challenges in-
volved in the integration of Differential Privacy and advanced machine learning models
and has highlighted the necessary trade-offs in all these cases. The work is worth the
effort since it extends the current understanding of privacy preserving synthetic data
generation and constitutes the basis for future research in this area of study.

7.1 Future Work

Management of Privacy Budget

Construction of methods to track and optimize privacy budget consumption in future
works can lead to sustainable and controlled usage of privacy resources. This would
also lead to protection against the adaptive query attacks which is no explored in this
work because the framework required to implement the adaptive queries pose significant
complexity and manual intervention. Since, through the adaptive query attack, an
attacker can exploit loopholes that occur during the query production process, thereby
breaching the privacy of the user. Therefore, developing the DP-ARF model so as to
protect it from such an attack would make it more robust and more applicable for real
world scenario.

Automation of Privacy Parameters

The above privacy budget management can be further streamlined by automating the
selection and tuning of privacy parameters. Thus, One way to make the model efficient
and easy to use is to develop algorithms through which privacy budgets can be set in a
more dynamic way according to data sensitivity and the context of their use.
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Extension to Other Machine Learning Models

The extension of differential privacy techniques to other tree based machine learning
models, apart from random forests, such as mentioned in section 3 can expand the
applicability area of the privacy preserving data generation methods.

7.2 Lessons Learned

• Importance of Prioritizing the Best Approach:

– One key lesson learned was the importance of prioritizing the best approach
early on. Given the multitude of potential methods, it is essential to identify
and focus on the most promising one to maximize efficiency and effectiveness.

• Finding Alternatives Under Constraints:

– When implementation fails due to decisions taken during previous design
stages, alternative approaches must be investigated quickly, this becomes very
important when there are time constraints. The design of a project should be
kept in mind from the beginning to strike a balance between troubleshooting
to resolve current problems and moving forward to seek new techniques.

• Project Structure:

– Having a good project structure and established goals from the start makes
tracking progress simpler and prevents those useless changes. Engagement
with supervisor and their guidance can further refine your approach.

Overall, The project outlines a successful integration of differential privacy into the ARF.
We have also seen that many challenges still remain, particularly in balancing privacy and
utility. However, the research and methodologies in this paper provide a solid grounding
for future advancements. Continued advancements in this field will further enhance the
capabilities and applications of privacy preserving generative modeling techniques.
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A Appendix

Appendix A: Source Code

Appendix A.1: DP-ARF Implementation Code

1 import numpy as np

2 import pandas as pd

3 from sklearn.ensemble import RandomForestClassifier

4 from sklearn.ensemble._forest import _generate_unsampled_indices

5 import scipy

6 from arfpy import utils

7

8 class arf:

9 """ Implements Adversarial Random Forests (ARF) in python

10 Usage:

11 1. fit ARF model with arf()

12 2. estimate density with arf.forde ()

13 3. generate data with arf.forge ().

14

15 :param x: Input data.

16 :type x: pandas.Dataframe

17 :param num_trees: Number of trees to grow in each forest , defaults

to 30

18 :type num_trees: int , optional

19 :param delta: Tolerance parameter. Algorithm converges when OOB

accuracy is < 0.5 + ‘delta ‘, defaults to 0

20 :type delta: float , optional

21 :param max_iters: Maximum iterations for the adversarial loop ,

defaults to 10

22 :type max_iters: int , optional

23 :param early_stop: Terminate loop if performance fails to improve

from one round to the next?, defaults to True

24 :type early_stop: bool , optional

25 :param verbose: Print discriminator accuracy after each round?,

defaults to True

26 :type verbose: bool , optional

27 :param min_node_size: minimum number of samples in terminal node ,

defaults to 5

28 :type min_node_size: int

29 """

30

31 def __init__(self , x, num_trees =30, delta=0, max_iters =10, early_stop

=True , verbose=True , min_node_size =5, epsilon =1.0, ** kwargs):

32 # Assertions to ensure correct input types and values

33 assert isinstance(x, pd.core.frame.DataFrame), f"expected pandas

DataFrame as input , got:{type(x)}"

34 assert len(set(list(x))) == x.shape [1], f"every column must have

a unique column name"

35 assert max_iters >= 0, f"negative number of iterations is not

allowed: parameter max_iters must be >= 0"

36 assert min_node_size > 0, f"minimum number of samples in terminal

nodes (parameter min_node_size) must be greater than zero"
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37 assert num_trees > 0, f"number of trees in the random forest (

parameter num_trees) must be greater than zero"

38 assert 0 <= delta <= 0.5, f"parameter delta must be in range 0 <=

delta <= 0.5"

39

40 # Initialize values

41 x_real = x.copy()

42 self.p = x_real.shape [1]

43 self.orig_colnames = list(x_real)

44 self.num_trees = num_trees

45

46 self.epsilon = epsilon # Privacy budget added for dp_arf by

Harsh Merchant

47

48 # Find object columns and convert to category

49 self.object_cols = x_real.dtypes == "object"

50 for col in list(x_real):

51 if self.object_cols[col]:

52 x_real[col] = x_real[col]. astype(’category ’)

53

54 # Find factor columns

55 self.factor_cols = x_real.dtypes == "category"

56

57 # Save factor levels

58 self.levels = {}

59 for col in list(x_real):

60 if self.factor_cols[col]:

61 self.levels[col] = x_real[col].cat.categories

62

63 # Recode factors to integers

64 for col in list(x_real):

65 if self.factor_cols[col]:

66 x_real[col] = x_real[col].cat.codes

67

68 # If no synthetic data provided , sample from marginals

69 x_synth = x_real.apply(lambda x: x.sample(frac =1).values)

70

71 # Merge real and synthetic data

72 x = pd.concat ([x_real , x_synth ])

73 y = np.concatenate ([np.zeros(x_real.shape [0]), np.ones(x_real.

shape [0])])

74 # real observations = 0, synthetic observations = 1

75

76 # Pass on x_real

77 self.x_real = x_real

78

79 # Fit initial RF model

80 clf_0 = RandomForestClassifier(oob_score=True , n_estimators=self.

num_trees , min_samples_leaf=min_node_size , ** kwargs)

81 clf_0.fit(x, y)

82

83 iters = 0

84
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85 acc_0 = clf_0.oob_score_ # is accuracy directly

86 acc = [acc_0]

87

88 if verbose:

89 print(f’Initial accuracy is {acc_0}’)

90

91 if acc_0 > 0.5 + delta and iters < max_iters:

92 converged = False

93 while not converged: # Start adversarial loop

94 # Get nodeIDs

95 nodeIDs = clf_0.apply(self.x_real) # dimension [

terminalnode , tree]

96

97 # Add observation ID to x_real

98 x_real_obs = x_real.copy()

99 x_real_obs[’obs’] = range(0, x_real.shape [0])

100

101 # Add observation ID to nodeIDs

102 nodeIDs_pd = pd.DataFrame(nodeIDs)

103 tmp = nodeIDs_pd.copy()

104 tmp[’obs’] = range(0, x_real.shape [0])

105 tmp = tmp.melt(id_vars =[’obs’], value_name="leaf",

var_name="tree")

106

107 # Match real data to trees and leafs (node id for tree)

108 x_real_obs = pd.merge(left=x_real_obs , right=tmp , on=[’

obs’], sort=False)

109 x_real_obs.drop(’obs’, axis=1, inplace=True)

110

111 # Sample leafs

112 tmp.drop("obs", axis=1, inplace=True)

113 tmp = tmp.sample(x_real.shape[0], axis=0, replace=True)

114 tmp = pd.Series(tmp.value_counts(sort=False), name=’cnt’)

.reset_index ()

115 draw_from = pd.merge(left=tmp , right=x_real_obs , on=[’

tree’, ’leaf’], sort=False)

116

117 # Sample synthetic data from leaf

118 grpd = draw_from.groupby ([’tree’, ’leaf’])

119 x_synth = [grpd.get_group(ind).apply(lambda x: x.sample(n

=grpd.get_group(ind)[’cnt’].iloc[0], replace=True).values) for ind in

grpd.indices]

120 x_synth = pd.concat(x_synth).drop([’cnt’, ’tree’, ’leaf’

], axis =1)

121

122 # Delete unnecessary objects

123 del(nodeIDs , nodeIDs_pd , tmp , x_real_obs , draw_from)

124

125 # Merge real and synthetic data

126 x = pd.concat ([x_real , x_synth ])

127 y = np.concatenate ([np.zeros(x_real.shape [0]), np.ones(

x_real.shape [0])])

128



56

129 # Discriminator

130 clf_1 = RandomForestClassifier(oob_score=True ,

n_estimators=self.num_trees , min_samples_leaf=min_node_size , ** kwargs)

131 clf_1.fit(x, y)

132

133 # Update iters and check for convergence

134 acc_1 = clf_1.oob_score_

135

136 acc.append(acc_1)

137

138 iters += 1

139 plateau = True if early_stop and acc[iters] > acc[iters -

1] else False

140 if verbose:

141 print(f"Iteration number {iters} reached accuracy of

{acc_1 }.")

142 if acc_1 <= 0.5 + delta or iters >= max_iters or plateau:

143 converged = True

144 else:

145 clf_0 = clf_1

146 self.clf = clf_0

147 self.acc = acc

148

149 # Pruning

150 pred = self.clf.apply(self.x_real)

151 for tree_num in range(0, self.num_trees):

152 tree = self.clf.estimators_[tree_num]

153 left = tree.tree_.children_left

154 right = tree.tree_.children_right

155 leaves = np.where(left < 0)[0]

156

157 # Get leaves that are too small

158 unique , counts = np.unique(pred[:, tree_num], return_counts=

True)

159 to_prune = unique[counts < min_node_size]

160

161 # Also add leaves with 0 obs.

162 to_prune = np.concatenate ([to_prune , np.setdiff1d(leaves ,

unique)])

163

164 while len(to_prune) > 0:

165 for tp in to_prune:

166 # Find parent

167 parent = np.where(left == tp)[0]

168 if len(parent) > 0:

169 # Left child

170 left[parent] = right[parent]

171 else:

172 # Right child

173 parent = np.where(right == tp)[0]

174 right[parent] = left[parent]

175 # Prune again if child was pruned

176 to_prune = np.where(np.in1d(left , to_prune))[0]
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177

178 def forde(self , dist="truncnorm", oob=False , alpha =0):

179 """ This part is for density estimation (FORDE)

180

181 :param dist: Distribution to use for density estimation of

continuous features. Distributions implemented so far: "truncnorm",

defaults to "truncnorm"

182 :type dist: str , optional

183 :param oob: Only use out -of -bag samples for parameter estimation?

If ‘True ‘, ‘x‘ must be the same dataset used to train ‘arf ‘, defaults

to False

184 :type oob: bool , optional

185 :param alpha: Optional pseudocount for Laplace smoothing of

categorical features. This avoids zero -mass points when test data fall

outside the support of training data. Effectively parametrizes a flat

Dirichlet prior on multinomial likelihoods , defaults to 0

186 :type alpha: float , optional

187 :return: Return parameters for the estimated density.

188 :rtype: dict

189 """

190

191 self.dist = dist

192 self.oob = oob

193 self.alpha = alpha

194

195 # Get terminal nodes for all observations

196 pred = self.clf.apply(self.x_real)

197

198 # If OOB , use only OOB trees

199 if self.oob:

200 for tree in range(self.num_trees):

201 idx_oob = np.isin(range(self.x_real.shape [0]),

_generate_unsampled_indices(self.clf.estimators_[tree]. random_state ,

self.x_real.shape [0]))

202 pred[np.invert(idx_oob), tree] = -1

203

204 # Compute leaf bounds and coverage

205 bnds = pd.concat ([utils.bnd_fun(tree=j, p=self.p, forest=self.clf

, feature_names=self.orig_colnames) for j in range(self.num_trees)])

206 bnds[’f_idx ’] = bnds.groupby ([’tree’, ’leaf’]).ngroup ()

207

208 bnds_2 = pd.DataFrame ()

209 for t in range(self.num_trees):

210 unique , freq = np.unique(pred[:, t], return_counts=True)

211 vv = pd.concat ([pd.Series(unique , name=’leaf’), pd.Series(

freq/pred.shape [0], name=’cvg’)], axis =1)

212 zz = bnds[bnds[’tree’] == t]

213 bnds_2 = pd.concat ([bnds_2 , pd.merge(left=vv, right=zz, on=[’

leaf’])])

214 bnds = bnds_2

215 del(bnds_2)

216

217 # Set coverage for nodes with single observations to zero
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218 if np.invert(self.factor_cols).any():

219 bnds.loc[bnds[’cvg’] == 1 / pred.shape [0], ’cvg’] = 0

220

221 # No parameters to learn for zero coverage leaves - drop zero

coverage nodes

222 bnds = bnds[bnds[’cvg’] > 0]

223

224 # Rename leafs to nodeids

225 bnds.rename(columns ={’leaf’: ’nodeid ’}, inplace=True)

226

227 # Save bounds to later use coverage for drawing new samples

228 self.bnds = bnds

229 # Fit continuous distribution in all terminal nodes

230 self.params = pd.DataFrame ()

231 if np.invert(self.factor_cols).any():

232 for tree in range(self.num_trees):

233 dt = self.x_real.loc[:, np.invert(self.factor_cols)].copy

()

234 dt["tree"] = tree

235 dt["nodeid"] = pred[:, tree]

236 # Merge bounds and make it long format

237 long = pd.merge(right=bnds[[’tree’, ’nodeid ’, ’variable ’,

’min’, ’max’, ’f_idx ’]], left=pd.melt(dt[dt["nodeid"] >= 0], id_vars

=["tree", "nodeid"]), on=[’tree’, ’nodeid ’, ’variable ’], how=’left’)

238 # Get distribution parameters

239 if self.dist == "truncnorm":

240 # Calculate sensitivity and add noise to continous

variables for dp_arf by Harsh Merchant

241 observed_min = long.groupby ([’tree’, ’nodeid ’, ’

variable ’])[’value ’].min().reset_index ()

242 observed_max = long.groupby ([’tree’, ’nodeid ’, ’

variable ’])[’value ’].max().reset_index ()

243 sensitivity = (observed_max[’value ’] - observed_min[’

value’]).abs() / long.groupby ([’tree’, ’nodeid ’, ’variable ’])[’value’

].size().reset_index(drop=True)

244 sensitivity.replace(0, 1e-6, inplace=True) # Avoid

zero sensitivity

245

246 res = long.groupby ([’tree’, "nodeid", "variable"],

as_index=False).agg(mean=("value", "mean"), sd=("value", "std"), min=(

"min", "min"), max=("max", "max"))

247

248 # Add Laplace noise for differential privacy

249 scale = sensitivity / self.epsilon # Scale of

Laplace noise

250 mean_noise = np.random.laplace(0, scale , size=res["

mean"].shape)

251

252 res["mean"] += mean_noise # Adding noise to mean

253

254 # Recalculate standard deviation based on new noisy

mean

255 for idx , row in res.iterrows ():
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256 variable = row["variable"]

257 tree = row["tree"]

258 nodeid = row["nodeid"]

259 group = long[(long["variable"] == variable) & (

long["tree"] == tree) & (long["nodeid"] == nodeid)]

260 noisy_mean = row["mean"]

261 recalculated_sd = np.sqrt(np.mean(( group["value"]

- noisy_mean)**2))

262 res.at[idx , "sd"] = recalculated_sd

263 # Calculate sensitivity for dp_arf by Harsh Merchant

264

265 else:

266 raise ValueError(’unknown distribution , make sure to

enter a valid value for dist’)

267 self.params = pd.concat ([self.params , res])

268

269 # Get class probabilities in all terminal nodes

270 self.class_probs = pd.DataFrame ()

271 if self.factor_cols.any():

272 for tree in range(self.num_trees):

273 dt = self.x_real.loc[:, self.factor_cols ].copy()

274 dt["tree"] = tree

275 dt["nodeid"] = pred[:, tree]

276 dt = pd.melt(dt[dt["nodeid"] >= 0], id_vars =["tree", "

nodeid"])

277 long = pd.merge(left=dt, right=bnds , on=[’tree’, ’nodeid ’

, ’variable ’])

278 long[’count_var ’] = long.groupby ([’tree’, ’nodeid ’, ’

variable ’])[’variable ’]. transform(’count ’)

279 long[’count_var_val ’] = long.groupby ([’tree’, ’nodeid ’, ’

variable ’, ’value ’])[’variable ’]. transform(’count ’)

280 long.drop_duplicates(inplace=True)

281 if self.alpha == 0:

282

283 # Calculate initial probabilities

284 long[’prob’] = long[’count_var_val ’] / long[’

count_var ’]

285

286 # Changes for dp_arf by Harsh Merchant

287

288 # Use these initial probabilities as the utility

scores

289 scores = long[’prob’]

290

291 scale = 1 / self.epsilon # Sensitivity is 1 for

counting queries

292

293 # Apply the exponential mechanism

294 exp_noise = np.exp(self.epsilon * scores / 2)

295

296 long[’prob’] = exp_noise # Properly scaled

297

298 # Normalize within groups to form a valid probability
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distribution

299 long[’prob’] /= long.groupby ([’tree’, ’nodeid ’, ’

variable ’])[’prob’]. transform(’sum’)

300

301 # Changes for dp_arf by Harsh Merchant

302

303 else:

304 long[’k’] = long.groupby ([’variable ’])[’value ’].

transform(’nunique ’)

305 long.loc[long[’min’] == float(’-inf’), ’min’] = 0.5 -

1

306 long.loc[long[’max’] == float(’inf’), ’max’] = long[’

k’] + 0.5 - 1

307 long.loc[round(long[’min’] % 1, 2) != 0.5, ’min’] =

long[’min’] - 0.5

308 long.loc[round(long[’max’] % 1, 2) != 0.5, ’max’] =

long[’max’] + 0.5 # Added Code{correction min to max} for same array

length error - Harsh Merchant

309 long[’k’] = long[’max’] - long[’min’]

310 tmp = long[[’f_idx’, ’tree’, "nodeid", ’variable ’, ’

min’, ’max’]]. copy()

311 tmp[’rep_min ’] = tmp[’min’] + 0.5

312 tmp[’rep_max ’] = tmp[’max’] - 0.5

313 tmp[’levels ’] = tmp.apply(lambda row: list(range(int(

row[’rep_min ’]), int(row[’rep_max ’] + 1))), axis =1)

314 tmp = tmp.explode(’levels ’)

315 # Added Code for same array length error - Harsh

Merchant

316 original_levels = {key: values.copy() for key , values

in self.levels.items ()}

317 # Step 1: Find the maximum length of the lists

318 max_length = max(len(values) for values in self.

levels.values ())

319

320 # Step 2: Fill shorter lists with None to match the

maximum length

321 for key , values in self.levels.items():

322 if len(values) < max_length:

323 self.levels[key] = values.tolist () + [None] *

(max_length - len(values))

324 # Added Code for same array length error - Harsh

Merchant

325

326 cat_val = pd.DataFrame(self.levels).melt().dropna () #

Added Code{. dropna ()} for same array length error - Harsh Merchant

327 self.levels = original_levels # Added Code for same

array length error - Harsh Merchant

328 cat_val[’value’] = cat_val.groupby(’variable ’).

cumcount () # Added Code for same array length error - Harsh Merchant

329 cat_val[’levels ’] = cat_val[’value’]

330

331 tmp = pd.merge(left=tmp , right=cat_val , on=[’variable

’, ’levels ’])[[’variable ’, ’f_idx ’, ’tree’, "nodeid", ’value ’]]
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332

333 tmp = pd.merge(left=tmp , right=long[[’f_idx’, ’

variable ’, ’tree’, "nodeid", ’count_var ’, ’k’]], on=[’f_idx ’, "nodeid"

, ’variable ’, ’tree’])

334 long = pd.merge(left=tmp , right=long , on=[’f_idx ’, ’

tree’, "nodeid", ’variable ’, ’value ’, ’count_var ’, ’k’], how=’left’)

335 long.loc[long[’count_var_val ’].isna(), ’count_var_val

’] = 0

336 long = long[[’f_idx ’, ’tree’, "nodeid", ’variable ’, ’

value’, ’count_var_val ’, ’count_var ’, ’k’]]. drop_duplicates ()

337 long[’prob’] = (long[’count_var_val ’] + self.alpha) /

(long[’count_var ’] + self.alpha*long[’k’])

338

339 # Changes for dp_arf by Harsh Merchant

340 scores = long[’prob’]

341 scale = 1 / self.epsilon # Sensitivity is 1 for

counting queries

342 exp_noise = np.exp(self.epsilon * scores / 2)

343

344 long[’prob’] = exp_noise # Properly scaled

345

346 long[’prob’] /= long.groupby ([’tree’, ’nodeid ’, ’

variable ’])[’prob’]. transform(’sum’)

347 # Changes for dp_arf by Harsh Merchant

348

349 # long[’value ’] = long[’value ’].astype(’int8 ’) # Code

Commented for removing negative values because conversion > 128 for

int8 - Harsh Merchant

350

351 long = long[[’f_idx ’, ’tree’, "nodeid", ’variable ’, ’

value’, ’prob’]]

352 self.class_probs = pd.concat ([self.class_probs , long])

353 return {"cnt": self.params , "cat": self.class_probs , "forest"

: self.clf , "meta": pd.DataFrame(data={"variable": self.orig_colnames ,

"family": self.dist})}

354

355 def forge(self , n):

356 """ This part is for data generation (FORGE)

357

358 :param n: Number of synthetic samples to generate.

359 :type n: int

360 :return: Returns generated data.

361 :rtype: pandas.DataFrame

362 """

363

364 try:

365 getattr(self , ’bnds’)

366 except AttributeError:

367 raise AttributeError(’need density estimates to generate data

-- run .forde () first!’)

368

369 # Sample new observations and get their terminal nodes

370 # Draw random leaves with probability proportional to coverage
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371 unique_bnds = self.bnds[[’tree’, ’nodeid ’, ’cvg’]].

drop_duplicates ()

372 draws = np.random.choice(a=range(unique_bnds.shape [0]), p=

unique_bnds[’cvg’] / self.num_trees , size=n)

373 sampled_trees_nodes = unique_bnds [[’tree’, ’nodeid ’]]. iloc[draws

,]. reset_index(drop=True).reset_index ().rename(columns ={’index’: ’obs’

})

374

375 # Get distributions parameters for each new obs.

376 if np.invert(self.factor_cols).any():

377 obs_params = pd.merge(sampled_trees_nodes , self.params , on=["

tree", "nodeid"]).sort_values(by=[’obs’], ignore_index=True)

378

379 # Get probabilities for each new obs.

380 if self.factor_cols.any():

381 obs_probs = pd.merge(sampled_trees_nodes , self.class_probs ,

on=["tree", "nodeid"]).sort_values(by=[’obs’], ignore_index=True)

382

383 # Sample new data from mixture distribution over trees

384 data_new = pd.DataFrame(index=range(n), columns=range(self.p))

385 for j in range(self.p):

386 colname = self.orig_colnames[j]

387

388 if self.factor_cols[j]:

389 # Factor columns: Multinomial distribution

390 data_new.iloc[:, j] = obs_probs[obs_probs["variable"] ==

colname ]. groupby("obs").sample(weights="prob")["value"]. reset_index(

drop=True)

391

392 else:

393 # Continuous columns: Match estimated distribution

parameters with r...() function

394 if self.dist == "truncnorm":

395 # sample from normal distribution , only here for

debugging

396 # data_new.loc[:, j] = np.random.normal(obs_params.

loc[obs_params [" variable "] == colname , "mean"], obs_params.loc[

obs_params [" variable "] == colname , "sd"], size = n)

397

398 # sample from truncated normal distribution

399 # note: if sd == 0, truncnorm will return location

parameter -> this is desired; if we have

400 # all obs. in that leave having the same value , we

sample a new obs. with exactly that value as well

401 myclip_a = obs_params.loc[obs_params["variable"] ==

colname , "min"]

402 myclip_b = obs_params.loc[obs_params["variable"] ==

colname , "max"]

403 myloc = obs_params.loc[obs_params["variable"] ==

colname , "mean"]

404 myscale = obs_params.loc[obs_params["variable"] ==

colname , "sd"]

405 data_new.isetitem(j, scipy.stats.truncnorm(a =(
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myclip_a - myloc) / myscale ,b = (myclip_b - myloc) / myscale , loc =

myloc , scale = myscale ).rvs(size = n))

406 del(myclip_a ,myclip_b ,myloc ,myscale)

407 else:

408 raise ValueError(’Other distributions not yet

implemented ’)

409

410 # Use original column names

411 data_new = data_new.set_axis(self.orig_colnames , axis=1, copy=

False)

412

413 # Convert categories back to category

414 for col in self.orig_colnames:

415 if self.factor_cols[col]:

416 data_new[col] = pd.Categorical.from_codes(data_new[col].

astype(int), categories=self.levels[col])

417

418 # Convert object columns back to object

419 for col in self.orig_colnames:

420 if self.object_cols[col]:

421 data_new[col] = data_new[col]. astype("object")

422

423 # Return newly sampled data

424 return data_new
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Appendix A.2: Modifications for alpha parameter in ARF Code

The changes below were made to the original arfpy code because passing the alpha
parameter in the forde function of the original arfpy resulted in a ValueError. This error
occurred because the arrays in the self.levels attribute were not all the same length.

These changes work on datasets with small to medium-sized distinct categorical
feature values. For datasets with a large number of distinct categorical feature values,
a High-Performance Computing Cluster would be required. Otherwise, it would throw
a MemoryError due to the poor handling of categorical feature value encoding. Thus,
this is a temporary solution and it requires careful calibration and ample time to tweak
to make it fully functional as originally intended.

1 if self.alpha == 0:

2 long[’prob’] = long[’count_var_val ’] / long[’count_var ’]

3 else:

4 # Define the range of each variable in each leaf

5 long[’k’] = long.groupby ([’variable ’])[’value ’]. transform(’

nunique ’)

6 long.loc[long[’min’] == float(’-inf’) , ’min’] = 0.5 - 1

7 long.loc[long[’max’] == float(’inf’) , ’max’] = long[’k’] + 0.5

- 1

8 long.loc[round(long[’min’] % 1,2) != 0.5 , ’min’] = long[’min’]

- 0.5

9 long.loc[round(long[’max’] % 1,2) != 0.5 , ’max’] = long[’max’]

+ 0.5 # Added Code{correction min to max} for same array length

error - Harsh Merchant

10 long[’k’] = long[’max’] - long[’min’]

11 # Enumerate each possible leaf -variable -value combo

12 tmp = long[[’f_idx’,’tree’, "nodeid", ’variable ’, ’min’,’max’

]]. copy()

13 tmp[’rep_min ’] = tmp[’min’] + 0.5

14 tmp[’rep_max ’] = tmp[’max’] - 0.5

15 tmp[’levels ’] = tmp.apply(lambda row: list(range(int(row[’

rep_min ’]), int(row[’rep_max ’] + 1))), axis =1)

16 tmp = tmp.explode(’levels ’)

17

18 # Added Code for same array length error - Harsh Merchant

19 original_levels = {key: values.copy() for key , values in self.

levels.items ()}

20 # Step 1: Find the maximum length of the lists

21 max_length = max(len(values) for values in self.levels.values ()

)

22

23 # Step 2: Fill shorter lists with None to match the maximum

length

24 for key , values in self.levels.items():

25 if len(values) < max_length:

26 self.levels[key] = values.tolist () + [None] * (

max_length - len(values))

27 # Added Code for same array length error - Harsh Merchant

28

29 cat_val = pd.DataFrame(self.levels).melt().dropna () # Added
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Code{. dropna ()} for same array length error - Harsh Merchant

30 self.levels = original_levels # Added Code for same array

length error - Harsh Merchant

31 cat_val[’value’] = cat_val.groupby(’variable ’).cumcount () #

Added Code for same array length error - Harsh Merchant

32

33 cat_val[’levels ’] = cat_val[’value’]

34 tmp = pd.merge(left = tmp , right = cat_val , on = [’variable ’,

’levels ’])[[’variable ’, ’f_idx ’,’tree’, "nodeid",’value ’]]

35

36 # populate count , k

37 tmp = pd.merge(left = tmp , right = long[[’f_idx’, ’variable ’, ’

tree’, "nodeid",’count_var ’, ’k’]], on = [’f_idx ’, "nodeid", ’variable

’, ’tree’])

38

39 # Merge with long , set val_count = 0 for possible but

unobserved levels

40 long = pd.merge(left = tmp , right = long , on = [’f_idx ’,’tree’,

"nodeid", ’variable ’,’value’,’count_var ’,’k’], how = ’left’)

41

42 long.loc[long[’count_var_val ’].isna(), ’count_var_val ’] = 0

43

44 long = long[[’f_idx ’,’tree’,"nodeid", ’variable ’, ’value ’, ’

count_var_val ’, ’count_var ’, ’k’]]. drop_duplicates ()

45 # Compute posterior probabilities

46 long[’prob’] = (long[’count_var_val ’] + self.alpha) / (long[’

count_var ’] + self.alpha*long[’k’])

47

48 # long[’value ’] = long[’value ’].astype(’int8 ’) # Code Commented

for removing negative values because conversion > 128 for int8 -

Harsh Merchant

49

50 long = long[[’f_idx ’,’tree’, "nodeid", ’variable ’, ’value ’,’prob’

]]

51

52 self.class_probs = pd.concat ([self.class_probs , long])

53 return {"cnt": self.params , "cat": self.class_probs ,

54 "forest": self.clf , "meta" : pd.DataFrame(data={"variable":

self.orig_colnames , "family": self.dist})}
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Appendix A.3: Evaluation Script for Insurance Dataset

1 import warnings

2 warnings.filterwarnings("ignore")

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from sklearn.decomposition import PCA

7 from sklearn.metrics import mean_squared_error

8 from sklearn.metrics import accuracy_score , roc_auc_score ,

precision_score , recall_score

9 from sklearn.model_selection import train_test_split

10 from sklearn.linear_model import LogisticRegression , LinearRegression

11 from sklearn.neighbors import NearestNeighbors

12 from sklearn.preprocessing import OneHotEncoder

13 from sklearn.compose import ColumnTransformer

14 from sklearn.pipeline import Pipeline

15 from sklearn.ensemble import RandomForestClassifier

16 from scipy.stats import chisquare , wasserstein_distance

17 import seaborn as sns

18 import sys

19 import os

20

21 # Add the parent directory to the system path

22 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(’dp_arf.

py’))))

23 from dp_arf import arf as DP_ARF # Import the DP_ARF class

24 from arfpy import arf as OG_ARF # Import the OG ARF class without

differential privacy

25

26 def load_new_dataset(file_path):

27 return pd.read_csv(file_path)

28

29 def plot_density_distribution(data1 , data2 , data3 , columns , sample_size

=1000):

30 # Sample the data if it exceeds the sample size

31 if data1.shape [0] > sample_size:

32 data1_sample = data1.sample(n=sample_size)

33 data2_sample = data2.sample(n=sample_size)

34 data3_sample = data3.sample(n=sample_size)

35 else:

36 data1_sample = data1

37 data2_sample = data2

38 data3_sample = data3

39

40 fig , axs = plt.subplots(2, 2, figsize =(14, 10))

41 axs = axs.flatten ()

42

43 plot_count = 0

44

45 for column in columns:

46 if plot_count >= 4:

47 break
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48

49 if pd.api.types.is_numeric_dtype(data1_sample[column ]):

50 data1_sample[column ].plot(kind=’density ’, ax=axs[plot_count],

label=’Original Data’, legend=True)

51 data2_sample[column ].plot(kind=’density ’, ax=axs[plot_count],

label=’OG ARF Data’, legend=True)

52 data3_sample[column ].plot(kind=’density ’, ax=axs[plot_count],

label=’DP -ARF Data’, legend=True)

53 axs[plot_count ]. set_title(f’Density Distribution for {column}

’)

54 axs[plot_count ]. legend ()

55 plot_count += 1

56 else:

57 print(f"Skipping column {column} as it is not numeric.")

58

59 plt.tight_layout ()

60 plt.show()

61

62 def plot_pca(data1 , data2 , data3 , sample_size =1000):

63 if data1.shape [0] > sample_size:

64 data1_sample = data1.sample(n=sample_size)

65 data2_sample = data2.sample(n=sample_size)

66 data3_sample = data3.sample(n=sample_size)

67 else:

68 data1_sample = data1

69 data2_sample = data2

70 data3_sample = data3

71

72 # Select only numeric columns for PCA

73 data1_numeric = data1_sample.select_dtypes(include =[np.number ])

74 data2_numeric = data2_sample.select_dtypes(include =[np.number ])

75 data3_numeric = data3_sample.select_dtypes(include =[np.number ])

76

77 # Perform PCA

78 pca = PCA(n_components =2)

79 data1_pca = pca.fit_transform(data1_numeric)

80 data2_pca = pca.transform(data2_numeric)

81 data3_pca = pca.transform(data3_numeric)

82

83 fig , ax = plt.subplots(figsize =(10, 8))

84

85 ax.scatter(data1_pca [:, 0], data1_pca [:, 1], alpha =0.5, label=’

Original Data’)

86 ax.scatter(data2_pca [:, 0], data2_pca [:, 1], alpha =0.5, label=’OG ARF

Data’)

87 ax.scatter(data3_pca [:, 0], data3_pca [:, 1], alpha =0.5, label=’DP-ARF

Data’)

88 ax.legend ()

89 ax.set_title(’PCA - All Data Overlap ’)

90

91 plt.tight_layout ()

92 plt.show()

93
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94 def calculate_additional_metrics(original_data , og_arf_data , dp_arf_data)

:

95 metrics = {}

96

97 original_data_sampled = original_data.sample(n=og_arf_data.shape [0])

98

99 # Calculate Wasserstein Distance for numeric columns

100 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

101 wasserstein_og = wasserstein_distance(original_data_sampled[col],

og_arf_data[col])

102 wasserstein_dp = wasserstein_distance(original_data_sampled[col],

dp_arf_data[col])

103 metrics[f’Wasserstein Distance {col}’] = {’OG ARF’:

wasserstein_og , ’DP ARF’: wasserstein_dp}

104

105 # Calculate Chi -Square Test for categorical columns

106 for col in original_data.select_dtypes(include =[’category ’, ’object ’

]).columns:

107 original_counts = original_data_sampled[col]. value_counts ().

sort_index ()

108 og_arf_counts = og_arf_data[col]. value_counts ().sort_index ()

109 dp_arf_counts = dp_arf_data[col]. value_counts ().sort_index ()

110

111 categories = original_counts.index.union(og_arf_counts.index).

union(dp_arf_counts.index)

112 original_counts = original_counts.reindex(categories , fill_value

=0)

113 og_arf_counts = og_arf_counts.reindex(categories , fill_value =0)

114 dp_arf_counts = dp_arf_counts.reindex(categories , fill_value =0)

115

116 chi2_stat_og , chi2_pvalue_og = chisquare(original_counts ,

og_arf_counts)

117 chi2_stat_dp , chi2_pvalue_dp = chisquare(original_counts ,

dp_arf_counts)

118 metrics[f’Chi -Square Test {col}’] = {’OG ARF’: chi2_stat_og , ’DP

ARF’: chi2_stat_dp}

119

120 # Calculate RMSE and MAE for numeric columns

121 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

122 rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],

og_arf_data[col]))

123 rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],

dp_arf_data[col]))

124 mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[

col]))

125 mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[

col]))

126 metrics[f’RMSE {col}’] = {’OG ARF’: rmse_og , ’DP ARF’: rmse_dp}

127 metrics[f’MAE {col}’] = {’OG ARF’: mae_og , ’DP ARF’: mae_dp}

128

129 return metrics
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130

131 # Calculate correlation matrices for datasets

132 def get_correlation_matrices(data1 , data2 , data3):

133 corr_matrices = {

134 "Original Data": data1.corr(),

135 "OG ARF Data": data2.corr(),

136 "DP-ARF Data": data3.corr()

137 }

138 return corr_matrices

139

140 # Evaluate classification model on synthetic data fitted on original data

141 def model_evaluation_on_classification(original_data , synthetic_data ,

target_col=’class ’):

142 og = original_data.copy()

143 dp = synthetic_data.copy()

144 og[target_col] = (og[’smoker ’] == ’yes’).astype(int)

145 dp[target_col] = (dp[’smoker ’] == ’yes’).astype(int)

146

147 X_orig = og.drop(columns =[ target_col ])

148 y_orig = og[target_col]

149

150 X_synth = dp.drop(columns =[ target_col ])

151 y_synth = dp[target_col]

152

153 categorical_features = X_orig.select_dtypes(include =[’object ’, ’

category ’]).columns

154 numeric_features = X_orig.select_dtypes(include =[np.number ]).columns

155

156 preprocessor = ColumnTransformer(

157 transformers =[

158 (’num’, ’passthrough ’, numeric_features),

159 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),

categorical_features)

160 ])

161

162 X_encoded_orig = preprocessor.fit_transform(X_orig)

163 X_encoded_synth = preprocessor.transform(X_synth)

164

165 clf = LogisticRegression(max_iter =2000)

166 clf.fit(X_encoded_orig , y_orig)

167

168 return clf.score(X_encoded_synth , y_synth)

169

170

171 # Preprocessing function to encode categorical variables

172 def preprocess_data(df):

173 categorical_features = df.select_dtypes(include =[’category ’]).columns

174 numeric_features = df.select_dtypes(include =[np.number ]).columns

175

176 preprocessor = ColumnTransformer(

177 transformers =[

178 (’num’, ’passthrough ’, numeric_features),

179 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),
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categorical_features)

180 ])

181

182 return preprocessor.fit_transform(df), preprocessor

183

184 # Reconstruction Attack

185 def reconstruction_attack(original_data , synthetic_data):

186 X_orig , orig_preprocessor = preprocess_data(original_data.drop(

columns =[’charges ’]))

187 X_synth , synth_preprocessor = preprocess_data(synthetic_data.drop(

columns =[’charges ’]))

188

189 nn = NearestNeighbors(n_neighbors =3)

190 nn.fit(X_synth)

191 distances , indices = nn.kneighbors(X_orig)

192

193 return distances.mean()

194

195 # Post process synthetic data to ensure valid values

196 def post_process_synthetic_data(data):

197 data[’age’] = data[’age’]. astype(’int’)

198 data[’children ’] = data[’children ’]. astype(’int’)

199 data.loc[data[’children ’] < 0, ’children ’] = 0

200 mean_bmi = data[’bmi’][data[’bmi’] >= 0]. mean()

201 data.loc[data[’bmi’] < 0, ’bmi’] = mean_bmi

202 data[’bmi’] = data[’bmi’].round (2)

203 mean_charges = data[’charges ’][data[’charges ’] >= 0]. mean()

204 data.loc[data[’charges ’] < 0, ’charges ’] = mean_charges

205 data[’charges ’] = data[’charges ’].round (2)

206 return data

207

208

209 # Main Script

210 file_path = ’..\\ datasets \\ insurance.csv’

211 data = load_new_dataset(file_path)

212

213 # Generate synthetic data using OG ARF model

214 arf_model = OG_ARF.arf(data)

215 arf_model.forde()

216 og_arf_data = arf_model.forge(data.shape [0])

217 og_arf_data = post_process_synthetic_data(og_arf_data)

218

219 # Generate synthetic data using DP -ARF model

220 dp_arf_model = DP_ARF(data , epsilon =0.5)

221 dp_arf_model.forde()

222 dp_arf_data = dp_arf_model.forge(data.shape [0])

223 dp_arf_data = post_process_synthetic_data(dp_arf_data)

224

225 # Print the first few rows of the datasets

226 print(’original data: ’, data.head())

227 print(’og arf data: ’, og_arf_data.head())

228 print(’dp arf data: ’, dp_arf_data.head())

229
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230 # Identify numeric and categorical columns

231 numeric_columns = data.select_dtypes(include =[np.number ]).columns.tolist

()

232 categorical_columns = data.select_dtypes(include =[’category ’, ’object ’]).

columns.tolist ()

233

234 print("Numeric columns:", numeric_columns)

235 print("Categorical columns:", categorical_columns)

236

237 # Plot density distributions

238 plot_density_distribution(data , og_arf_data , dp_arf_data , numeric_columns

, sample_size =100)

239

240 # Plot PCA results

241 numeric_data = data.select_dtypes(include =[np.number ])

242 numeric_og_arf_data = og_arf_data.select_dtypes(include =[np.number ])

243 numeric_dp_arf_data = dp_arf_data.select_dtypes(include =[np.number ])

244

245 plot_pca(numeric_data , numeric_og_arf_data , numeric_dp_arf_data ,

sample_size =100)

246

247 # Calculate and print correlation matrices

248 correlation_matrices = get_correlation_matrices(numeric_data ,

numeric_og_arf_data , numeric_dp_arf_data)

249 for key , value in correlation_matrices.items():

250 print(f’{key} Correlation Matrix:’)

251 print(value)

252

253 # Calculate and print additional metrics

254 additional_metrics = calculate_additional_metrics(data , og_arf_data ,

dp_arf_data)

255 for metric , values in additional_metrics.items():

256 print(f’{metric }:’)

257 for method , value in values.items():

258 print(f’ {method }: {value}’)

259

260 # Evaluate classification accuracy

261 accuracy_og = model_evaluation_on_classification(data , og_arf_data)

262 accuracy_dp = model_evaluation_on_classification(data , dp_arf_data)

263 print(f’Classification Accuracy (OG ARF): {accuracy_og}’)

264 print(f’Classification Accuracy (DP ARF): {accuracy_dp}’)

265

266 # Evaluate Attacks

267

268 # Evaluate reconstruction attack on og arf data

269 reconstruction_error = reconstruction_attack(data , og_arf_data)

270 print(f’Reconstruction Attack Error OG ARF (Mean Distance): {

reconstruction_error}’)

271

272 # Evaluate reconstruction attack on dp arf data

273 reconstruction_error = reconstruction_attack(data , dp_arf_data)

274 print(f’Reconstruction Attack Error DP ARF (Mean Distance): {

reconstruction_error}’)
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Appendix A.4: Evaluation Script for Healthcare Dataset

1 import warnings

2 warnings.filterwarnings("ignore")

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from sklearn.decomposition import PCA

7 from sklearn.metrics import mean_squared_error , accuracy_score ,

roc_auc_score , precision_score , recall_score

8 from sklearn.model_selection import train_test_split

9 from sklearn.linear_model import LogisticRegression , LinearRegression

10 from sklearn.neighbors import NearestNeighbors

11 from sklearn.preprocessing import OneHotEncoder

12 from sklearn.compose import ColumnTransformer

13 from sklearn.pipeline import Pipeline

14 from sklearn.ensemble import RandomForestClassifier

15 from scipy.stats import chisquare , wasserstein_distance

16 import seaborn as sns

17 import sys

18 import os

19

20 # Add the parent directory to the system path

21 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(’dp_arf.

py’))))

22 from dp_arf import arf as DP_ARF # Import the DP_ARF class

23 from arfpy import arf as OG_ARF # Import the OG ARF class without

differential privacy

24

25 def load_new_dataset(file_path):

26 return pd.read_csv(file_path)

27

28 def plot_density_distribution(data1 , data2 , data3 , columns , sample_size

=1000):

29 # Sample the data if it exceeds the sample size

30 if data1.shape [0] > sample_size:

31 data1_sample = data1.sample(n=sample_size)

32 data2_sample = data2.sample(n=sample_size)

33 data3_sample = data3.sample(n=sample_size)

34 else:

35 data1_sample = data1

36 data2_sample = data2

37 data3_sample = data3

38

39 # Initialize plot count

40 plot_count = 0

41

42 # Create subplots iteratively

43 for i in range(0, len(columns), 4):

44 num_cols = min(4, len(columns) - i)

45 if num_cols == 1:

46 fig , axs = plt.subplots(1, 1, figsize =(7, 5))

47 axs = [axs]
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48 elif num_cols == 2:

49 fig , axs = plt.subplots(1, 2, figsize =(14, 5))

50 elif num_cols == 3:

51 fig , axs = plt.subplots(2, 2, figsize =(14, 10))

52 axs[1, 1]. remove () # Remove the unused subplot

53 axs = [axs[0, 0], axs[0, 1], axs[1, 0]]

54 else: # num_cols == 4

55 fig , axs = plt.subplots(2, 2, figsize =(14, 10))

56 axs = axs.flatten () # Flatten the 2D array of axes to easily

index them

57

58 for j, column in enumerate(columns[i:i+num_cols ]):

59 if pd.api.types.is_numeric_dtype(data1_sample[column ]):

60 # Plot the density distributions on the corresponding

subplot

61 data1_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’Original Data’, legend=True)

62 data2_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’OG ARF Data’, legend=True)

63 data3_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’DP -ARF Data’, legend=True)

64 axs[j]. set_title(f’Density Distribution for {column}’)

65 axs[j]. legend ()

66 else:

67 axs[j]. set_title(f’Skipping column {column} as it is not

numeric.’)

68 axs[j].axis(’off’)

69

70 # Adjust layout

71 plt.tight_layout ()

72 plt.show()

73

74 def plot_pca(data1 , data2 , data3 , sample_size =1000):

75 if data1.shape [0] > sample_size:

76 data1_sample = data1.sample(n=sample_size)

77 data2_sample = data2.sample(n=sample_size)

78 data3_sample = data3.sample(n=sample_size)

79 else:

80 data1_sample = data1

81 data2_sample = data2

82 data3_sample = data3

83

84 # Select only numeric columns for PCA

85 data1_numeric = data1_sample.select_dtypes(include =[np.number ])

86 data2_numeric = data2_sample.select_dtypes(include =[np.number ])

87 data3_numeric = data3_sample.select_dtypes(include =[np.number ])

88

89 # Perform PCA

90 pca = PCA(n_components =2)

91 data1_pca = pca.fit_transform(data1_numeric)

92 data2_pca = pca.transform(data2_numeric)

93 data3_pca = pca.transform(data3_numeric)

94
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95 fig , ax = plt.subplots(figsize =(10, 8)) # Adjusted grid size

96

97 ax.scatter(data1_pca [:, 0], data1_pca [:, 1], alpha =0.5, label=’

Original Data’)

98 ax.scatter(data2_pca [:, 0], data2_pca [:, 1], alpha =0.5, label=’OG ARF

Data’)

99 ax.scatter(data3_pca [:, 0], data3_pca [:, 1], alpha =0.5, label=’DP-ARF

Data’)

100 ax.legend ()

101 ax.set_title(’PCA - All Data Overlap ’)

102

103 plt.tight_layout ()

104 plt.show()

105

106 def calculate_additional_metrics(original_data , og_arf_data , dp_arf_data)

:

107 metrics = {}

108

109 original_data_sampled = original_data.sample(n=og_arf_data.shape [0])

110

111 # Calculate Wasserstein Distance for numeric columns

112 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

113 wasserstein_og = wasserstein_distance(original_data_sampled[col],

og_arf_data[col])

114 wasserstein_dp = wasserstein_distance(original_data_sampled[col],

dp_arf_data[col])

115 metrics[f’Wasserstein Distance {col}’] = {’OG ARF’:

wasserstein_og , ’DP ARF’: wasserstein_dp}

116

117 # Calculate Chi -Square Test for categorical columns

118 for col in original_data.select_dtypes(include =[’category ’, ’object ’

]).columns:

119 original_counts = original_data_sampled[col]. value_counts ().

sort_index ()

120 og_arf_counts = og_arf_data[col]. value_counts ().sort_index ()

121 dp_arf_counts = dp_arf_data[col]. value_counts ().sort_index ()

122

123 categories = original_counts.index.union(og_arf_counts.index).

union(dp_arf_counts.index)

124 original_counts = original_counts.reindex(categories , fill_value

=0)

125 og_arf_counts = og_arf_counts.reindex(categories , fill_value =0)

126 dp_arf_counts = dp_arf_counts.reindex(categories , fill_value =0)

127

128 chi2_stat_og , chi2_pvalue_og = chisquare(original_counts ,

og_arf_counts)

129 chi2_stat_dp , chi2_pvalue_dp = chisquare(original_counts ,

dp_arf_counts)

130 metrics[f’Chi -Square Test {col}’] = {’OG ARF’: chi2_stat_og , ’DP

ARF’: chi2_stat_dp}

131

132 # Calculate RMSE and MAE for numeric columns
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133 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

134 rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],

og_arf_data[col]))

135 rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],

dp_arf_data[col]))

136 mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[

col]))

137 mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[

col]))

138 metrics[f’RMSE {col}’] = {’OG ARF’: rmse_og , ’DP ARF’: rmse_dp}

139 metrics[f’MAE {col}’] = {’OG ARF’: mae_og , ’DP ARF’: mae_dp}

140

141 return metrics

142

143 # Calculate correlation matrices for datasets

144 def get_correlation_matrices(data1 , data2 , data3):

145 corr_matrices = {

146 "Original Data": data1.corr(),

147 "OG ARF Data": data2.corr(),

148 "DP-ARF Data": data3.corr()

149 }

150 return corr_matrices

151

152 # Evaluate classification model on synthetic data fitted on original data

153 def model_evaluation_on_classification(original_data , synthetic_data ,

target_col=’Medical Condition ’):

154 og = original_data.copy()

155 dp = synthetic_data.copy()

156 og[target_col] = (og[’Medical Condition ’] == ’Cancer ’).astype(int)

157 dp[target_col] = (dp[’Medical Condition ’] == ’Cancer ’).astype(int)

158

159 X_orig = og.drop(columns =[ target_col ])

160 y_orig = og[target_col]

161

162 X_synth = dp.drop(columns =[ target_col ])

163 y_synth = dp[target_col]

164

165 categorical_features = X_orig.select_dtypes(include =[’object ’, ’

category ’]).columns

166 numeric_features = X_orig.select_dtypes(include =[np.number ]).columns

167

168 preprocessor = ColumnTransformer(

169 transformers =[

170 (’num’, ’passthrough ’, numeric_features),

171 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),

categorical_features)

172 ])

173

174 X_encoded_orig = preprocessor.fit_transform(X_orig)

175 X_encoded_synth = preprocessor.transform(X_synth)

176

177 clf = LogisticRegression(max_iter =2000)



76

178 clf.fit(X_encoded_orig , y_orig)

179

180 return clf.score(X_encoded_synth , y_synth)

181

182 # Preprocessing function to encode categorical variables

183 def preprocess_data(df):

184 categorical_features = df.select_dtypes(include =[’category ’]).columns

185 numeric_features = df.select_dtypes(include =[np.number ]).columns

186

187 preprocessor = ColumnTransformer(

188 transformers =[

189 (’num’, ’passthrough ’, numeric_features),

190 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),

categorical_features)

191 ])

192

193 return preprocessor.fit_transform(df), preprocessor

194

195 # Reconstruction Attack

196 def reconstruction_attack(original_data , synthetic_data):

197 X_orig , orig_preprocessor = preprocess_data(original_data.drop(

columns =[’Billing Amount ’]))

198 X_synth , synth_preprocessor = preprocess_data(synthetic_data.drop(

columns =[’Billing Amount ’]))

199

200 nn = NearestNeighbors(n_neighbors =3)

201 nn.fit(X_synth)

202 distances , indices = nn.kneighbors(X_orig)

203

204 return distances.mean()

205

206 # Post process synthetic data to ensure valid values

207 def post_process_synthetic_data(data):

208 data.loc[data[’Room Number ’] < 0, ’Room Number ’] = data[’Room Number ’

].mean()

209 data.loc[data[’Age’] < 0, ’Age’] = data[’Age’].mean()

210 data[’Age’] = data[’Age’]. astype(’int’)

211 data[’Room Number ’] = data[’Room Number ’]. astype(’int’)

212 mean_billing = data[’Billing Amount ’][data[’Billing Amount ’] >= 0].

mean()

213 data.loc[data[’Billing Amount ’] < 0, ’Billing Amount ’] = mean_billing

214 data[’Billing Amount ’] = data[’Billing Amount ’].round (2)

215 return data

216

217

218 # Main Script

219 file_path = ’..\\ datasets \\ healthcare_dataset.csv’

220 data = load_new_dataset(file_path)

221

222 # Generate synthetic data using OG ARF model

223 arf_model = OG_ARF.arf(data)

224 arf_model.forde()

225 og_arf_data = arf_model.forge(data.shape [0])
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226 og_arf_data = post_process_synthetic_data(og_arf_data)

227

228 # Generate synthetic data using DP -ARF model

229 dp_arf_model = DP_ARF(data , epsilon =0.1)

230 dp_arf_model.forde()

231 dp_arf_data = dp_arf_model.forge(data.shape [0])

232 dp_arf_data = post_process_synthetic_data(dp_arf_data)

233

234 # Print the first few rows of the datasets

235 print(’original data: ’, data.head())

236 print(’OG arf data: ’, og_arf_data.head())

237 print(’dp arf data: ’, dp_arf_data.head())

238

239 # Identify numeric and categorical columns

240 numeric_columns = data.select_dtypes(include =[np.number ]).columns.tolist

()

241 categorical_columns = data.select_dtypes(include =[’category ’, ’object ’]).

columns.tolist ()

242

243 print("Numeric columns:", numeric_columns)

244 print("Categorical columns:", categorical_columns)

245

246 # Plot density distributions

247 plot_density_distribution(data , og_arf_data , dp_arf_data , numeric_columns

, sample_size =100)

248

249 numeric_data = data.select_dtypes(include =[np.number ])

250 numeric_og_arf_data = og_arf_data.select_dtypes(include =[np.number ])

251 numeric_dp_arf_data = dp_arf_data.select_dtypes(include =[np.number ])

252

253 # Plot PCA results

254 plot_pca(numeric_data , numeric_og_arf_data , numeric_dp_arf_data ,

sample_size =100)

255

256 # Calculate and print correlation matrices

257 correlation_matrices = get_correlation_matrices(numeric_data ,

numeric_og_arf_data , numeric_dp_arf_data)

258 for key , value in correlation_matrices.items():

259 print(f’{key} Correlation Matrix:’)

260 print(value)

261

262 # Calculate and print additional metrics

263 additional_metrics = calculate_additional_metrics(data , og_arf_data ,

dp_arf_data)

264 for metric , values in additional_metrics.items():

265 print(f’{metric }:’)

266 for method , value in values.items():

267 print(f’ {method }: {value}’)

268

269 # Evaluate classification accuracy

270 accuracy_og = model_evaluation_on_classification(data , og_arf_data)

271 accuracy_dp = model_evaluation_on_classification(data , dp_arf_data)

272 print(f’Classification Accuracy (OG ARF): {accuracy_og}’)
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273 print(f’Classification Accuracy (DP ARF): {accuracy_dp}’)

274

275 # Evaluate Attacks

276

277 # Evaluate reconstruction attack on og arf data

278 reconstruction_error = reconstruction_attack(data , og_arf_data)

279 print(f’Reconstruction Attack Error OG ARF (Mean Distance): {

reconstruction_error}’)

280

281 # Evaluate reconstruction attack on dp arf data

282 reconstruction_error = reconstruction_attack(data , dp_arf_data)

283 print(f’Reconstruction Attack Error DP ARF (Mean Distance): {

reconstruction_error}’)
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Appendix A.5: Evaluation Script for Adult Dataset

1 import warnings

2 warnings.filterwarnings("ignore")

3 import numpy as np

4 import pandas as pd

5 import matplotlib.pyplot as plt

6 from sklearn.decomposition import PCA

7 from sklearn.metrics import mean_squared_error , accuracy_score ,

roc_auc_score , precision_score , recall_score

8 from sklearn.model_selection import train_test_split

9 from sklearn.linear_model import LogisticRegression , LinearRegression

10 from sklearn.neighbors import NearestNeighbors

11 from sklearn.preprocessing import OneHotEncoder

12 from sklearn.compose import ColumnTransformer

13 from sklearn.pipeline import Pipeline

14 from sklearn.ensemble import RandomForestClassifier

15 from scipy.stats import chisquare , wasserstein_distance

16 import seaborn as sns

17 import sys

18 import os

19

20 # Add the parent directory to the system path

21 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(’dp_arf.

py’))))

22 from dp_arf import arf as DP_ARF # Import the DP_ARF class

23 from arfpy import arf as OG_ARF # Import the OG ARF class without

differential privacy

24

25 def load_uci_adult_dataset ():

26 column_names = [

27 ’age’, ’workclass ’, ’fnlwgt ’, ’education ’, ’education_num ’,

28 ’marital_status ’, ’occupation ’, ’relationship ’, ’race’, ’sex’,

29 ’capital_gain ’, ’capital_loss ’, ’hours_per_week ’, ’native_country

’, ’income ’

30 ]

31 url = ’https :// archive.ics.uci.edu/ml/machine -learning -databases/

adult/adult.data’

32 data = pd.read_csv(url , header=None , names=column_names , na_values=’

?’, skipinitialspace=True)

33

34 return data

35

36 def plot_density_distribution(data1 , data2 , data3 , columns , sample_size

=1000):

37 # Sample the data if it exceeds the sample size

38 if data1.shape [0] > sample_size:

39 data1_sample = data1.sample(n=sample_size)

40 data2_sample = data2.sample(n=sample_size)

41 data3_sample = data3.sample(n=sample_size)

42 else:

43 data1_sample = data1

44 data2_sample = data2
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45 data3_sample = data3

46

47 # Initialize plot count

48 plot_count = 0

49

50 # Create subplots iteratively

51 for i in range(0, len(columns), 4):

52 num_cols = min(4, len(columns) - i)

53 if num_cols == 1:

54 fig , axs = plt.subplots(1, 1, figsize =(7, 5))

55 axs = [axs]

56 elif num_cols == 2:

57 fig , axs = plt.subplots(1, 2, figsize =(14, 5))

58 elif num_cols == 3:

59 fig , axs = plt.subplots(2, 2, figsize =(14, 10))

60 axs[1, 1]. remove () # Remove the unused subplot

61 axs = [axs[0, 0], axs[0, 1], axs[1, 0]]

62 else: # num_cols == 4

63 fig , axs = plt.subplots(2, 2, figsize =(14, 10))

64 axs = axs.flatten () # Flatten the 2D array of axes to easily

index them

65

66 for j, column in enumerate(columns[i:i+num_cols ]):

67 if pd.api.types.is_numeric_dtype(data1_sample[column ]):

68 # Plot the density distributions on the corresponding

subplot

69 data1_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’Original Data’, legend=True)

70 data2_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’OG ARF Data’, legend=True)

71 data3_sample[column ].plot(kind=’density ’, ax=axs[j],

label=’DP -ARF Data’, legend=True)

72 axs[j]. set_title(f’Density Distribution for {column}’)

73 axs[j]. legend ()

74 else:

75 axs[j]. set_title(f’Skipping column {column} as it is not

numeric.’)

76 axs[j].axis(’off’)

77

78 # Adjust layout

79 plt.tight_layout ()

80 plt.show()

81

82 def plot_pca(data1 , data2 , data3 , sample_size =1000):

83 if data1.shape [0] > sample_size:

84 data1_sample = data1.sample(n=sample_size)

85 data2_sample = data2.sample(n=sample_size)

86 data3_sample = data3.sample(n=sample_size)

87 else:

88 data1_sample = data1

89 data2_sample = data2

90 data3_sample = data3

91
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92 # Select only numeric columns for PCA

93 data1_numeric = data1_sample.select_dtypes(include =[np.number ])

94 data2_numeric = data2_sample.select_dtypes(include =[np.number ])

95 data3_numeric = data3_sample.select_dtypes(include =[np.number ])

96

97 # Perform PCA

98 pca = PCA(n_components =2)

99 data1_pca = pca.fit_transform(data1_numeric)

100 data2_pca = pca.transform(data2_numeric)

101 data3_pca = pca.transform(data3_numeric)

102

103 fig , ax = plt.subplots(figsize =(10, 8)) # Adjusted grid size

104

105 ax.scatter(data1_pca [:, 0], data1_pca [:, 1], alpha =0.5, label=’

Original Data’)

106 ax.scatter(data2_pca [:, 0], data2_pca [:, 1], alpha =0.5, label=’OG ARF

Data’)

107 ax.scatter(data3_pca [:, 0], data3_pca [:, 1], alpha =0.5, label=’DP-ARF

Data’)

108 ax.legend ()

109 ax.set_title(’PCA - All Data Overlap ’)

110

111 plt.tight_layout ()

112 plt.show()

113

114 def calculate_additional_metrics(original_data , og_arf_data , dp_arf_data)

:

115 metrics = {}

116

117 original_data_sampled = original_data.sample(n=og_arf_data.shape [0])

118

119 # Calculate Wasserstein Distance for numeric columns

120 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

121 wasserstein_og = wasserstein_distance(original_data_sampled[col],

og_arf_data[col])

122 wasserstein_dp = wasserstein_distance(original_data_sampled[col],

dp_arf_data[col])

123 metrics[f’Wasserstein Distance {col}’] = {’OG ARF’:

wasserstein_og , ’DP ARF’: wasserstein_dp}

124

125 # Calculate Chi -Square Test for categorical columns

126 for col in original_data.select_dtypes(include =[’category ’, ’object ’

]).columns:

127 original_counts = original_data_sampled[col]. value_counts ().

sort_index ()

128 og_arf_counts = og_arf_data[col]. value_counts ().sort_index ()

129 dp_arf_counts = dp_arf_data[col]. value_counts ().sort_index ()

130

131 categories = original_counts.index.union(og_arf_counts.index).

union(dp_arf_counts.index)

132 original_counts = original_counts.reindex(categories , fill_value

=0)
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133 og_arf_counts = og_arf_counts.reindex(categories , fill_value =0)

134 dp_arf_counts = dp_arf_counts.reindex(categories , fill_value =0)

135

136 chi2_stat_og , chi2_pvalue_og = chisquare(original_counts ,

og_arf_counts)

137 chi2_stat_dp , chi2_pvalue_dp = chisquare(original_counts ,

dp_arf_counts)

138 metrics[f’Chi -Square Test {col}’] = {’OG ARF’: chi2_stat_og , ’DP

ARF’: chi2_stat_dp}

139

140 # Calculate RMSE and MAE for numeric columns

141 for col in original_data.select_dtypes(include =[’int64’, ’float64 ’]).

columns:

142 rmse_og = np.sqrt(mean_squared_error(original_data_sampled[col],

og_arf_data[col]))

143 rmse_dp = np.sqrt(mean_squared_error(original_data_sampled[col],

dp_arf_data[col]))

144 mae_og = np.mean(np.abs(original_data_sampled[col] - og_arf_data[

col]))

145 mae_dp = np.mean(np.abs(original_data_sampled[col] - dp_arf_data[

col]))

146 metrics[f’RMSE {col}’] = {’OG ARF’: rmse_og , ’DP ARF’: rmse_dp}

147 metrics[f’MAE {col}’] = {’OG ARF’: mae_og , ’DP ARF’: mae_dp}

148

149 return metrics

150

151 # Calculate correlation matrices for datasets

152 def get_correlation_matrices(data1 , data2 , data3):

153 corr_matrices = {

154 "Original Data": data1.corr(),

155 "OG ARF Data": data2.corr(),

156 "DP-ARF Data": data3.corr()

157 }

158 return corr_matrices

159

160 # Evaluate classification model on synthetic data fitted on original data

161 def model_evaluation_on_classification(original_data , synthetic_data ,

target_col=’income ’):

162 og = original_data.copy()

163 dp = synthetic_data.copy()

164 og[target_col] = (og[’income ’] == ’ >50K’).astype(int)

165 dp[target_col] = (dp[’income ’] == ’ >50K’).astype(int)

166

167 X_orig = og.drop(columns =[ target_col ])

168 y_orig = og[target_col]

169

170 X_synth = dp.drop(columns =[ target_col ])

171 y_synth = dp[target_col]

172

173 categorical_features = X_orig.select_dtypes(include =[’object ’, ’

category ’]).columns

174 numeric_features = X_orig.select_dtypes(include =[np.number ]).columns

175
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176 preprocessor = ColumnTransformer(

177 transformers =[

178 (’num’, ’passthrough ’, numeric_features),

179 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),

categorical_features)

180 ])

181

182 X_encoded_orig = preprocessor.fit_transform(X_orig)

183 X_encoded_synth = preprocessor.transform(X_synth)

184

185 clf = LogisticRegression(max_iter =2000)

186 clf.fit(X_encoded_orig , y_orig)

187

188 return clf.score(X_encoded_synth , y_synth)

189

190 # Preprocessing function to encode categorical variables

191 def preprocess_data(df):

192 categorical_features = df.select_dtypes(include =[’category ’]).columns

193 numeric_features = df.select_dtypes(include =[np.number ]).columns

194

195 preprocessor = ColumnTransformer(

196 transformers =[

197 (’num’, ’passthrough ’, numeric_features),

198 (’cat’, OneHotEncoder(handle_unknown=’ignore ’),

categorical_features)

199 ])

200

201 return preprocessor.fit_transform(df), preprocessor

202

203 # Reconstruction Attack

204 def reconstruction_attack(original_data , synthetic_data):

205 X_orig , orig_preprocessor = preprocess_data(original_data.drop(

columns =[’income ’]))

206 X_synth , synth_preprocessor = preprocess_data(synthetic_data.drop(

columns =[’income ’]))

207

208 nn = NearestNeighbors(n_neighbors =3)

209 nn.fit(X_synth)

210 distances , indices = nn.kneighbors(X_orig)

211

212 return distances.mean()

213

214 # Post process synthetic data to ensure valid values

215 def post_process_synthetic_data(data):

216 data.loc[data[’age’] < 0, ’age’] = data[’age’].mean()

217 data[’age’] = data[’age’]. astype(’int’)

218

219 mean_fnlwgt = data[’fnlwgt ’][data[’fnlwgt ’] >= 0]. mean()

220 data.loc[data[’fnlwgt ’] < 0, ’fnlwgt ’] = mean_fnlwgt

221 data[’fnlwgt ’] = data[’fnlwgt ’]. astype(’int’)

222

223 mean_education_num = data[’education_num ’][data[’education_num ’] >=

0]. mean()



84

224 data.loc[data[’education_num ’] < 0, ’education_num ’] =

mean_education_num

225 data[’education_num ’] = data[’education_num ’]. astype(’int’)

226

227 mean_capital_gain = data[’capital_gain ’][data[’capital_gain ’] >= 0].

mean()

228 data.loc[data[’capital_gain ’] < 0, ’capital_gain ’] =

mean_capital_gain

229 data[’capital_gain ’] = data[’capital_gain ’]. astype(’int’)

230

231 mean_capital_loss = data[’capital_loss ’][data[’capital_loss ’] >= 0].

mean()

232 data.loc[data[’capital_loss ’] < 0, ’capital_loss ’] =

mean_capital_loss

233 data[’capital_loss ’] = data[’capital_loss ’]. astype(’int’)

234

235 mean_hours_per_week = data[’hours_per_week ’][data[’hours_per_week ’]

>= 0]. mean()

236 data.loc[data[’hours_per_week ’] < 0, ’hours_per_week ’] =

mean_hours_per_week

237 data[’hours_per_week ’] = data[’hours_per_week ’]. astype(’int’)

238

239 return data

240

241

242 # Main Script

243 data = load_uci_adult_dataset ()

244

245 # Generate synthetic data using OG ARF model

246 arf_model = OG_ARF.arf(data)

247 arf_model.forde()

248 og_arf_data = arf_model.forge(data.shape [0])

249 og_arf_data = post_process_synthetic_data(og_arf_data)

250

251 # Generate synthetic data using DP -ARF model

252 dp_arf_model = DP_ARF(data , epsilon =0.5)

253 dp_arf_model.forde()

254 dp_arf_data = dp_arf_model.forge(data.shape [0])

255 dp_arf_data = post_process_synthetic_data(dp_arf_data)

256

257 # Print the first few rows of the datasets

258 print(’original data: ’, data.head())

259 print(’OG arf data: ’, og_arf_data.head())

260 print(’dp arf data: ’, dp_arf_data.head())

261

262 # Identify numeric and categorical columns

263 numeric_columns = data.select_dtypes(include =[np.number ]).columns.tolist

()

264 categorical_columns = data.select_dtypes(include =[’category ’, ’object ’]).

columns.tolist ()

265

266 print("Numeric columns:", numeric_columns)

267 print("Categorical columns:", categorical_columns)
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268

269 # Plot density distributions

270 plot_density_distribution(data , og_arf_data , dp_arf_data , numeric_columns

, sample_size =100)

271

272 # Plot PCA results

273 numeric_data = data.select_dtypes(include =[np.number ])

274 numeric_og_arf_data = og_arf_data.select_dtypes(include =[np.number ])

275 numeric_dp_arf_data = dp_arf_data.select_dtypes(include =[np.number ])

276

277 plot_pca(numeric_data , numeric_og_arf_data , numeric_dp_arf_data ,

sample_size =100)

278

279 # Calculate and print correlation matrices

280 correlation_matrices = get_correlation_matrices(numeric_data ,

numeric_og_arf_data , numeric_dp_arf_data)

281 for key , value in correlation_matrices.items():

282 print(f’{key} Correlation Matrix:’)

283 print(value)

284

285 # Calculate and print additional metrics

286 additional_metrics = calculate_additional_metrics(data , og_arf_data ,

dp_arf_data)

287 for metric , values in additional_metrics.items():

288 print(f’{metric }:’)

289 for method , value in values.items():

290 print(f’ {method }: {value}’)

291

292 # Evaluate classification accuracy

293 accuracy_og = model_evaluation_on_classification(data , og_arf_data)

294 accuracy_dp = model_evaluation_on_classification(data , dp_arf_data)

295 print(f’Classification Accuracy (OG ARF): {accuracy_og}’)

296 print(f’Classification Accuracy (DP ARF): {accuracy_dp}’)

297

298 # Evaluate Attacks

299

300 # Evaluate reconstruction attack on og arf data

301 reconstruction_error = reconstruction_attack(data , og_arf_data)

302 print(f’Reconstruction Attack Error OG ARF (Mean Distance): {

reconstruction_error}’)

303

304 # Evaluate reconstruction attack on dp arf data

305 reconstruction_error = reconstruction_attack(data , dp_arf_data)

306 print(f’Reconstruction Attack Error DP ARF (Mean Distance): {

reconstruction_error}’)
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Appendix B: Additional Results

Appendix B.1: Extended Results Plots

This subsection includes additional plots generated during the evaluation phase, that
are not included in the main body of the report.

For healthcare epsilon = 1

Name Age Gender Blood Type Medical Condition

Bobby Jackson 30 Male B- Cancer
Leslie Terry 62 Male A+ Obesity
Danny Smith 76 Female A- Obesity
Andrew Watts 28 Female O+ Diabetes
Adrienne Bell 43 Female AB+ Cancer

Table 70: Original Healthcare Data Part 1 ϵ = 1

Billing Amount Room Number Medication Test Results

18856.28 328 Paracetamol Normal
33643.33 265 Ibuprofen Inconclusive
27955.10 205 Aspirin Normal
37909.78 450 Ibuprofen Abnormal
14238.32 458 Penicillin Abnormal

Table 71: Original Healthcare Data Part 2 ϵ = 1

Name Age Gender Blood Type Medical Condition

Jamie Hammond 27 Male AB+ Obesity
David Wright 33 Male B- Diabetes
Jesse Sanchez 29 Female A- Hypertension

Sandy Camacho 60 Female O- Cancer
Manuel Barber 56 Male A+ Asthma

Table 72: OG ARF Healthcare Data Part 1 ϵ = 1
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Billing Amount Room Number Medication Test Results

22586.63 362 Aspirin Inconclusive
39095.18 236 Paracetamol Abnormal
11122.12 550 Paracetamol Inconclusive
11836.36 175 Penicillin Normal
5696.55 481 Penicillin Abnormal

Table 73: OG ARF Healthcare Data Part 2 ϵ = 1

Name Age Gender Blood Type Medical Condition

Kenneth Leonard 57 Male A+ Hypertension
Kevin Williams 106 Male O- Arthritis
Christina Gentry 44 Male AB- Arthritis
Danielle Daniels 52 Female B- Diabetes
Brooke Burns 82 Male AB- Cancer

Table 74: DP ARF Healthcare Data Part 1 ϵ = 1

Billing Amount Room Number Medication Test Results

31822.23 390 Aspirin Normal
34732.82 352 Aspirin Abnormal
25458.48 245 Lipitor Inconclusive
36739.01 241 Lipitor Abnormal
6654.31 237 Aspirin Inconclusive

Table 75: DP ARF Healthcare Data Part 2 ϵ = 1
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Figure 14: Density distribution for Healthcare ϵ = 1

Figure 15: PCA analysis for Healthcare ϵ = 1
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Features Original Data OG ARF Data DP ARF Data

Age vs Billing Amount -0.0038 -0.0064 -0.0019
Age vs Room Number -0.0007 -0.0034 0.0027

Billing Amount vs Room Number -0.0029 -0.0024 -0.0051

Table 76: Correlation Matrices for Healthcare ϵ = 1

Feature OG ARF DP ARF

Age 1.2608 1.2965
Billing Amount 1149.3753 1099.1245
Room Number 6.6086 5.3032

Table 77: Wasserstein Distance for Healthcare ϵ = 1

Feature OG ARF DP ARF

Age 27.5540 27.8962
Billing Amount 19564.2468 19789.1707
Room Number 161.8494 163.3155

Table 78: RMSE for Healthcare ϵ = 1

Feature OG ARF DP ARF

Age 22.4777 22.6945
Billing Amount 15948.3541 16147.0625
Room Number 131.76081 132.8233

Table 79: MAE for Healthcare ϵ = 1

ARF Value

OG 0.8253
DP 0.8245

Table 80: Classification Accuracy for Healthcare ϵ = 1

ARF Value

OG 0.4428
DP 0.4515

Table 81: Reconstruction Attack Error for Healthcare ϵ = 1
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For adult epsilon = 0.1

Age Workclass Education Occupation

39 State-gov Bachelors Adm-clerical
50 Self-emp-not-inc Bachelors Exec-managerial
38 Private HS-grad Handlers-cleaners
53 Private 11th Handlers-cleaners
28 Private Bachelors Prof-specialty

Table 82: Original Data for Adult ϵ = 0.1

Age Workclass Education Occupation

74 ? Masters ?
49 Private Assoc-acdm Tech-support
39 Private Some-college Exec-managerial
47 Local-gov 10th Protective-serv
41 Private HS-grad Craft-repair

Table 83: OG ARF Data for Adult ϵ = 0.1

Age Workclass Education Occupation

48 State-gov Masters Adm-clerical
47 Federal-gov HS-grad Adm-clerical
55 Private Some-college Exec-managerial
48 Self-emp-not-inc Bachelors Exec-managerial
39 Private HS-grad Sales

Table 84: DP ARF Data for Adult ϵ = 0.1
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Figure 16: Density distribution for Adult Part 1 ϵ = 0.1

Figure 17: Density distribution for Adult Part 2 ϵ = 0.1
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Figure 18: PCA analysis for Adult ϵ = 0.1

Features Original Data OG ARF Data DP ARF Data

Age 1.0000 1.0000 1.0000
Fnlwgt -0.0766 -0.0721 0.0059

Education Num 0.0365 0.0194 0.0413
Capital Gain 0.0777 0.0972 0.0504
Capital Loss 0.0578 0.0625 0.0348

Hours per Week 0.0688 0.0768 0.0355

Table 85: Correlation Matrices for Adult ϵ = 0.1

Feature OG ARF DP ARF

Age 0.2214 3.7907
Fnlwgt 5414.3372 37159.7450

Education Num 0.3016 0.9178
Capital Gain 749.7283 4935.6195
Capital Loss 69.9394 292.7822

Hours per Week 1.5807 6.3299

Table 86: Wasserstein Distances for Adult ϵ = 0.1
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Feature OG ARF DP ARF

Workclass 3.8369 7911.3941
Education 18.7182 1615.2482

Marital Status 4.3219 1885.0502
Occupation 12.6491 1309.0290
Relationship 4.4634 1286.4095

Race 3.5649 3962.1131
Sex 1.9867 41.5534

Native Country ∞ 6387.2342
Income 0.1619 624.3457

Table 87: Chi-Square Tests for Adult ϵ = 0.1

Feature OG ARF DP ARF

Age 19.3568 29.6035
Fnlwgt 149636.8829 249691.3420

Education Num 3.6857 5.4593
Capital Gain 10300.8001 25770.0017
Capital Loss 553.3943 1041.7032

Hours per Week 17.4520 30.8195

Table 88: RMSE for Adult ϵ = 0.1

Feature OG ARF DP ARF

Age 15.4966 18.7283
Fnlwgt 114600.2252 140842.3979

Education Num 2.8013 3.4639
Capital Gain 2565.5560 6585.2397
Capital Loss 208.3861 436.7987

Hours per Week 12.9424 17.4454

Table 89: MAE for Adult ϵ = 0.1

ARF Value

OG 0.8240
DP 0.6686

Table 90: Classification Accuracy for Adult ϵ = 0.1
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ARF Value

OG 250.1662
DP 269.4452

Table 91: Reconstruction Attack Error for Adult ϵ = 0.1

For adult epsilon = 1

Age Workclass Education Marital Status

39 State-gov Bachelors Never-married
50 Self-emp-not-inc Bachelors Married-civ-spouse
38 Private HS-grad Divorced
53 Private 11th Married-civ-spouse
28 Private Bachelors Married-civ-spouse

Table 92: Original Data Sample for Adult ϵ = 1.0

Age Workclass Education Marital Status

21 Private HS-grad Married-civ-spouse
46 Private Assoc Married-civ-spouse
27 ? Some-college Married-civ-spouse
75 ? Some-college Married-civ-spouse
42 State-gov HS-grad Married-civ-spouse

Table 93: OG ARF Data Sample for Adult ϵ = 1.0

Age Workclass Education Marital Status

24 Private Masters Divorced
27 Local-gov HS-grad Never-married
45 Private Assoc Married-civ-spouse
21 Private Some-college Never-married
56 Self-emp-not-inc HS-grad Married-civ-spouse

Table 94: DP ARF Data Sample for Adult ϵ = 1.0
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Figure 19: Density distribution for Adult Part 1 ϵ = 1

Figure 20: Density distribution for Adult Part 2 ϵ = 1
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Figure 21: PCA analysis for Adult ϵ = 1

Features Original Data OG ARF Data DP ARF Data

Age 1.0000 1.0000 1.0000
Fnlwgt -0.0766 -0.0697 -0.0677

Education Num 0.0365 0.0245 0.0403
Capital Gain 0.0777 0.1020 0.0915
Capital Loss 0.0578 0.0648 0.0684

Hours per Week 0.0688 0.0765 0.0589

Table 95: Correlation Matrices for Adult ϵ = 1.0

Feature OG ARF DP ARF

Age 0.3221 0.3377
Fnlwgt 4851.0239 6277.4043

Education Num 0.3251 0.4910
Capital Gain 740.1327 1826.7626
Capital Loss 86.0784 163.6468

Hours per Week 1.5608 1.6994

Table 96: Wasserstein Distances for Adult ϵ = 1.0
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Feature OG ARF DP ARF

Workclass 11.9714 4751.8106
Education 13.1787 1359.2558

Marital Status 3.6137 1698.6054
Occupation 11.2638 961.6070
Relationship 5.4163 1291.7518

Race 5.1088 2822.8779
Sex 0.5349 115.6228

Native Country 53.9169 4331.7595
Income 0.0284 312.0827

Table 97: Chi-Square Tests for Adult ϵ = 1.0

Feature OG ARF DP ARF

Age 19.2654 19.4251
Fnlwgt 151081.7418 151746.2248

Education Num 3.6755 3.7139
Capital Gain 10537.4007 10968.1428
Capital Loss 550.0625 564.7148

Hours per Week 17.5370 17.7166

Table 98: RMSE for Adult ϵ = 1.0

Feature OG ARF DP ARF

Age 15.3875 15.4439
Fnlwgt 113848.5477 114413.2851

Education Num 2.8206 2.8668
Capital Gain 2577.9933 3558.1125
Capital Loss 219.2349 296.3991

Hours per Week 13.0036 13.0327

Table 99: MAE for Adult ϵ = 1.0

ARF Value

OG 0.8268
DP 0.7469

Table 100: Classification Accuracy for Adult ϵ = 1.0
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ARF Value

OG 248.3583
DP 311.3938

Table 101: Reconstruction Attack Error for Adult ϵ = 1.0

Appendix C: User Manual for running the scripts

1 By following the below directory structure after downloading the

2 supplementary materials and ensuring the given packages are installed

3 you can run the test scripts.

4

5 Note: to change the epsilon value edit the epsilon parameter in the

DP_ARF constructor of the test scripts.

6

7 ## Directory Structure

8

9 Supplementary material/

10 dp_arf.py

11 datasets/

12 <dataset_files >

13 testscripts/

14 adult.py

15 health.py

16 insurance.py

17

18

19 - ‘datasets/‘: Directory containing the dataset files.

20 - ‘dp_arf.py ‘: Python file containing the ARF class with implemented

Differential Privacy.

21 - ‘testscripts /‘: Directory containing the scripts to generate and

evaluate synthetic data.

22

23 ## Prerequisites

24

25 Ensure you have the following packages installed:

26

27 - numpy

28 - pandas

29 - matplotlib

30 - seaborn

31 - scikit -learn

32 - scipy

33 - arfpy

34

35 You can install these packages using pip:

36 ‘pip install numpy pandas matplotlib seaborn scikit -learn scipy arfpy ‘

37

38

39 ## Running the Scripts

40
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41 1. Adult Dataset Script

42 To run the script for the UCI Adult dataset:

43 ‘python testscripts/adult.py‘

44

45 2. Health Dataset Script

46 To run the script for the Healthcare dataset:

47 ‘python testscripts/health.py‘

48

49 3. Insurance Dataset Script

50 To run the script for the Insurance dataset:

51 ‘python testscripts/insurance.py‘


	Introduction
	Motivation and Aims
	Objectives and Summary

	Background
	Density Estimation and Generative Modeling
	Tree Based Models
	Privacy
	Federated Learning

	Related Work
	Deep Neural Networks vs Tree Based Models
	Generative Trees and Forests
	Adversarial Random Forests
	Differential Privacy
	Differential Privacy in Generative Adversarial Network
	Differential Privacy in Federated Boosted Decision Trees

	Approach
	Design
	Theoretical definitions and Theorems
	Laplace Mechanism:
	Exponential Mechanism:

	Implementation
	Enhancing Density Estimation (FORDE) with Differential Privacy
	Steps for Adding Differential Privacy to Mean for Numeric Features
	Steps for Adding Differential Privacy to Class Probabilities for Categorical features

	Synthetic Data Generation (FORGE)
	Objective:
	Steps:


	Alternate and Failed Approaches
	Federated Boosted Differentially Private Generative Trees
	Differentially Private Generative Trees and Forests or Adversarial Random Forest

	Experimental Design
	Data Acquisition
	Metrics and Plots for Evaluation


	Results and Evaluation
	Health Insurance Dataset
	Epsilon = 0.5
	Epsilon = 0.1
	Epsilon = 1.0

	Healthcare Dataset
	Epsilon = 0.5
	Epsilon = 0.1

	Adult Dataset
	Epsilon = 0.5


	Legal, Social, Ethical and Professional Issues
	Conclusion
	Future Work
	Lessons Learned

	References
	Appendix

