
Jon Bodner

Learning 
Go
An Idiomatic Approach to  
Real-World Go Programming





Praise for Learning Go

“Go is unique and even experienced programmers have to unlearn a few things and think
differently about software. Learning Go does a good job of working through the big

features of the language while pointing out idiomatic code, pitfalls,
and design patterns along the way.”

—Aaron Schlesinger, Sr. Engineer, Microsoft

“Jon has been a critical voice in the Go community for many years and we have been
strongly benefitted from his talks and articles. With Learning Go, Jon has written the

programmers’ guide to learning Go. It strikes just the right balance of giving a
good overview of what you need to know without rehashing

well understood concepts from other languages.”
—Steve Francia, Go language product lead, Google,

and author of Hugo, Cobra, and Viper

“Bodner gets Go. In clear, lively prose, he teaches the language from its basics to advanced
topics like reflection and C interop. He demonstrates through numerous examples how to

write idiomatic Go, with its emphasis on clarity and simplicity. He also takes the time to
explain the underlying concepts that can affect your program’s behavior, like the effects of

pointers on memory layout and garbage collection. Beginners who read this book
will come up to speed quickly, and even experienced Go

programmers are likely to learn something."
—Jonathan Amsterdam,

Software Engineer on the Go team at Google



"Learning Go is the essential introduction to what makes the Go programming language
unique as well as the design patterns and idioms that make it so powerful. Jon Bodner

manages to connect the fundamentals of the language to Go’s philosophy,
guiding readers to write Go the way it was meant to be written.”

—Robert Liebowitz, Software Engineer at Morning Consult

“Jon wrote a book that does more than just reference Go; it provides an idiomatic and
practical understanding of the language. Jon’s industry experience is what drives this

book, and it will help those looking to be immediately productive in the language.”
—William Kennedy, Managing Partner at Ardan Labs



Jon Bodner

Learning Go
An Idiomatic Approach to

Real-World Go Programming

FIRST EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-492-07721-3

[LSI]

Learning Go
by Jon Bodner

Copyright © 2021 Jon Bodner. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Developmental Editor: Michele Cronin
Production Editor: Beth Kelly
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Piper Editorial Consulting, LLC

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

March 2021:  First Edition

Revision History for the First Edition
2021-03-02: First Release
2021-05-14: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492077213 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Go, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492077213


Table of Contents

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii

1. Setting Up Your Go Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Installing the Go Tools                                                                                                      1
The Go Workspace                                                                                                             2
The go Command                                                                                                              3

go run and go build                                                                                                        3
Getting Third-Party Go Tools                                                                                      5
Formatting Your Code                                                                                                   6

Linting and Vetting                                                                                                            8
Choose Your Tools                                                                                                             9

Visual Studio Code                                                                                                         9
GoLand                                                                                                                          10
The Go Playground                                                                                                      11

Makefiles                                                                                                                           13
Staying Up to Date                                                                                                           14
Wrapping Up                                                                                                                    16

2. Primitive Types and Declarations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Built-in Types                                                                                                                   17

The Zero Value                                                                                                             17
Literals                                                                                                                            18
Booleans                                                                                                                         19
Numeric Types                                                                                                              20
A Taste of Strings and Runes                                                                                      26
Explicit Type Conversion                                                                                            26

var Versus :=                                                                                                                     27
Using const                                                                                                                        29

v



Typed and Untyped Constants                                                                                       31
Unused Variables                                                                                                              32
Naming Variables and Constants                                                                                  33
Wrapping Up                                                                                                                    34

3. Composite Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Arrays—Too Rigid to Use Directly                                                                                35
Slices                                                                                                                                   37

len                                                                                                                                   38
append                                                                                                                            39
Capacity                                                                                                                         39
make                                                                                                                               41
Declaring Your Slice                                                                                                     42
Slicing Slices                                                                                                                  43
Converting Arrays to Slices                                                                                        46
copy                                                                                                                                46

Strings and Runes and Bytes                                                                                          48
Maps                                                                                                                                   51

Reading and Writing a Map                                                                                        53
The comma ok Idiom                                                                                                  54
Deleting from Maps                                                                                                     54
Using Maps as Sets                                                                                                       55

Structs                                                                                                                                56
Anonymous Structs                                                                                                      58
Comparing and Converting Structs                                                                          59

Wrapping Up                                                                                                                    60

4. Blocks, Shadows, and Control Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61
Blocks                                                                                                                                 61

Shadowing Variables                                                                                                    62
Detecting Shadowed Variables                                                                                   64

if                                                                                                                                          65
for, Four Ways                                                                                                                   67

The Complete for Statement                                                                                       67
The Condition-Only for Statement                                                                           68
The Infinite for Statement                                                                                           68
break and continue                                                                                                       69
The for-range Statement                                                                                             71
Labeling Your for Statements                                                                                      76
Choosing the Right for Statement                                                                              77

switch                                                                                                                                 78
Blank Switches                                                                                                                  81

vi | Table of Contents



Choosing Between if and switch                                                                                    83
goto—Yes, goto                                                                                                                 83
Wrapping Up                                                                                                                    86

5. Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Declaring and Calling Functions                                                                                   87

Simulating Named and Optional Parameters                                                          88
Variadic Input Parameters and Slices                                                                        89
Multiple Return Values                                                                                                90
Multiple Return Values Are Multiple Values                                                            91
Ignoring Returned Values                                                                                           91
Named Return Values                                                                                                  92
Blank Returns—Never Use These!                                                                             93

Functions Are Values                                                                                                       94
Function Type Declarations                                                                                        96
Anonymous Functions                                                                                                96

Closures                                                                                                                             97
Passing Functions as Parameters                                                                               98
Returning Functions from Functions                                                                        99

defer                                                                                                                                 100
Go Is Call By Value                                                                                                        104
Wrapping Up                                                                                                                  106

6. Pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
A Quick Pointer Primer                                                                                                107
Don’t Fear the Pointers                                                                                                  111
Pointers Indicate Mutable Parameters                                                                        113
Pointers Are a Last Resort                                                                                            117
Pointer Passing Performance                                                                                       118
The Zero Value Versus No Value                                                                                 118
The Difference Between Maps and Slices                                                                   119
Slices as Buffers                                                                                                              122
Reducing the Garbage Collector’s Workload                                                             123
Wrapping Up                                                                                                                  127

7. Types, Methods, and Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129
Types in Go                                                                                                                     129
Methods                                                                                                                           130

Pointer Receivers and Value Receivers                                                                    131
Code Your Methods for nil Instances                                                                      133
Methods Are Functions Too                                                                                     134
Functions Versus Methods                                                                                        135

Table of Contents | vii



Type Declarations Aren’t Inheritance                                                                     135
Types Are Executable Documentation                                                                    136
iota Is for Enumerations—Sometimes                                                                    137

Use Embedding for Composition                                                                                139
Embedding Is Not Inheritance                                                                                    140
A Quick Lesson on Interfaces                                                                                      141
Interfaces Are Type-Safe Duck Typing                                                                       142
Embedding and Interfaces                                                                                            146
Accept Interfaces, Return Structs                                                                                146
Interfaces and nil                                                                                                            147
The Empty Interface Says Nothing                                                                              148
Type Assertions and Type Switches                                                                            150
Use Type Assertions and Type Switches Sparingly                                                   152
Function Types Are a Bridge to Interfaces                                                                 154
Implicit Interfaces Make Dependency Injection Easier                                           155
Wire                                                                                                                                 159
Go Isn’t Particularly Object-Oriented (and That’s Great)                                        159
Wrapping Up                                                                                                                  160

8. Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161
How to Handle Errors: The Basics                                                                              161
Use Strings for Simple Errors                                                                                       163
Sentinel Errors                                                                                                                163
Errors Are Values                                                                                                           165
Wrapping Errors                                                                                                            168
Is and As                                                                                                                          170
Wrapping Errors with defer                                                                                         173
panic and recover                                                                                                           174
Getting a Stack Trace from an Error                                                                           176
Wrapping Up                                                                                                                  176

9. Modules, Packages, and Imports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
Repositories, Modules, and Packages                                                                         177
go.mod                                                                                                                             178
Building Packages                                                                                                          178

Imports and Exports                                                                                                  178
Creating and Accessing a Package                                                                           179
Naming Packages                                                                                                       181
How to Organize Your Module                                                                                182
Overriding a Package’s Name                                                                                   183
Package Comments and godoc                                                                                184
The internal Package                                                                                                  185

viii | Table of Contents



The init Function: Avoid if Possible                                                                        186
Circular Dependencies                                                                                              187
Gracefully Renaming and Reorganizing Your API                                               188

Working with Modules                                                                                                 190
Importing Third-Party Code                                                                                    190
Working with Versions                                                                                              192
Minimum Version Selection                                                                                     194
Updating to Compatible Versions                                                                            195
Updating to Incompatible Versions                                                                         196
Vendoring                                                                                                                    197
pkg.go.dev                                                                                                                    198
Additional Information                                                                                             198

Publishing Your Module                                                                                               199
Versioning Your Module                                                                                               199
Module Proxy Servers                                                                                                   200

Specifying a Proxy Server                                                                                         201
Private Repositories                                                                                                   201

Wrapping Up                                                                                                                  202

10. Concurrency in Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203
When to Use Concurrency                                                                                           203
Goroutines                                                                                                                      205
Channels                                                                                                                          206

Reading, Writing, and Buffering                                                                              206
for-range and Channels                                                                                             208
Closing a Channel                                                                                                      208
How Channels Behave                                                                                               209

select                                                                                                                                209
Concurrency Practices and Patterns                                                                           212

Keep Your APIs Concurrency-Free                                                                         212
Goroutines, for Loops, and Varying Variables                                                       213
Always Clean Up Your Goroutines                                                                          214
The Done Channel Pattern                                                                                       215
Using a Cancel Function to Terminate a Goroutine                                             216
When to Use Buffered and Unbuffered Channels                                                 216
Backpressure                                                                                                               217
Turning Off a case in a select                                                                                    219
How to Time Out Code                                                                                             219
Using WaitGroups                                                                                                      220
Running Code Exactly Once                                                                                    222
Putting Our Concurrent Tools Together                                                                223

When to Use Mutexes Instead of Channels                                                               227

Table of Contents | ix



Atomics—You Probably Don’t Need These                                                               230
Where to Learn More About Concurrency                                                               230
Wrapping Up                                                                                                                  231

11. The Standard Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
io and Friends                                                                                                                 233
time                                                                                                                                  238

Monotonic Time                                                                                                         240
Timers and Timeouts                                                                                                 241

encoding/json                                                                                                                 241
Use Struct Tags to Add Metadata                                                                             241
Unmarshaling and Marshaling                                                                                243
JSON, Readers, and Writers                                                                                      243
Encoding and Decoding JSON Streams                                                                 245
Custom JSON Parsing                                                                                               246

net/http                                                                                                                            247
The Client                                                                                                                    247
The Server                                                                                                                   249

Wrapping Up                                                                                                                  253

12. The Context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
What Is the Context?                                                                                                     255
Cancellation                                                                                                                    258
Timers                                                                                                                              261
Handling Context Cancellation in Your Own Code                                                 263
Values                                                                                                                               265
Wrapping Up                                                                                                                  270

13. Writing Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271
The Basics of Testing                                                                                                     271

Reporting Test Failures                                                                                              273
Setting Up and Tearing Down                                                                                  273
Storing Sample Test Data                                                                                          275
Caching Test Results                                                                                                  275
Testing Your Public API                                                                                            276
Use go-cmp to Compare Test Results                                                                      277

Table Tests                                                                                                                       278
Checking Your Code Coverage                                                                                    280
Benchmarks                                                                                                                    283
Stubs in Go                                                                                                                      286
httptest                                                                                                                             291
Integration Tests and Build Tags                                                                                  294

x | Table of Contents



Finding Concurrency Problems with the Race Checker                                          295
Wrapping Up                                                                                                                  297

14. Here There Be Dragons: Reflect, Unsafe, and Cgo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299
Reflection Lets Us Work with Types at Runtime                                                       300

Types, Kinds, and Values                                                                                           301
Making New Values                                                                                                   305
Use Reflection to Check If an Interface’s Value Is nil                                            306
Use Reflection to Write a Data Marshaler                                                              307
Build Functions with Reflection to Automate Repetitive Tasks                          312
You Can Build Structs with Reflection, but Don’t                                                 313
Reflection Can’t Make Methods                                                                               314
Only Use Reflection If It’s Worthwhile                                                                    314

unsafe Is Unsafe                                                                                                             315
Use unsafe to Convert External Binary Data                                                         316
unsafe Strings and Slices                                                                                           319
unsafe Tools                                                                                                                 320

Cgo Is for Integration, Not Performance                                                                   321
Wrapping Up                                                                                                                  324

15. A Look at the Future: Generics in Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325
Generics Reduce Repetitive Code and Increase Type Safety                                   325
Introducing Generics in Go                                                                                         328
Use Type Lists to Specify Operators                                                                            332
Generic Functions Abstract Algorithms                                                                    333
Type Lists Limit Constants and Implementations                                                    334
Things That Are Left Out                                                                                             337
Idiomatic Go and Generics                                                                                          339
Further Futures Unlocked                                                                                            339
Wrapping Up                                                                                                                  340

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341

Table of Contents | xi





Preface

My first choice for a book title was Boring Go because, properly written, Go is boring.

It might seem a bit weird to write a book on a boring topic, so I should explain. Go
has a small feature set that is out of step with most other modern programming lan‐
guages. Well-written Go programs tend to be straightforward and sometimes a bit
repetitive. There’s no inheritance, no generics (yet), no aspect-oriented programming,
no function overloading, and certainly no operator overloading. There’s no pattern
matching, no named parameters, no exceptions. To the horror of many, there are
pointers. Go’s concurrency model is unlike other languages, but it’s based on ideas
from the 1970s, as is the algorithm used for its garbage collector. In short, Go feels
like a throwback. And that’s the point.

Boring does not mean trivial. Using Go correctly requires an understanding of how
its features are intended to fit together. While you can write Go code that looks like
Java or Python, you’re going to be unhappy with the result and wonder what all the
fuss is about. That’s where this book comes in. It walks through the features of Go,
explaining how to best use them to write idiomatic code that can grow.

When it comes to building things that last, being boring is great. No one wants to be
the first person to drive their car over a bridge built with untested techniques that the
engineer thought were cool. The modern world depends on software as much as it
depends on bridges, perhaps more so. Yet many programming languages add features
without thinking about their impact on the maintainability of the codebase. Go is
intended for building programs that last, programs that are modified by dozens of
developers over dozens of years.

Go is boring and that’s fantastic. I hope this book teaches you how to build exciting
projects with boring code.

xiii



Who Should Read This Book
This book is targeted at developers who are looking to pick up a second (or fifth) lan‐
guage. The focus is on people who are new to Go. This ranges from those who don’t
know anything about Go other than it has a cute mascot, to those who have already
worked through a Go tutorial or even written some Go code. The focus for Learning
Go isn’t just how to write programs in Go; it’s how to write Go idiomatically. More
experienced Go developers can find advice on how to best use the newer features of
the language. The most important thing is that the reader wants to learn how to write
Go code that looks like Go.

Experience is assumed with the tools of the developer trade, such as version control
(preferably Git) and IDEs. Readers should be familiar with basic computer science
concepts like concurrency and abstraction, as the book explains how they work in
Go. Some of the code examples are downloadable from GitHub and dozens more can
be tried out online on The Go Playground. While an internet connection isn’t
required, it is helpful when reviewing executable examples. Since Go is often used to
build and call HTTP servers, some examples assume familiarity with basic HTTP
concepts.

While most of Go’s features are found in other languages, Go makes different trade‐
offs, so programs written in it have a different structure. Learning Go starts by look‐
ing at how to set up a Go development environment, and then covers variables, types,
control structures, and functions. If you are tempted to skip over this material, resist
the urge and take a look. It is often the details that make your Go code idiomatic.
Some of what seems obvious at first glance might actually be subtly surprising when
you think about it in depth.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface



Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/learning-go-book.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Go by Jon Bodner
(O’Reilly). Copyright 2021 Jon Bodner, 978-1-492-07721-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/learning-go-book
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com


O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/learn-go.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Writing a book seems like a solitary task, but it doesn’t happen without the help of a
great number of people. I mentioned to Carmen Andoh that I wanted to write a book
on Go and at GopherCon 2019, and she introduced me to Zan McQuade at O’Reilly.
Zan guided me through the acquisition process and continued to provide me advice
while I was writing Learning Go. Michele Cronin edited the text, gave feedback, and

xvi | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/learn-go
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia


listened during the inevitable rough patches. Tonya Trybula’s copy editing and Beth
Kelly’s production editing made my draft production-quality.

While writing, I received critical feedback (and encouragement) from many people
including Jonathan Altman, Jonathan Amsterdam, Johnny Ray Austin, Chris Fauer‐
bach, Chris Hines, Bill Kennedy, Tony Nelson, Phil Pearl, Liz Rice, Aaron Schlesinger,
Chris Stout, Kapil Thangavelu, Claire Trivisonno, Volker Uhrig, Jeff Wendling, and
Kris Zaragoza. I’d especially like to recognize Rob Liebowitz, whose detailed notes
and rapid responses made this book far better than it would have been without his
efforts.

My family put up with me spending nights and weekends at the computer instead of
with them. In particular, my wife Laura graciously pretended that I didn’t wake her up
when I’d come to bed at 1 A.M. or later.

Finally, I want to remember the two people who started me on this path four decades
ago. The first is Paul Goldstein, the father of a childhood friend. In 1982, Paul showed
us a Commodore PET, typed PRINT 2 + 2, and hit the enter key. I was amazed when
the screen said 4 and was instantly hooked. He later taught me how to program and
even let me borrow the PET for a few weeks. Second, I’d like to thank my mother for
encouraging my interest in programming and computers, despite having no idea
what any of it was for. She bought me the BASIC programming cartridge for the Atari
2600, a VIC-20 and then a Commodore 64, along with the programming books that
inspired me to want to write my own someday.

Thank you all for helping make this dream of mine come true.

Preface | xvii





CHAPTER 1

Setting Up Your Go Environment

Every programming language needs a development environment, and Go is no
exception. If you’ve already written a Go program or two, you should have a working
environment, but you might have missed out on some of the newer techniques and
tools. If this is your first time setting up Go on your computer, don’t worry; installing
Go and its supporting tools is easy. After we set up our environment and verify it,
we’ll build a simple program, learn about the different ways to build and run Go code,
and then explore some tools and techniques that make Go development easier.

Installing the Go Tools
To write Go code, you first need to download and install the Go development tools.
The latest version of the tools can be found at the downloads page on the Go website.
Choose the download for your platform and install it. The .pkg installer for Mac and
the .msi installer for Windows automatically install Go in the correct location,
remove any old installations, and put the Go binary in the default executable path.

If you are a Mac developer, you can install Go using Homebrew
with the command brew install go. Windows developers who
use Chocolatey can install Go with the command choco install
golang.

The various Linux and FreeBSD installers are gzipped tar files and expand to a direc‐
tory named go. Copy this directory to /usr/local and add /usr/local/go/bin to your
$PATH so that the go command is accessible:

$ tar -C /usr/local -xzf go1.15.2.linux-amd64.tar.gz
$ echo 'export PATH=$PATH:/usr/local/go/bin' >> $HOME/.profile
$ source $HOME/.profile

1

https://golang.org/dl
https://brew.sh
https://chocolatey.org


Go programs compile to a single binary and do not require any
additional software to be installed in order to run them. Install the
Go development tools only on computers that build Go programs.

You can validate that your environment is set up correctly by opening up a terminal
or command prompt and typing:

$ go version

If everything is set up correctly, you should see something like this printed:

go version go1.15.2 darwin/amd64

This tells you that this is Go version 1.15.2 on Mac OS. (Darwin is the name of the
kernel for Mac OS and amd64 is the name for the 64-bit CPU architecture from both
AMD and Intel.)

If you get an error instead of the version message, it’s likely that you don’t have go in
your executable path, or you have another program named go in your path. On Mac
OS and other Unix-like systems, use which go to see the go command being exe‐
cuted, if any. If it isn’t the go command at /usr/local/go/bin/go, you need to fix your
executable path.

If you’re on Linux or FreeBSD, it’s possible you installed the 64-bit Go development
tools on a 32-bit system or the development tools for the wrong chip architecture.

The Go Workspace
Since the introduction of Go in 2009, there have been several changes in how Go
developers organize their code and their dependencies. Because of this churn, there’s
lots of conflicting advice, and most of it is obsolete.

For modern Go development, the rule is simple: you are free to organize your
projects as you see fit.

However, Go still expects there to be a single workspace for third-party Go tools
installed via go install (see “Getting Third-Party Go Tools” on page 5). By default,
this workspace is located in $HOME/go, with source code for these tools stored in
$HOME/go/src and the compiled binaries in $HOME/go/bin. You can use this default
or specify a different workspace by setting the $GOPATH environment variable.

Whether or not you use the default location, it’s a good idea to explicitly define
GOPATH and to put the $GOPATH/bin directory in your executable path. Explicitly
defining GOPATH makes it clear where your Go workspace is located and adding
$GOPATH/bin to your executable path makes it easier to run third-party tools
installed via go install, which we’ll talk about in a bit.

2 | Chapter 1: Setting Up Your Go Environment



If you are on a Unix-like system using bash, add the following lines to your .profile.
(If you are using zsh, add these lines to .zshrc instead):

export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

You’ll need to source $HOME/.profile to make these changes take effect in your cur‐
rent terminal window.

On Windows, run the following commands at the command prompt:

setx GOPATH %USERPROFILE%\go
setx path "%path%;%USERPROFILE%\bin"

After running these commands, you must close your current command prompt and
open a new one for these changes to take effect.

There are other environment variables that are recognized by the go tool. You can get
a complete list, along with a brief description of each variable, using the go env com‐
mand. Many of them control low-level behavior that can be safely ignored, but we
cover some of these variables when discussing modules and cross-compilation.

Some online resources tell you to set the GOROOT environment
variable. This variable specifies the location where your Go devel‐
opment environment is installed. This is no longer necessary; the
go tool figures this out automatically.

The go Command
Out of the box, Go ships with many development tools. You access these tools via the
go command. They include a compiler, code formatter, linter, dependency manager,
test runner, and more. As we learn how to build high-quality idiomatic Go, we’ll
explore many of these tools throughout the book. Let’s start with the ones that we use
to build Go code and use the go command to build a simple application.

go run and go build
There are two similar commands available via go: go run and go build. Each takes
either a single Go file, a list of Go files, or the name of a package. We are going to
create a simple program and see what happens when we use these commands.

go run

We’ll start with go run. Create a directory called ch1, open up a text editor, enter the
following text, and save it inside ch1 to a file named hello.go:

The go Command | 3



package main

import "fmt"

func main() {
    fmt.Println("Hello, world!")
}

After the file is saved, open up a terminal or command prompt and type:

go run hello.go

You should see Hello, world! printed in the console. If you look inside the directory
after running the go run command, you see that no binary has been saved there; the
only file in the directory is the hello.go file we just created. You might be thinking: I
thought Go was a compiled language. What’s going on?

The go run command does in fact compile your code into a binary. However, the
binary is built in a temporary directory. The go run command builds the binary, exe‐
cutes the binary from that temporary directory, and then deletes the binary after your
program finishes. This makes the go run command useful for testing out small pro‐
grams or using Go like a scripting language.

Use go run when you want to treat a Go program like a script and
run the source code immediately.

go build

Most of the time you want to build a binary for later use. That’s where you use the go
build command. On the next line in your terminal, type:

go build hello.go

This creates an executable called hello (or hello.exe on Windows) in the current
directory. Run it and you unsurprisingly see Hello, world! printed on the screen.

The name of the binary matches the name of the file or package that you passed in. If
you want a different name for your application, or if you want to store it in a different
location, use the -o flag. For example, if we wanted to compile our code to a binary
called “hello_world,” we would use:

go build -o hello_world hello.go

4 | Chapter 1: Setting Up Your Go Environment



Use go build to create a binary that is distributed for other people
to use. Most of the time, this is what you want to do. Use the -o flag
to give the binary a different name or location.

Getting Third-Party Go Tools
While some people choose to distribute their Go programs as pre-compiled binaries,
tools written in Go can also be built from source and installed into your Go work‐
space via the go install command.

Go’s method for publishing code is a bit different than most other languages. Go
developers don’t rely on a centrally hosted service, like Maven Central for Java or the
NPM registry for JavaScript. Instead, they share projects via their source code reposi‐
tories. The go install command takes an argument, which is the location of the
source code repository of the project you want to install, followed by an @ and the
version of the tool you want (if you just want to get the latest version, use @latest). It
then downloads, compiles, and installs the tool into your $GOPATH/bin directory.

Let’s look at a quick example. There’s a great Go tool called hey that load tests HTTP
servers. You can point it at the website of your choosing or an application that you’ve
written. Here’s how to install hey with the go install command:

$ go install github.com/rakyll/hey@latest
go: downloading github.com/rakyll/hey v0.1.4
go: downloading golang.org/x/net v0.0.0-20181017193950-04a2e542c03f
go: downloading golang.org/x/text v0.3.0

This downloads hey and all of its dependencies, builds the program, and installs the
binary in your $GOPATH/bin directory.

As we’ll talk about in “Module Proxy Servers” on page 200, the
contents of Go repositories are cached in proxy servers. Depending
on the repository and the values in your GOPROXY environment
variable, go install may download from a proxy or directly from
a repository. If go install downloads directly from a repository, it
relies on command-line tools being installed on your computer.
For example, you must have Git installed to download from
GitHub.

Now that we have built and installed hey, we can run it with:

$ hey https://www.golang.org

Summary:
  Total: 0.6864 secs
  Slowest: 0.3148 secs

The go Command | 5



  Fastest: 0.0696 secs
  Average: 0.1198 secs
  Requests/sec: 291.3862

If you have already installed a tool and want to update it to a newer version, rerun go
install with the newer version specified or with @latest:

go install github.com/rakyll/hey@latest

Of course, you don’t need to leave tools written in Go in your Go workspace; they are
regular executable binaries and can be stored anywhere on your computer. Likewise,
you don’t have to distribute programs written in Go using go install; you can put a
binary up for download. However, go install is a very convenient way to distribute
Go programs to other Go developers.

Formatting Your Code
One of the chief design goals for Go was to create a language that allowed you to
write code efficiently. This meant having simple syntax and a fast compiler. It also led
Go’s authors to reconsider code formatting. Most languages allow a great deal of flexi‐
bility on how code is laid out. Go does not. Enforcing a standard format makes it a
great deal easier to write tools that manipulate source code. This simplifies the com‐
piler and allows the creation of some clever tools for generating code.

There is a secondary benefit as well. Developers have historically wasted extraordi‐
nary amounts of time on format wars. Since Go defines a standard way of formatting
code, Go developers avoid arguments over One True Brace Style and Tabs vs. Spaces,
For example, Go programs use tabs to indent, and it is a syntax error if the opening
brace is not on the same line as the declaration or command that begins the block.

Many Go developers think the Go team defined a standard format
as a way to avoid developer arguments and discovered the tooling
advantages later. However, Russ Cox has publicly stated that better
tooling was his original motivation.

The Go development tools include a command, go fmt, which automatically refor‐
mats your code to match the standard format. It does things like fixing up the white‐
space for indentation, lining up the fields in a struct, and making sure there is proper
spacing around operators.

There’s an enhanced version of go fmt available called goimports that also cleans up
your import statements. It puts them in alphabetical order, removes unused imports,
and attempts to guess any unspecified imports. Its guesses are sometimes inaccurate,
so you should insert imports yourself.

6 | Chapter 1: Setting Up Your Go Environment

https://oreil.ly/rZEUv


You can download goimports with the command go install golang.org/x/

tools/cmd/goimports@latest. You run it across your project with the command:

goimports -l -w .

The -l flag tells goimports to print the files with incorrect formatting to the console.
The -w flag tells goimports to modify the files in-place. The . specifies the files to be
scanned: everything in the current directory and all of its subdirectories.

The Semicolon Insertion Rule
The go fmt command won’t fix braces on the wrong line, because of the semicolon
insertion rule. Like C or Java, Go requires a semicolon at the end of every statement.
However, Go developers never put the semicolons in themselves; the Go compiler
does it for them following a very simple rule described in Effective Go:

If the last token before a newline is any of the following, the lexer inserts a semicolon
after the token:

• An identifier (which includes words like int and float64)
• A basic literal such as a number or string constant
• One of the tokens: “break,” “continue,” “fallthrough,” “return,” “++,” “--,” “),” or “}”

With this simple rule in place, you can see why putting a brace in the wrong place
breaks. If you write your code like this:

func main()
{
    fmt.Println("Hello, world!")
}

the semicolon insertion rule sees the “)” at the end of the func main() line and turns
that into:

func main();
{
    fmt.Println("Hello, world!");
};

and that’s not valid Go.

The semicolon insertion rule is one of the things that makes the Go compiler simpler
and faster, while at the same time enforcing a coding style. That’s clever.

The go Command | 7

https://oreil.ly/hTOHU


Always run go fmt or goimports before compiling your code!

Linting and Vetting
While go fmt ensures your code is formatted correctly, it’s just the first step in ensur‐
ing that your code is idiomatic and of high quality. All Go developers should read
through Effective Go and the Code Review Comments page on Go’s wiki to under‐
stand what idiomatic Go code looks like.

There are tools that help to enforce this style. The first is called golint. (The term
“linter” comes from the Unix team at Bell Labs; the first linter was written in 1978.) It
tries to ensure your code follows style guidelines. Some of the changes it suggests
include properly naming variables, formatting error messages, and placing comments
on public methods and types. These aren’t errors; they don’t keep your programs
from compiling or make your program run incorrectly. Also, you cannot automati‐
cally assume that golint is 100% accurate: because the kinds of issues that golint
finds are more fuzzy, it sometimes has false positives and false negatives. This means
that you don’t have to make the changes that golint suggests. But you should take the
suggestions from golint seriously. Go developers expect code to look a certain way
and follow certain rules, and if your code does not, it sticks out.

Install golint with the following command:

go install golang.org/x/lint/golint@latest

And run it with:

golint ./...

That runs golint over your entire project.

There is another class of errors that developers run into. The code is syntactically
valid, but there are mistakes that are not what you meant to do. This includes things
like passing the wrong number of parameters to formatting methods or assigning val‐
ues to variables that are never used. The go tool includes a command called go vet to
detect these kinds of errors. Run go vet on your code with the command:

go vet ./...

There are additional third-party tools to check code style and scan for potential bugs.
However, running multiple tools over your code slows down the build because each
tool spends time scanning the source code for itself. Rather than use separate tools,
you can run multiple tools together with golangci-lint. It combines golint, go

8 | Chapter 1: Setting Up Your Go Environment

https://oreil.ly/GBRut
https://oreil.ly/FHi_h
https://oreil.ly/O15u-


vet, and an ever-increasing set of other code quality tools. Once it is installed, you
run golangci-lint with the command:

golangci-lint run

Because golangci-lint runs so many tools (as of this writing, it runs 10 different
linters by default and allows you to enable another 50), it’s inevitable that your team
may disagree with some of its suggestions. You can configure which linters are
enabled and which files they analyze by including a file named .golangci.yml at the
root of your project. Check out the documentation for the file format.

I recommend that you start off using go vet as a required part of your automated
build process and golint as part of your code review process (since golint might
have false positives and false negatives, you can’t require your team to fix every issue
it reports). Once you are used to their recommendations, try out golangci-lint and
tweak its settings until it works for your team.

Make golint and go vet (or golangci-lint) part of your devel‐
opment process to avoid common bugs and nonidiomatic code.
But if you are using golangci-lint, make sure your team agrees
on the rules that you want to enforce!

Choose Your Tools
While we wrote a small Go program using nothing more than a text editor and the go
command, you’ll probably want more advanced tools when working on larger
projects. Luckily, there are excellent Go development tools for most text editors and
IDEs. If you don’t already have a favorite tool, two of the most popular Go develop‐
ment environments are Visual Studio Code and Goland.

Visual Studio Code
If you are looking for a free development environment, Visual Studio Code from
Microsoft is your best option. Since it was released in 2015, VS Code has become the
most popular source code editor for developers. It does not ship with Go support, but
you can make it a Go development environment by downloading the Go extension
from the extensions gallery.

VS Code’s Go support relies on third-party tools. This includes the Go Development
tools, The Delve debugger, and gopls, a Go Language Server developed by the Go
team. While you need to install the Go development kit yourself, the Go extension
will install Delve and gopls for you.

Choose Your Tools | 9

https://oreil.ly/IKa_S
https://oreil.ly/vufj1
https://oreil.ly/MwCWT
https://oreil.ly/zktT8
https://oreil.ly/sosLu
https://oreil.ly/TLapT


What is a language server? It’s a standard specification for an API
that enables editors to implement intelligent editing behavior, like
code completion, linting, and finding usages. You can check out the
language server protocol.

Once your tools are set up, you can then open your project and work with it.
Figure 1-1 shows you what your project window should look like. Getting Started
with VS Code Go is a walkthrough that demonstrates the VS Code Go extension.

Figure 1-1. Visual Studio Code

GoLand
GoLand is the Go-specific IDE from JetBrains. While JetBrains is best known for
Java-centric tools, GoLand is an excellent Go development environment. As you can
see in Figure 1-2, GoLand’s user interface looks similar to IntelliJ, PyCharm, Ruby‐
Mine, WebStorm, Android Studio, or any of the other JetBrains IDEs. Its Go support
includes refactoring, syntax highlighting, code completion and navigation, documen‐
tation pop-ups, a debugger, code coverage, and more. In addition to Go support,
GoLand includes JavaScript/HTML/CSS and SQL database tools. Unlike VS Code,
GoLand doesn’t require you to download any additional tools to get it to work.

10 | Chapter 1: Setting Up Your Go Environment

https://oreil.ly/2T2fw
https://oreil.ly/XhoeB
https://oreil.ly/XhoeB
https://oreil.ly/6cXjL


Figure 1-2. GoLand

If you already subscribe to IntelliJ Ultimate (or qualify for a free license), you can add
Go support via a plug-in. Otherwise, you have to pay for GoLand; there is no free
version available.

The Go Playground
There’s one more important tool for Go development, but this is one that you don’t
install. Visit The Go Playground and you’ll see a window that resembles Figure 1-3. If
you have used a command-line environment like irb, node, or python, you’ll find
The Go Playground has a very similar feel. It gives you a place to try out and share
small programs. Enter your program into the window and click the Run button to
execute the code. The Format button runs go fmt on your program, and checking the
Imports checkbox cleans up your imports like goimports. The Share button creates a
unique URL that you can send to someone else to take a look at your program or to
come back to your code at a future date (the URLs have been persistent for a long
time, but I wouldn’t use the playground as your source code repository).

Choose Your Tools | 11

http://play.golang.org


Figure 1-3. The Go Playground

As you can see in Figure 1-4, you can even simulate multiple files by separating each
file with a line that looks like -- filename.go --.

Be aware that The Go Playground is someone else’s computer (in particular, it is Goo‐
gle’s computer), so you don’t have completely free rein. It always runs the latest stable
version of Go. You cannot make network connections, and processes that run for too
long or use too much memory are stopped. If your program depends on time, be
aware that the clock is set to November 10, 2009, 23:00:00 UTC (the date of the initial
announcement of Go). But even with these limitations, The Go Playground is a very
useful way to try out new ideas without creating a new project locally. Throughout
this book, you’ll find links to The Go Playground so you can run code examples
without copying them onto your computer.

Do not put sensitive information (such as personally identifiable
information, passwords, or private keys) into your playground!
If you click the Share button, the information is saved on Google’s
servers and is accessible to anyone who has the associated
Share URL. If you do this by accident, contact Google at
security@golang.org with the URL and the reason the content needs
to be removed.

12 | Chapter 1: Setting Up Your Go Environment

mailto:security@golang.org


Figure 1-4. The Go Playground supports multiple files

Makefiles
An IDE is nice to use, but it’s hard to automate. Modern software development relies
on repeatable, automatable builds that can be run by anyone, anywhere, at any time.
This avoids the age-old developer excuse of “It works on my machine!” The way to do
this is to use some kind of script to specify your build steps. Go developers have
adopted make as their solution. You may not be familiar with make, but it’s been used
to build programs on Unix systems since 1976.

Here’s a sample Makefile to add to our very simple project:

.DEFAULT_GOAL := build

fmt:
        go fmt ./...
.PHONY:fmt

lint: fmt
        golint ./...
.PHONY:lint

vet: fmt
        go vet ./...
.PHONY:vet

Makefiles | 13



build: vet
        go build hello.go
.PHONY:build

Even if you haven’t seen a Makefile before, it’s not too difficult to figure out what is
going on. Each possible operation is called a target. The .DEFAULT_GOAL defines which
target is run when no target is specified. In our case, we are going to run the build
target. Next we have the target definitions. The word before the colon (:) is the name
of the target. Any words after the target (like vet in the line build: vet) are the
other targets that must be run before the specified target runs. The tasks that are per‐
formed by the target are on the indented lines after the target. (The .PHONY line keeps
make from getting confused if you ever create a directory in your project with the
same name as a target.)

Once the Makefile is in the ch1 directory, type:

make

You should see the following output:

go fmt ./...
go vet ./...
go build hello.go

By entering a single command, we make sure the code was formatted correctly, vet
the code for nonobvious errors, and compile. We can also run the linter with make
lint, vet the code with make vet, or just run the formatter with make fmt. This
might not seem like a big improvement, but ensuring that formatting and vetting
always happen before a developer (or a script running on a continuous integration
build server) triggers a build means you won’t miss any steps.

One drawback to Makefiles is that they are exceedingly picky. You must indent the
steps in a target with a tab. They are also not supported out-of-the-box on Windows.
If you are doing your Go development on a Windows computer, you need to install
make first. The easiest way to do so is to first install a package manager like Chocola‐
tey and then use it to install make (for Chocolatey, the command is choco install
make.)

Staying Up to Date
As with all programming languages, there are periodic updates to the Go develop‐
ment tools. Go programs are native binaries that don’t rely on a separate runtime, so
you don’t need to worry that updating your development environment could cause
your currently deployed programs to fail. You can have programs compiled with dif‐
ferent versions of Go running simultaneously on the same computer or virtual
machine.

14 | Chapter 1: Setting Up Your Go Environment

https://chocolatey.org
https://chocolatey.org


Since Go 1.2, there has been a new major release roughly every six months. There are
also minor releases with bug and security fixes released as needed. Given the rapid
development cycles and the Go team’s commitment to backward compatibility, Go
releases tend to be incremental rather than expansive. The Go Compatibility Promise
is a detailed description of how the Go team plans to avoid breaking Go code. It says
that there won’t be backward-breaking changes to the language or the standard
library for any Go version that starts with 1, unless the change is required for a bug or
security fix. However, there might be (and have been) backward-incompatible
changes to the flags or functionality of the go commands.

Despite these backward compatibility guarantees, bugs do happen, so it’s natural to
want to make sure that a new release doesn’t break your programs. One option is to
install a secondary Go environment. For example, if you are currently running ver‐
sion 1.15.2 and wanted to try out version 1.15.6, you would use the following
commands:

$ go get golang.org/dl/go.1.15.6
$ go1.15.6 download

You can then use the command go1.15.6 instead of the go command to see if version
1.15.6 works for your programs:

$ go1.15.6 build

Once you have validated that your code works, you can delete the secondary environ‐
ment by finding its GOROOT, deleting it, and then deleting its binary from your
$GOPATH/bin directory. Here’s how to do that on Mac OS, Linux, and BSD:

$ go1.15.6 env GOROOT
/Users/gobook/sdk/go1.15.6
$ rm -rf $(go1.15.6 env GOROOT)
$ rm $(go env GOPATH)/bin/go1.15.6

When you are ready to update the Go development tools installed on your computer,
Mac and Windows users have the easiest path. Those who installed with brew or
chocolatey can use those tools to update. Those who used the installers on https://
golang.org/dl can download the latest installer, which removes the old version when it
installs the new one.

Linux and BSD users need to download the latest version, move the old version to a
backup directory, expand the new version, and then delete the old version:

$ mv /usr/local/go /usr/local/old-go
$ tar -C /usr/local -xzf go1.15.2.linux-amd64.tar.gz
$ rm -rf /usr/local/old-go

Staying Up to Date | 15

https://oreil.ly/p_NMY
https://golang.org/dl
https://golang.org/dl


Wrapping Up
In this chapter, we learned how to install and configure our Go development environ‐
ment. We also talked about tools for building Go programs and ensuring code qual‐
ity. Now that our environment is ready, we’re on to our next chapter, where we
explore the built-in types in Go and how to declare variables.

16 | Chapter 1: Setting Up Your Go Environment



CHAPTER 2

Primitive Types and Declarations

Now that we have our development environment set up, it’s time to start looking at
Go’s language features and how to best use them. When trying to figure out what
“best” means, there is one overriding principle: write your programs in a way that
makes your intentions clear. As we go through features, we’ll look at the options and
I’ll explain why I find a particular approach produces clearer code.

We’ll start by looking at primitive types and variables. While every programmer has
experience with these concepts, Go does some things differently, and there are subtle
differences between Go and other languages.

Built-in Types
Go has many of the same built-in types as other languages: booleans, integers, floats,
and strings. Using these types idiomatically is sometimes a challenge for developers
who are transitioning from another language. We are going to look at these types and
see how they work best in Go. Before we review the types, let’s cover some of the con‐
cepts that apply to all types.

The Zero Value
Go, like most modern languages, assigns a default zero value to any variable that is
declared but not assigned a value. Having an explicit zero value makes code clearer
and removes a source of bugs found in C and C++ programs. As we talk about each
type, we will also cover the zero value for the type.

17



Literals
A literal in Go refers to writing out a number, character, or string. There are four
common kinds of literals that you’ll find in Go programs. (There’s a rare fifth kind of
literal that we’ll cover when discussing complex numbers.)

Integer literals are sequences of numbers; they are normally base ten, but different
prefixes are used to indicate other bases: 0b for binary (base two), 0o for octal (base
eight), or 0x for hexadecimal (base sixteen). You can use either or upper- or lowercase
letters for the prefix. A leading 0 with no letter after it is another way to represent an
octal literal. Do not use it, as it is very confusing.

To make it easier to read longer integer literals, Go allows you to put underscores in
the middle of your literal. This allows you to, for example, group by thousands in
base ten (1_234). These underscores have no effect on the value of the number. The
only limitations on underscores are that they can’t be at the beginning or end of num‐
bers, and you can’t have them next to each other. You could put an underscore
between every digit in your literal (1_2_3_4), but don’t. Use them to improve read‐
ability by breaking up base ten numbers at the thousands place or to break up binary,
octal, or hexadecimal numbers at one-, two-, or four-byte boundaries.

Floating point literals have decimal points to indicate the fractional portion of the
value. They can also have an exponent specified with the letter e and a positive or
negative number (such as 6.03e23). You also have the option to write them in hexa‐
decimal by using the 0x prefix and the letter p for indicating any exponent. Like inte‐
ger literals, you can use underscores to format your floating point literals.

Rune literals represent characters and are surrounded by single quotes. Unlike many
other languages, in Go single quotes and double quotes are not interchangeable. Rune
literals can be written as single Unicode characters ('a'), 8-bit octal numbers
('\141'), 8-bit hexadecimal numbers ('\x61'), 16-bit hexadecimal numbers
('\u0061'), or 32-bit Unicode numbers ('\U00000061'). There are also several back‐
slash escaped rune literals, with the most useful ones being newline ('\n'), tab
('\t'), single quote ('\''), double quote ('\"'), and backslash ('\\').

Practically speaking, use base ten to represent your number literals and, unless the
context makes your code clearer, try to avoid using any of the hexadecimal escapes
for rune literals. Octal representations are rare, mostly used to represent POSIX per‐
mission flag values (such as 0o777 for rwxrwxrwx). Hexadecimal and binary are
sometimes used for bit filters or networking and infrastructure applications.

There are two different ways to indicate string literals. Most of the time, you should
use double quotes to create an interpreted string literal (e.g., type "Greetings and
Salutations"). These contain zero or more rune literals, in any of the forms allowed.
The only characters that cannot appear are unescaped backslashes, unescaped

18 | Chapter 2: Primitive Types and Declarations



newlines, and unescaped double quotes. If you use an interpreted string literal and
want your greetings on a different line from your salutations and you want “Saluta‐
tions” to appear in quotes, you need to type "Greetings and\n\"Salutations\"".

If you need to include backslashes, double quotes, or newlines in your string, use a
raw string literal. These are delimited with backquotes (`) and can contain any literal
character except a backquote. When using a raw string literal, we write our multiline
greeting like so:

`Greetings and
"Salutations"`

As we’ll see in “Explicit Type Conversion” on page 26 you can’t even add two integer
variables together if they are declared to be of different sizes. However, Go lets you
use an integer literal in floating point expressions or even assign an integer literal to a
floating point variable. This is because literals in Go are untyped; they can interact
with any variable that’s compatible with the literal. When we look at user-defined
types in Chapter 7, we’ll see that we can even use literals with user-defined types
based on primitive types. Being untyped only goes so far; you can’t assign a literal
string to a variable with a numeric type or a literal number to a string variable, nor
can you assign a float literal to an int. These are all flagged by the compiler as errors.

Literals are untyped because Go is a practical language. It makes sense to avoid forc‐
ing a type until the developer specifies one. There are size limitations; while you can
write numeric literals that are larger than any integer can hold, it is a compile-time
error to try to assign a literal whose value overflows the specified variable, such as
trying to assign the literal 1000 to a variable of type byte.

As you will see in the section on variable assignment, there are situations in Go where
the type isn’t explicitly declared. In those cases, Go uses the default type for a literal; if
there’s nothing in the expression that makes clear what the type of the literal is, the
literal defaults to a type. We will mention the default type for literals as we look at the
different built-in types.

Booleans
The bool type represents Boolean variables. Variables of bool type can have one of
two values: true or false. The zero value for a bool is false:

var flag bool // no value assigned, set to false
var isAwesome = true

It’s hard to talk about variable types without showing a variable declaration, and vice
versa. We’ll use variable declarations first and describe them in “var Versus :=” on
page 27.

Built-in Types | 19



Numeric Types
Go has a large number of numeric types: 12 different types (and a few special names)
that are grouped into three categories. If you are coming from a language like Java‐
Script that gets along with only a single numeric type, this might seem like a lot. And
in fact, some types are used frequently while others are more esoteric. We’ll start by
looking at integer types before moving on to floating point types and the very
unusual complex type.

Integer types
Go provides both signed and unsigned integers in a variety of sizes, from one to four
bytes. They are shown in Table 2-1.

Table 2-1. The integer types in Go

Type name Value range

int8 –128 to 127

int16 –32768 to 32767

int32 –2147483648 to 2147483647

int64 –9223372036854775808 to 9223372036854775807

uint8 0 to 255

uint16 0 to 65536

uint32 0 to 4294967295

uint64 0 to 18446744073709551615

It might be obvious from the name, but the zero value for all of the integer types is 0.

The special integer types

Go does have some special names for integer types. A byte is an alias for uint8; it is
legal to assign, compare, or perform mathematical operations between a byte and a
uint8. However, you rarely see uint8 used in Go code; just call it a byte.

The second special name is int. On a 32-bit CPU, int is a 32-bit signed integer like
an int32. On most 64-bit CPUs, int is a 64-bit signed integer, just like an int64.
Because int isn’t consistent from platform to platform, it is a compile-time error to
assign, compare, or perform mathematical operations between an int and an int32
or int64 without a type conversion (see “Explicit Type Conversion” on page 26 for
more details). Integer literals default to being of int type.

20 | Chapter 2: Primitive Types and Declarations



There are some uncommon 64-bit CPU architectures that use a 32-
bit signed integer for the int type. Go supports three of them:
amd64p32, mips64p32, and mips64p32le.

The third special name is uint. It follows the same rules as int, only it is unsigned
(the values are always 0 or positive).

There are two other special names for integer types, rune and uintptr. We looked at
rune literals earlier and discuss the rune type in “A Taste of Strings and Runes” on
page 26 and uintptr in Chapter 14.

Choosing which integer to use
Go provides more integer types than some other languages. Given all of these
choices, you might wonder when you should use each of them. There are three simple
rules to follow:

• If you are working with a binary file format or network protocol that has an inte‐
ger of a specific size or sign, use the corresponding integer type.

• If you are writing a library function that should work with any integer type, write
a pair of functions, one with int64 for the parameters and variables and the
other with uint64. (We talk more about functions and their parameters in
Chapter 5.)

The reason why int64 and uint64 are the idiomatic choice in this
situation is that Go doesn’t have generics (yet) and doesn’t have
function overloading. Without these features, you’d need to write
many functions with slightly different names to implement your
algorithm. Using int64 and uint64 means that you can write the
code once and let your callers use type conversions to pass values
in and convert data that’s returned.
You can see this pattern in the Go standard library with the func‐
tions FormatInt/FormatUint and ParseInt/ParseUint in the
strconv package. There are other situations, like in the math/bits
package, where the size of the integer matters. In those cases, you
need to write a separate function for every integer type.

• In all other cases, just use int.

Built-in Types | 21



Unless you need to be explicit about the size or sign of an integer
for performance or integration purposes, use the int type. Con‐
sider any other type to be a premature optimization until proven
otherwise.

Integer operators

Go integers support the usual arithmetic operators: +, -, *, /, with % for modulus. The
result of an integer division is an integer; if you want to get a floating point result, you
need to use a type conversion to make your integers into floating point numbers.
Also, be careful not to divide an integer by 0; this causes a panic (we talk more about
panics in “panic and recover” on page 174).

Integer division in Go follows truncation toward zero; see the Go
spec’s section on arithmetic operators for the full details.

You can combine any of the arithmetic operators with = to modify a variable: +=, -=,
*=, /=, and %=. For example, the following code results in x having the value 20:

var x int = 10
x *= 2

You compare integers with ==, !=, >, >=, <, and <=.

Go also has bit-manipulation operators for integers. You can bit shift left and right
with << and >>, or do bit masks with & (logical AND), | (logical OR), ^ (logical XOR),
and &^ (logical AND NOT). Just like the arithmetic operators, you can also combine
all of the logical operators with = to modify a variable: &=, |=, ^=, &^=, <<=, and >>=.

Floating point types
There are two floating point types in Go, as shown in Table 2-2.

Table 2-2. The floating point types in Go

Type
name

Largest absolute value Smallest (nonzero) absolute value

float32 3.40282346638528859811704183484516925440e+38 1.401298464324817070923729583289916131280e-45

float64 1.797693134862315708145274237317043567981e
+308

4.940656458412465441765687928682213723651e-324

Like the integer types, the zero value for the floating point types is 0.

22 | Chapter 2: Primitive Types and Declarations

https://oreil.ly/zp3OJ


Floating point in Go is similar to floating point math in other languages. Go uses the
IEEE 754 specification, giving a large range and limited precision. Picking which
floating point type to use is straightforward: unless you have to be compatible with an
existing format, use float64. Floating point literals have a default type of float64, so
always using float64 is the simplest option. It also helps mitigate floating point accu‐
racy issues since a float32 only has six- or seven-decimal digits of precision. Don’t
worry about the difference in memory size unless you have used the profiler to deter‐
mine that it is a significant source of problems. (We’ll learn all about testing and
profiling in Chapter 13.)

The bigger question is whether you should be using a floating point number at all. In
most cases, the answer is no. Just like other languages, Go floating point numbers
have a huge range, but they cannot store every value in that range; they store the
nearest approximation. Because floats aren’t exact, they can only be used in situations
where inexact values are acceptable or the rules of floating point are well understood.
That limits them to things like graphics and scientific operations.

A floating point number cannot represent a decimal value exactly.
Do not use them to represent money or any other value that must
have an exact decimal representation!

IEEE 754
As mentioned earlier, Go (and most other programming languages) stores floating
point numbers using a specification called IEEE 754.

The actual rules are outside the scope of this book, and they aren’t straightforward.
For example, if you store the number –3.1415 in a float64, the 64-bit representation
in memory looks like:

1100000000001001001000011100101011000000100000110001001001101111

which is exactly equal to –3.14150000000000018118839761883.

Many programmers learn at some point how integers are represented in binary
(rightmost position is 1, next is 2, next is 4, and so on). Floating point numbers are
very different. Out of the 64 bits above, one is used to represent the sign (positive or
negative), 11 are used to represent a base two exponent, and 52 bits are used to repre‐
sent the number in a normalized format (called the mantissa).

You can learn more about IEEE 754 on its Wikipedia page.

Built-in Types | 23

https://oreil.ly/Gc05u


You can use all the standard mathematical and comparison operators with floats,
except %. Floating point division has a couple of interesting properties. Dividing a
nonzero floating point variable by 0 returns +Inf or -Inf (positive or negative infin‐
ity), depending on the sign of the number. Dividing a floating point variable set to 0
by 0 returns NaN (Not a Number).

While Go lets you use == and != to compare floats, don’t do it. Due to the inexact
nature of floats, two floating point values might not be equal when you think they
should be. Instead, define a maximum allowed variance and see if the difference
between two floats is less than that. This value (sometimes called epsilon) depends on
what your accuracy needs are; I can’t give you a simple rule. If you aren’t sure, consult
your friendly local mathematician for advice.

Complex types (you’re probably not going to use these)
There is one more numeric type and it is pretty unusual. Go has first-class support
for complex numbers. If you don’t know what complex numbers are, you are not the
target audience for this feature; feel free to skip ahead.

There isn’t a lot to the complex number support in Go. Go defines two complex num‐
ber types. complex64 uses float32 values to represent the real and imaginary part,
and complex128 uses float64 values. Both are declared with the complex built-in
function. Go uses a few rules to determine what the type of the function output is:

• If you use untyped constants or literals for both function parameters, you’ll cre‐
ate an untyped complex literal, which has a default type of complex128.

• If both of the values passed into complex are of float32 type, you’ll create a
complex64.

• If one value is a float32 and the other value is an untyped constant or literal that
can fit within a float32, you’ll create a complex64.

• Otherwise, you’ll create a complex128.

All of the standard arithmetic operators work on complex numbers. Just like floats,
you can use == or != to compare them, but they have the same precision limitations,
so it’s best to use the epsilon technique. You can extract the real and imaginary por‐
tions of a complex number with the real and imag built-in functions, respectively.
There are also some additional functions in the math/cmplx package for manipulating
complex128 values.

The zero value for both types of complex numbers has 0 assigned to both the real and
imaginary portions of the number.

24 | Chapter 2: Primitive Types and Declarations



Example 2-1 shows a simple program that demonstrates how complex numbers work.
You can run it for yourself on The Go Playground.

Example 2-1. Complex numbers

func main() {
    x := complex(2.5, 3.1)
    y := complex(10.2, 2)
    fmt.Println(x + y)
    fmt.Println(x - y)
    fmt.Println(x * y)
    fmt.Println(x / y)
    fmt.Println(real(x))
    fmt.Println(imag(x))
    fmt.Println(cmplx.Abs(x))
}

Running this code gives you:

(12.7+5.1i)
(-7.699999999999999+1.1i)
(19.3+36.62i)
(0.2934098482043688+0.24639022584228065i)
2.5
3.1
3.982461550347975

You can see floating point imprecision on display here, too.

In case you were wondering what the fifth kind of primitive literal was, Go supports
imaginary literals to represent the imaginary portion of a complex number. They look
just like floating point literals, but they have an i for a suffix.

Despite having complex numbers as a built-in type, Go is not a popular language for
numerical computing. Adoption has been limited because other features (like matrix
support) are not part of the language and libraries have to use inefficient replace‐
ments, like slices of slices. (We’ll look at slices in Chapter 3 and how they are imple‐
mented in Chapter 6.) But if you need to calculate a Mandelbrot set as part of a larger
program, or implement a quadratic equation solver, complex number support is there
for you.

You might be wondering why Go includes complex numbers. The answer is simple:
Ken Thompson, one of the creators of Go (and Unix), thought they would be inter‐
esting. There has been discussion about removing complex numbers from a future
version of Go, but it’s easier to just ignore the feature.

Built-in Types | 25

https://oreil.ly/fuyIu
https://oreil.ly/eBmkq
https://oreil.ly/eBmkq
https://oreil.ly/Q76EV


If you do want to write numerical computing applications in Go,
you can use the third-party Gonum package. It takes advantage of
complex numbers and provides useful libraries for things like lin‐
ear algebra, matrices, integration, and statistics. But you should
consider other languages first.

A Taste of Strings and Runes
This brings us to strings. Like most modern languages, Go includes strings as a built-
in type. The zero value for a string is the empty string. Go supports Unicode; as we
showed in the section on string literals, you can put any Unicode character into a
string. Like integers and floats, strings are compared for equality using ==, difference
with !=, or ordering with >, >=, <, or <=. They are concatenated by using the +
operator.

Strings in Go are immutable; you can reassign the value of a string variable, but you
cannot change the value of the string that is assigned to it.

Go also has a type that represents a single code point. The rune type is an alias for the
int32 type, just like byte is an alias for uint8. As you could probably guess, a rune
literal’s default type is a rune, and a string literal’s default type is a string.

If you are referring to a character, use the rune type, not the int32
type. They might be the same to the compiler, but you want to use
the type that clarifies the intent of your code.

We are going to talk a lot more about strings in the next chapter, covering some
implementation details, relationship with bytes and runes, as well as advanced fea‐
tures and pitfalls.

Explicit Type Conversion
Most languages that have multiple numeric types automatically convert from one to
another when needed. This is called automatic type promotion, and while it seems
very convenient, it turns out that the rules to properly convert one type to another
can get complicated and produce unexpected results. As a language that values clarity
of intent and readability, Go doesn’t allow automatic type promotion between vari‐
ables. You must use a type conversion when variable types do not match. Even
different-sized integers and floats must be converted to the same type to interact. This
makes it clear exactly what type you want without having to memorize any type con‐
version rules (see Example 2-2).

26 | Chapter 2: Primitive Types and Declarations

https://www.gonum.org


Example 2-2. Type conversions

var x int = 10
var y float64 = 30.2
var z float64 = float64(x) + y
var d int = x + int(y)

In this sample code we define four variables. x is an int with the value 10, and y is a
float64 with the value 30.2. Since these are not identical types, we need to convert
them to add them together. For z, we convert x to a float64 using a float64 type
conversion, and for d, we convert y to an int using an int type conversion. When
you run this code, it prints out 40.2 40.

This strictness around types has other implications. Since all type conversions in Go
are explicit, you cannot treat another Go type as a boolean. In many languages, a
nonzero number or a nonempty string can be interpreted as a boolean true. Just like
automatic type promotion, the rules for “truthy” values vary from language to lan‐
guage and can be confusing. Unsurprisingly, Go doesn’t allow truthiness. In fact, no
other type can be converted to a bool, implicitly or explicitly. If you want to convert
from another data type to boolean, you must use one of the comparison operators
(==, !=, >, <, <=, or >=). For example, to check if variable x is equal to 0, the code
would be x == 0. If you want to check if string s is empty, use s == "".

Type conversions are one of the places where Go chooses to add a
little verbosity in exchange for a great deal of simplicity and clarity.
You’ll see this trade-off multiple times. Idiomatic Go values com‐
prehensibility over conciseness.

var Versus :=
For a small language, Go has a lot of ways to declare variables. There’s a reason for
this: each declaration style communicates something about how the variable is used.
Let’s go through the ways you can declare a variable in Go and see when each is
appropriate.

The most verbose way to declare a variable in Go uses the var keyword, an explicit
type, and an assignment. It looks like this:

var x int = 10

If the type on the righthand side of the = is the expected type of your variable, you can
leave off the type from the left side of the =. Since the default type of an integer literal
is int, the following declares x to be a variable of type int:

var x = 10

var Versus := | 27



Conversely, if you want to declare a variable and assign it the zero value, you can keep
the type and drop the = on the righthand side:

var x int

You can declare multiple variables at once with var, and they can be of the same type:

var x, y int = 10, 20

all zero values of the same type:

var x, y int

or of different types:

var x, y = 10, "hello"

There’s one more way to use var. If you are declaring multiple variables at once, you
can wrap them in a declaration list:

var (
    x    int
    y        = 20
    z    int = 30
    d, e     = 40, "hello"
    f, g string
)

Go also supports a short declaration format. When you are within a function, you can
use the := operator to replace a var declaration that uses type inference. The follow‐
ing two statements do exactly the same thing: they declare x to be an int with the
value of 10:

var x = 10
x := 10

Like var, you can declare multiple variables at once using :=. These two lines both
assign 10 to x and “hello” to y:

var x, y = 10, "hello"
x, y := 10, "hello"

The := operator can do one trick that you cannot do with var: it allows you to assign
values to existing variables, too. As long as there is one new variable on the lefthand
side of the :=, then any of the other variables can already exist:

x := 10
x, y := 30, "hello"

There is one limitation on :=. If you are declaring a variable at package level, you
must use var because := is not legal outside of functions.

How do you know which style to use? As always, choose what makes your intent
clearest. The most common declaration style within functions is :=. Outside of a

28 | Chapter 2: Primitive Types and Declarations



function, use declaration lists on the rare occasions when you are declaring multiple
package-level variables.

There are some situations within functions where you should avoid :=:

• When initializing a variable to its zero value, use var x int. This makes it clear
that the zero value is intended.

• When assigning an untyped constant or a literal to a variable and the default type
for the constant or literal isn’t the type you want for the variable, use the long var
form with the type specified. While it is legal to use a type conversion to specify
the type of the value and use := to write x := byte(20), it is idiomatic to write
var x byte = 20.

• Because := allows you to assign to both new and existing variables, it sometimes
creates new variables when you think you are reusing existing ones (see “Shad‐
owing Variables” on page 62 for details). In those situations, explicitly declare all
of your new variables with var to make it clear which variables are new, and then
use the assignment operator (=) to assign values to both new and old variables.

While var and := allow you to declare multiple variables on the same line, only use
this style when assigning multiple values returned from a function or the comma ok
idiom (see Chapter 5 and “The comma ok Idiom” on page 54).

You should rarely declare variables outside of functions, in what’s called the package
block (see “Blocks” on page 61). Package-level variables whose values change are a
bad idea. When you have a variable outside of a function, it can be difficult to track
the changes made to it, which makes it hard to understand how data is flowing
through your program. This can lead to subtle bugs. As a general rule, you should
only declare variables in the package block that are effectively immutable.

Avoid declaring variables outside of functions because they compli‐
cate data flow analysis.

You might be wondering: does Go provide a way to ensure that a value is immutable?
It does, but it is a bit different from what you may have seen in other programming
languages. It’s time to learn about const.

Using const
When developers learn a new programming language, they try to map familiar con‐
cepts. Many languages have a way to declare a value is immutable. In Go, this is done

Using const | 29



with the const keyword. At first glance, it seems to work exactly like other languages.
Try out the code in Example 2-3 on The Go Playground.

Example 2-3. const declarations

const x int64 = 10

const (
    idKey   = "id"
    nameKey = "name"
)

const z = 20 * 10

func main() {
    const y = "hello"

    fmt.Println(x)
    fmt.Println(y)

    x = x + 1
    y = "bye"

    fmt.Println(x)
    fmt.Println(y)
}

If you try to run this code, compilations fails with the following error messages:

./const.go:20:4: cannot assign to x

./const.go:21:4: cannot assign to y

As you see, you declare a constant at the package level or within a function. Just like
var, you can (and should) declare a group of related constants within a set of
parentheses.

However, const in Go is very limited. Constants in Go are a way to give names to
literals. They can only hold values that the compiler can figure out at compile time.
This means that they can be assigned:

• Numeric literals
• true and false
• Strings
• Runes
• The built-in functions complex, real, imag, len, and cap
• Expressions that consist of operators and the preceding values

30 | Chapter 2: Primitive Types and Declarations

https://oreil.ly/FdG-W


We’ll cover the len and cap functions in the next chapter. There’s
another value that can be used with const that’s called iota. We’ll
talk about iota when we discuss creating your own types in
Chapter 7.

Go doesn’t provide a way to specify that a value calculated at runtime is immutable.
As we’ll see in the next chapter, there are no immutable arrays, slices, maps, or
structs, and there’s no way to declare that a field in a struct is immutable. This is less
limiting than it sounds. Within a function, it is clear if a variable is being modified, so
immutability is less important. In “Go Is Call By Value” on page 104, we’ll see how Go
prevents modifications to variables that are passed as parameters to functions.

Constants in Go are a way to give names to literals. There is no way
in Go to declare that a variable is immutable.

Typed and Untyped Constants
Constants can be typed or untyped. An untyped constant works exactly like a literal;
it has no type of its own, but does have a default type that is used when no other type
can be inferred. A typed constant can only be directly assigned to a variable of that
type.

Whether or not to make a constant typed depends on why the constant was declared.
If you are giving a name to a mathematical constant that could be used with multiple
numeric types, then keep the constant untyped. In general, leaving a constant unty‐
ped gives you more flexibility. There are situations where you want a constant to
enforce a type. We’ll use typed constants when we look at creating enumerations with
iota in “iota Is for Enumerations—Sometimes” on page 137.

Here’s what an untyped constant declaration looks like:

const x = 10

All of the following assignments are legal:

var y int = x
var z float64 = x
var d byte = x

Here’s what a typed constant declaration looks like:

const typedX int = 10

This constant can only be assigned directly to an int. Assigning it to any other type
produces a compile-time error like this:

Typed and Untyped Constants | 31



cannot use typedX (type int) as type float64 in assignment

Unused Variables
One of the goals for Go is to make it easier for large teams to collaborate on pro‐
grams. To do so, Go has some rules that are unique among programming languages.
In Chapter 1, we saw that Go programs need to be formatted in a specific way with go
fmt to make it easier to write code-manipulation tools and to provide coding stand‐
ards. Another Go requirement is that every declared local variable must be read. It is a
compile-time error to declare a local variable and to not read its value.

The compiler’s unused variable check is not exhaustive. As long as a variable is
read once, the compiler won’t complain, even if there are writes to the variable that
are never read. The following is a valid Go program that you can run on
The Go Playground:

func main() {
    x := 10
    x = 20
    fmt.Println(x)
    x = 30
}

While the compiler and go vet do not catch the unused assignments of 10 and 30 to
x, golangci-lint detects them:

$ golangci-lint run
unused.go:6:2: ineffectual assignment to `x` (ineffassign)
    x := 10
    ^
unused.go:9:2: ineffectual assignment to `x` (ineffassign)
    x = 30
    ^

The Go compiler won’t stop you from creating unread package-
level variables. This is one more reason why you should avoid cre‐
ating package-level variables.

Unused Constants
Perhaps surprisingly, the Go compiler allows you to create unread constants with
const. This is because constants in Go are calculated at compile time and cannot have
any side effects. This makes them easy to eliminate: if a constant isn’t used, it is simply
not included in the compiled binary.

32 | Chapter 2: Primitive Types and Declarations

https://oreil.ly/8JLA6


Naming Variables and Constants
There is a difference between Go’s rules for naming variables and the patterns that Go
developers follow when naming their variables and constants. Like most languages,
Go requires identifier names to start with a letter or underscore, and the name can
contain numbers, underscores, and letters. Go’s definition of “letter” and “number” is
a bit broader than many languages. Any Unicode character that is considered a letter
or digit is allowed. This makes all of the variable definitions shown in Example 2-4
perfectly valid Go.

Example 2-4. Variable names you should never use

_0 := 0_0
_𝟙 := 20
π := 3
ａ := "hello" // Unicode U+FF41
fmt.Println(_0)
fmt.Println(_𝟙)
fmt.Println(π)
fmt.Println(ａ)

While this code works, do not name your variables like this. These names are consid‐
ered nonidiomatic because they break the fundamental rule of making sure that your
code communicates what it is doing. These names are confusing or difficult to type
on many keyboards. Look-alike Unicode code points are the most insidious, because
even if they appear to be the same character, they represent entirely different vari‐
ables. You can run the code shown in Example 2-5 on The Go Playground.

Example 2-5. Using look-alike code points for variable names

func main() {
    ａ := "hello"   // Unicode U+FF41
    a := "goodbye" // standard lowercase a (Unicode U+0061)
    fmt.Println(ａ)
    fmt.Println(a)
}

When you run this program, you get:

hello
goodbye

Even though underscore is a valid character in a variable name, it is rarely used,
because idiomatic Go doesn’t use snake case (names like index_counter or num‐
ber_tries). Instead, Go uses camel case (names like indexCounter or numberTries)
when an identifier name consists of multiple words.

Naming Variables and Constants | 33

https://oreil.ly/hrvb6


An underscore by itself (_) is a special identifier name in Go; we’ll
talk more about it when we cover functions in Chapter 5.

In many languages, constants are always written in all uppercase letters, with words
separated by underscores (names like INDEX_COUNTER or NUMBER_TRIES). Go
does not follow this pattern. This is because Go uses the case of the first letter in the
name of a package-level declaration to determine if the item is accessible outside the
package. We will revisit this when we talk about packages in Chapter 9.

Within a function, favor short variable names. The smaller the scope for a variable,
the shorter the name that’s used for it. It is very common in Go to see single-letter
variable names. For example, the names k and v (short for key and value) are used as
the variable names in a for-range loop. If you are using a standard for loop, i and j
are common names for the index variable. There are other idiomatic ways to name
variables of common types; we will mention them as we cover more parts of the stan‐
dard library.

Some languages with weaker type systems encourage developers to include the
expected type of the variable in the variable’s name. Since Go is strongly typed, you
don’t need to do this to keep track of the underlying type. However, there are still
conventions around variable types and single-letter names. People will use the first
letter of a type as the variable name (for example, i for integers, f for floats, b for
booleans). When you define your own types, similar patterns apply.

These short names serve two purposes. The first is that they eliminate repetitive typ‐
ing, keeping your code shorter. Second, they serve as a check on how complicated
your code is. If you find it hard to keep track of your short-named variables, it’s likely
that your block of code is doing too much.

When naming variables and constants in the package block, use more descriptive
names. The type should still be excluded from the name, but since the scope is wider,
you need a more complete name to make it clear what the value represents.

Wrapping Up
We’ve covered a lot of ground here, understanding how to use the built-in types,
declare variables, and work with assignments and operators. In the next chapter, we
are going to look at the composite types in Go: arrays, slices, maps, and structs. We
are also going to take another look at strings and runes and learn about encodings.

34 | Chapter 2: Primitive Types and Declarations



CHAPTER 3

Composite Types

In the last chapter, we looked at simple types: numbers, booleans, and strings. In this
chapter, we’ll learn about the composite types in Go, the built-in functions that sup‐
port them, and the best practices for working with them.

Arrays—Too Rigid to Use Directly
Like most programming languages, Go has arrays. However, arrays are rarely used
directly in Go. We’ll learn why in a bit, but first we’ll quickly cover array declaration
syntax and use.

All of the elements in the array must be of the type that’s specified (this doesn’t mean
they are always of the same type). There are a few different declaration styles. In the
first, you specify the size of the array and the type of the elements in the array:

var x [3]int

This creates an array of three ints. Since no values were specified, all of the positions
(x[0], x[1], and x[2]) are initialized to the zero value for an int, which is (of course)
0. If you have initial values for the array, you specify them with an array literal:

var x = [3]int{10, 20, 30}

If you have a sparse array (an array where most elements are set to their zero value),
you can specify only the indices with values in the array literal:

var x = [12]int{1, 5: 4, 6, 10: 100, 15}

This creates an array of 12 ints with the following values: [1, 0, 0, 0, 0, 4, 6, 0, 0, 0,
100, 15].

35



When using an array literal to initialize an array, you can leave off the number and
use … instead:

var x = [...]int{10, 20, 30}

You can use == and != to compare arrays:

var x = [...]int{1, 2, 3}
var y = [3]int{1, 2, 3}
fmt.Println(x == y) // prints true

Go only has one-dimensional arrays, but you can simulate multidimensional arrays:

var x [2][3]int

This declares x to be an array of length 2 whose type is an array of ints of length 3.
This sounds pedantic, but there are languages with true matrix support; Go isn’t one
of them.

Like most languages, arrays in Go are read and written using bracket syntax:

x[0] = 10
fmt.Println(x[2])

You cannot read or write past the end of an array or use a negative index. If you do
this with a constant or literal index, it is a compile-time error. An out-of-bounds read
or write with a variable index compiles but fails at runtime with a panic (we’ll talk
more about panics in “panic and recover” on page 174).

Finally, the built-in function len takes in an array and returns its length:

fmt.Println(len(x))

Earlier I said that arrays in Go are rarely used explicitly. This is because they come
with an unusual limitation: Go considers the size of the array to be part of the type of
the array. This makes an array that’s declared to be [3]int a different type from an
array that’s declared to be [4]int. This also means that you cannot use a variable to
specify the size of an array, because types must be resolved at compile time, not at
runtime.

What’s more, you can’t use a type conversion to convert arrays of different sizes to iden‐
tical types. Because you can’t convert arrays of different sizes into each other, you can’t
write a function that works with arrays of any size and you can’t assign arrays of dif‐
ferent sizes to the same variable.

We’ll learn how arrays work behind the scenes when we discuss
memory layout in Chapter 6.

36 | Chapter 3: Composite Types



Due to these restrictions, don’t use arrays unless you know the exact length you need
ahead of time. For example, some of the cryptographic functions in the standard
library return arrays because the sizes of checksums are defined as part of the algo‐
rithm. This is the exception, not the rule.

This raises the question: why is such a limited feature in the language? The main rea‐
son why arrays exist in Go is to provide the backing store for slices, which are one of
the most useful features of Go.

Slices
Most of the time, when you want a data structure that holds a sequence of values, a
slice is what you should use. What makes slices so useful is that the length is not part
of the type for a slice. This removes the limitations of arrays. We can write a single
function that processes slices of any size (we’ll cover function writing in Chapter 5),
and we can grow slices as needed. After going over the basics of using slices in Go,
we’ll cover the best ways to use them.

Working with slices looks quite a bit like working with arrays, but there are subtle
differences. The first thing to notice is that we don’t specify the size of the slice when
we declare it:

var x = []int{10, 20, 30}

Using […] makes an array. Using [] makes a slice.

This creates a slice of 3 ints using a slice literal. Just like arrays, we can also specify
only the indices with values in the slice literal:

var x = []int{1, 5: 4, 6, 10: 100, 15}

This creates a slice of 12 ints with the following values: [1, 0, 0, 0, 0, 4, 6, 0, 0, 0, 100,
15].

You can simulate multidimensional slices and make a slice of slices:

var x [][]int

You read and write slices using bracket syntax, and, just like with arrays, you can’t
read or write past the end or use a negative index:

x[0] = 10
fmt.Println(x[2])

Slices | 37



So far, slices have seemed identical to arrays. We start to see the differences between
arrays and slices when we look at declaring slices without using a literal:

var x []int

This creates a slice of ints. Since no value is assigned, x is assigned the zero value for
a slice, which is something we haven’t seen before: nil. We’ll talk more about nil in
Chapter 6, but it is slightly different from the null that’s found in other languages. In
Go, nil is an identifier that represents the lack of a value for some types. Like the
untyped numeric constants we saw in the previous chapter, nil has no type, so it can
be assigned or compared against values of different types. A nil slice contains
nothing.

A slice is the first type we’ve seen that isn’t comparable. It is a compile-time error to
use == to see if two slices are identical or != to see if they are different. The only thing
you can compare a slice with is nil:

fmt.Println(x == nil) // prints true

The reflect package contains a function called DeepEqual that can
compare almost anything, including slices. It’s primarily intended
for testing, but you could use it to compare slices if you needed to.
We’ll look at it when we discuss reflection in Chapter 14.

len
Go provides several built-in functions to work with its built-in types. We already saw
the complex, real, and imag built-in functions to build and take apart complex num‐
bers. There are several built-in functions for slices, too. We’ve already seen the built-
in len function when looking at arrays. It works for slices, too, and when you pass a
nil slice to len, it returns 0.

Functions like len are built in to Go because they can do things
that can’t be done by the functions that you can write. We’ve
already seen that len’s parameter can be any type of array or any
type of slice. We’ll soon see that it also works for strings and maps.
In “Channels” on page 206, we’ll see it working with channels. Try‐
ing to pass a variable of any other type to len is a compile-time
error. As we’ll see in Chapter 5, Go doesn’t let developers write
functions that behave this way.

38 | Chapter 3: Composite Types



append
The built-in append function is used to grow slices:

var x []int
x = append(x, 10)

The append function takes at least two parameters, a slice of any type and a value of
that type. It returns a slice of the same type. The returned slice is assigned back to the
slice that’s passed in. In this example, we are appending to a nil slice, but you can
append to a slice that already has elements:

var x = []int{1, 2, 3}
x = append(x, 4)

You can append more than one value at a time:

x = append(x, 5, 6, 7)

One slice is appended onto another by using the … operator to expand the source slice
into individual values (we’ll learn more about the … operator in “Variadic Input
Parameters and Slices” on page 89):

y := []int{20, 30, 40}
x = append(x, y...)

It is a compile-time error if you forget to assign the value returned from append. You
might be wondering why as it seems a bit repetitive. We will talk about this in greater
detail in Chapter 5, but Go is a call by value language. Every time you pass a parame‐
ter to a function, Go makes a copy of the value that’s passed in. Passing a slice to the
append function actually passes a copy of the slice to the function. The function adds
the values to the copy of the slice and returns the copy. You then assign the returned
slice back to the variable in the calling function.

Capacity
As we’ve seen, a slice is a sequence of values. Each element in a slice is assigned to
consecutive memory locations, which makes it quick to read or write these values.
Every slice has a capacity, which is the number of consecutive memory locations
reserved. This can be larger than the length. Each time you append to a slice, one or
more values is added to the end of the slice. Each value added increases the length by
one. When the length reaches the capacity, there’s no more room to put values. If you
try to add additional values when the length equals the capacity, the append function
uses the Go runtime to allocate a new slice with a larger capacity. The values in the
original slice are copied to the new slice, the new values are added to the end, and the
new slice is returned.

Slices | 39



The Go Runtime
Every high-level language relies on a set of libraries to enable programs written in
that language to run, and Go is no exception. The Go runtime provides services like
memory allocation and garbage collection, concurrency support, networking, and
implementations of built-in types and functions.

The Go runtime is compiled into every Go binary. This is different from languages
that use a virtual machine, which must be installed separately to allow programs writ‐
ten in those languages to function. Including the runtime in the binary makes it easier
to distribute Go programs and avoids worries about compatibility issues between the
runtime and the program.

When a slice grows via append, it takes time for the Go runtime to allocate new mem‐
ory and copy the existing data from the old memory to the new. The old memory also
needs to be garbage collected. For this reason, the Go runtime usually increases a slice
by more than one each time it runs out of capacity. The rules as of Go 1.14 are to
double the size of the slice when the capacity is less than 1,024 and then grow by at
least 25% afterward.

Just as the built-in len function returns the current length of a slice, the built-in cap
function returns the current capacity of a slice. It is used far less frequently than len.
Most of the time, cap is used to check if a slice is large enough to hold new data, or if
a call to make is needed to create a new slice.

You can also pass an array to the cap function, but cap always returns the same value
as len for arrays. Don’t put it in your code, but save this trick for Go trivia night.

Let’s take a look at how adding elements to a slice changes the length and capacity.
Run the code in Example 3-1 on The Go Playground or on your machine.

Example 3-1. Understanding capacity

var x []int
fmt.Println(x, len(x), cap(x))
x = append(x, 10)
fmt.Println(x, len(x), cap(x))
x = append(x, 20)
fmt.Println(x, len(x), cap(x))
x = append(x, 30)
fmt.Println(x, len(x), cap(x))
x = append(x, 40)
fmt.Println(x, len(x), cap(x))
x = append(x, 50)
fmt.Println(x, len(x), cap(x))

40 | Chapter 3: Composite Types

https://oreil.ly/yiHu-


When you build and run the code, you’ll see the following output. Notice how and
when the capacity increases:

[] 0 0
[10] 1 1
[10 20] 2 2
[10 20 30] 3 4
[10 20 30 40] 4 4
[10 20 30 40 50] 5 8

While it’s nice that slices grow automatically, it’s far more efficient to size them once.
If you know how many things you plan to put into a slice, create the slice with the
correct initial capacity. We do that with the make function.

make
We’ve already seen two ways to declare a slice, using a slice literal or the nil zero
value. While useful, neither way allows you to create an empty slice that already has a
length or capacity specified. That’s the job of the built-in make function. It allows us to
specify the type, length, and, optionally, the capacity. Let’s take a look:

x := make([]int, 5)

This creates an int slice with a length of 5 and a capacity of 5. Since it has a length of
5, x[0] through x[4] are valid elements, and they are all initialized to 0.

One common beginner mistake is to try to populate those initial elements using
append:

x := make([]int, 5)
x = append(x, 10)

The 10 is placed at the end of the slice, after the zero values in positions 0–4 because
append always increases the length of a slice. The value of x is now [0 0 0 0 0 10], with
a length of 6 and a capacity of 10 (the capacity was doubled as soon as the sixth ele‐
ment was appended).

We can also specify an initial capacity with make:

x := make([]int, 5, 10)

This creates an int slice with a length of 5 and a capacity of 10.

You can also create a slice with zero length, but a capacity that’s greater than zero:

x := make([]int, 0, 10)

In this case, we have a non-nil slice with a length of 0, but a capacity of 10. Since the
length is 0, we can’t directly index into it, but we can append values to it:

x := make([]int, 0, 10)
x = append(x, 5,6,7,8)

Slices | 41



The value of x is now [5 6 7 8], with a length of 4 and a capacity of 10.

Never specify a capacity that’s less than the length! It is a compile-
time error to do so with a constant or numeric literal. If you use a
variable to specify a capacity that’s smaller than the length, your
program will panic at runtime.

Declaring Your Slice
Now that we’ve seen all these different ways to create slices, how do you choose which
slice declaration style to use? The primary goal is to minimize the number of times
the slice needs to grow. If it’s possible that the slice won’t need to grow at all (because
your function might return nothing), use a var declaration with no assigned value to
create a nil slice, as shown in Example 3-2.

Example 3-2. Declaring a slice that might stay nil

var data []int

You can create a slice using an empty slice literal:
var x = []int{}

This creates a zero-length slice, which is non-nil (comparing it to
nil returns false). Otherwise, a nil slice works identically to a
zero-length slice. The only situation where a zero-length slice is
useful is when converting a slice to JSON. We’ll look at this more in
“encoding/json” on page 241.

If you have some starting values, or if a slice’s values aren’t going to change, then a
slice literal is a good choice (see Example 3-3).

Example 3-3. Declaring a slice with default values

data := []int{2, 4, 6, 8} // numbers we appreciate

If you have a good idea of how large your slice needs to be, but don’t know what those
values will be when you are writing the program, use make. The question then
becomes whether you should specify a nonzero length in the call to make or specify a
zero length and a nonzero capacity. There are three possibilities:

42 | Chapter 3: Composite Types



• If you are using a slice as a buffer (we’ll see this in “io and Friends” on page 233),
then specify a nonzero length.

• If you are sure you know the exact size you want, you can specify the length and
index into the slice to set the values. This is often done when transforming values
in one slice and storing them in a second. The downside to this approach is that
if you have the size wrong, you’ll end up with either zero values at the end of the
slice or a panic from trying to access elements that don’t exist.

• In other situations, use make with a zero length and a specified capacity. This
allows you to use append to add items to the slice. If the number of items turns
out to be smaller, you won’t have an extraneous zero value at the end. If the num‐
ber of items is larger, your code will not panic.

The Go community is split between the second and third approaches. I personally
prefer using append with a slice initialized to a zero length. It might be slower in some
situations, but it is less likely to introduce a bug.

append always increases the length of a slice! If you have specified a
slice’s length using make, be sure that you mean to append to it
before you do so, or you might end up with a bunch of surprise
zero values at the beginning of your slice.

Slicing Slices
A slice expression creates a slice from a slice. It’s written inside brackets and consists of
a starting offset and an ending offset, separated by a colon (:). If you leave off the
starting offset, 0 is assumed. Likewise, if you leave off the ending offset, the end of the
slice is substituted. You can see how this works by running the code in Example 3-4
on The Go Playground.

Example 3-4. Slicing slices

x := []int{1, 2, 3, 4}
y := x[:2]
z := x[1:]
d := x[1:3]
e := x[:]
fmt.Println("x:", x)
fmt.Println("y:", y)
fmt.Println("z:", z)
fmt.Println("d:", d)
fmt.Println("e:", e)

Slices | 43

https://oreil.ly/DW_FU


It gives the following output:

x: [1 2 3 4]
y: [1 2]
z: [2 3 4]
d: [2 3]
e: [1 2 3 4]

Slices share storage sometimes
When you take a slice from a slice, you are not making a copy of the data. Instead,
you now have two variables that are sharing memory. This means that changes to an
element in a slice affect all slices that share that element. Let’s see what happens when
we change values. You can run the code in Example 3-5 on The Go Playground.

Example 3-5. Slices with overlapping storage

x := []int{1, 2, 3, 4}
y := x[:2]
z := x[1:]
x[1] = 20
y[0] = 10
z[1] = 30
fmt.Println("x:", x)
fmt.Println("y:", y)
fmt.Println("z:", z)

You get the following output:

x: [10 20 30 4]
y: [10 20]
z: [20 30 4]

Changing x modified both y and z, while changes to y and z modified x.

Slicing slices gets extra confusing when combined with append. Try out the code in
Example 3-6 on The Go Playground.

Example 3-6. append makes overlapping slices more confusing

x := []int{1, 2, 3, 4}
y := x[:2]
fmt.Println(cap(x), cap(y))
y = append(y, 30)
fmt.Println("x:", x)
fmt.Println("y:", y)

44 | Chapter 3: Composite Types

https://oreil.ly/mHxe4
https://oreil.ly/2mB59


Running this code gives the following output:

4 4
x: [1 2 30 4]
y: [1 2 30]

What’s going on? Whenever you take a slice from another slice, the subslice’s capacity
is set to the capacity of the original slice, minus the offset of the subslice within the
original slice. This means that any unused capacity in the original slice is also shared
with any subslices.

When we make the y slice from x, the length is set to 2, but the capacity is set to 4, the
same as x. Since the capacity is 4, appending onto the end of y puts the value in the
third position of x.

This behavior creates some very odd scenarios, with multiple slices appending and
overwriting each other’s data. See if you can guess what the code in Example 3-7
prints out, then run it on The Go Playground to see if you guessed correctly.

Example 3-7. Even more confusing slices

x := make([]int, 0, 5)
x = append(x, 1, 2, 3, 4)
y := x[:2]
z := x[2:]
fmt.Println(cap(x), cap(y), cap(z))
y = append(y, 30, 40, 50)
x = append(x, 60)
z = append(z, 70)
fmt.Println("x:", x)
fmt.Println("y:", y)
fmt.Println("z:", z)

To avoid complicated slice situations, you should either never use append with a sub‐
slice or make sure that append doesn’t cause an overwrite by using a full slice expres‐
sion. This is a little weird, but it makes clear how much memory is shared between
the parent slice and the subslice. The full slice expression includes a third part, which
indicates the last position in the parent slice’s capacity that’s available for the subslice.
Subtract the starting offset from this number to get the subslice’s capacity.
Example 3-8 shows lines three and four from the previous example, modified to use
full slice expressions.

Example 3-8. The full slice expression protects against append

y := x[:2:2]
z := x[2:4:4]

Slices | 45

https://oreil.ly/1u_tO


You can try out this code on The Go Playground. Both y and z have a capacity of 2.
Because we limited the capacity of the subslices to their lengths, appending additional
elements onto y and z created new slices that didn’t interact with the other slices.
After this code runs, x is set to [1 2 3 4 60], y is set to [1 2 30 40 50], and z is set to [3
4 70].

Be very careful when taking a slice of a slice! Both slices share the
same memory and changes to one are reflected in the other. Avoid
modifying slices after they have been sliced or if they were pro‐
duced by slicing. Use a three-part slice expression to prevent
append from sharing capacity between slices.

Converting Arrays to Slices
Slices aren’t the only thing you can slice. If you have an array, you can take a slice
from it using a slice expression. This is a useful way to bridge an array to a function
that only takes slices. However, be aware that taking a slice from an array has the
same memory-sharing properties as taking a slice from a slice. If you run the follow‐
ing code on The Go Playground:

x := [4]int{5, 6, 7, 8}
y := x[:2]
z := x[2:]
x[0] = 10
fmt.Println("x:", x)
fmt.Println("y:", y)
fmt.Println("z:", z)

you get the output:

x: [10 6 7 8]
y: [10 6]
z: [7 8]

copy
If you need to create a slice that’s independent of the original, use the built-in
copy function. Let’s take a look at a simple example, which you can run on The Go
Playground:

x := []int{1, 2, 3, 4}
y := make([]int, 4)
num := copy(y, x)
fmt.Println(y, num)

You get the output:

[1 2 3 4] 4

46 | Chapter 3: Composite Types

https://oreil.ly/Cn2cX
https://oreil.ly/kliaJ
https://oreil.ly/ilMNY
https://oreil.ly/ilMNY


The copy function takes two parameters. The first is the destination slice and the sec‐
ond is the source slice. It copies as many values as it can from source to destination,
limited by whichever slice is smaller, and returns the number of elements copied. The
capacity of x and y doesn’t matter; it’s the length that’s important.

You don’t need to copy an entire slice. The following code copies the first two ele‐
ments of a four-element slice into a two-element slice:

x := []int{1, 2, 3, 4}
y := make([]int, 2)
num = copy(y, x)

The variable y is set to [1 2] and num is set to 2.

You could also copy from the middle of the source slice:

x := []int{1, 2, 3, 4}
y := make([]int, 2)
copy(y, x[2:])

We are copying the third and fourth elements in x by taking a slice of the slice. Also
note that we don’t assign the output of copy to a variable. If you don’t need the num‐
ber of elements copied, you don’t need to assign it.

The copy function allows you to copy between two slices that cover overlapping sec‐
tions of an underlying slice:

x := []int{1, 2, 3, 4}
num = copy(x[:3], x[1:])
fmt.Println(x, num)

In this case, we are copying the last three values in x on top of the first three values of
x. This prints out [2 3 4 4] 3.

You can use copy with arrays by taking a slice of the array. You can make the array
either the source or the destination of the copy. You can try out the following code on
The Go Playground:

x := []int{1, 2, 3, 4}
d := [4]int{5, 6, 7, 8}
y := make([]int, 2)
copy(y, d[:])
fmt.Println(y)
copy(d[:], x)
fmt.Println(d)

The first call to copy copies the first two values in array d into slice y. The second
copies all of the values in slice x into array d. This produces the output:

[5 6]
[1 2 3 4]

Slices | 47

https://oreil.ly/-mhRW


Strings and Runes and Bytes
Now that we’ve talked about slices, we can go back and look at strings again. You
might think that a string in Go is made out of runes, but that’s not the case. Under the
covers, Go uses a sequence of bytes to represent a string. These bytes don’t have to be
in any particular character encoding, but several Go library functions (and the for-
range loop that we discuss in the next chapter) assume that a string is composed of a
sequence of UTF-8-encoded code points.

According to the language specification, Go source code is always
written in UTF-8. Unless you use hexadecimal escapes in a string
literal, your string literals are written in UTF-8.

Just like you can extract a single value from an array or a slice, you can extract a sin‐
gle value from a string by using an index expression:

var s string = "Hello there"
var b byte = s[6]

Like arrays and slices, string indexes are zero-based; in this example, b is assigned the
value of the seventh value in s, which is t.

The slice expression notation that we used with arrays and slices also works with
strings:

var s string = "Hello there"
var s2 string = s[4:7]
var s3 string = s[:5]
var s4 string = s[6:]

This assigns “o t” to s2, “Hello” to s3, and “there” to s4.

While it’s handy that Go allows us to use slicing notation to make substrings and use
index notation to extract individual entries from a string, you should be very careful
when doing so. Since strings are immutable, they don’t have the modification prob‐
lems that slices of slices do. There is a different problem, though. A string is com‐
posed of a sequence of bytes, while a code point in UTF-8 can be anywhere from one
to four bytes long. Our previous example was entirely composed of code points that
are one byte long in UTF-8, so everything worked out as expected. But when dealing
with languages other than English or with emojis, you run into code points that are
multiple bytes long in UTF-8:

var s string = "Hello "
var s2 string = s[4:7]
var s3 string = s[:5]
var s4 string = s[6:]

48 | Chapter 3: Composite Types



In this example, s3 will still be equal to “Hello.” The variable s4 is set to the sun emoji.
But s2 is not set to “o .” Instead, you get “o .” That’s because we only copied the
first byte of the sun emoji’s code point, which is invalid.

Go allows you to pass a string to the built-in len function to find the length of the
string. Given that string index and slice expressions count positions in bytes, it’s not
surprising that the length returned is the length in bytes, not in code points:

var s string = "Hello "
fmt.Println(len(s))

This code prints out 10, not 7, because it takes four bytes to represent the sun with
smiling face emoji in UTF-8.

Even though Go allows you to use slicing and indexing syntax with
strings, you should only use it when you know that your string only
contains characters that take up one byte.

Because of this complicated relationship between runes, strings, and bytes, Go has
some interesting type conversions between these types. A single rune or byte can be
converted to a string:

var a rune    = 'x'
var s string  = string(a)
var b byte    = 'y'
var s2 string = string(b)

A common bug for new Go developers is to try to make an int into
a string by using a type conversion:

var x int = 65
var y = string(x)
fmt.Println(y)

This results in y having the value “A,” not “65.” As of Go 1.15, go
vet blocks a type conversion to string from any integer type other
than rune or byte.

A string can be converted back and forth to a slice of bytes or a slice of runes. Try
Example 3-9 out on The Go Playground.

Example 3-9. Converting strings to slices

var s string = "Hello, "
var bs []byte = []byte(s)
var rs []rune = []rune(s)

Strings and Runes and Bytes | 49

https://oreil.ly/N7fOB


fmt.Println(bs)
fmt.Println(rs)

When you run this code, you see:

[72 101 108 108 111 44 32 240 159 140 158]
[72 101 108 108 111 44 32 127774]

The first output line has the string converted to UTF-8 bytes. The second has the
string converted to runes.

Most data in Go is read and written as a sequence of bytes, so the most common
string type conversions are back and forth with a slice of bytes. Slices of runes are
uncommon.

UTF-8
UTF-8 is the most commonly used encoding for Unicode. Unicode uses four bytes
(32 bits) to represent each code point, the technical name for each character and
modifier. Given this, the simplest way to represent Unicode code points is to store
four bytes for each code point. This is called UTF-32. It is mostly unused because it
wastes so much space. Due to Unicode implementation details, 11 of the 32 bits are
always zero. Another common encoding is UTF-16, which uses one or two 16-bit (2-
byte) sequences to represent each code point. This is also wasteful; much of the con‐
tent in the world is written using code points that fit into a single byte. And that’s
where UTF-8 comes in.

UTF-8 is very clever. It lets you use a single byte to represent the Unicode characters
whose values are below 128 (which includes all of the letters, numbers, and punctua‐
tion commonly used in English), but expands to a maximum of four bytes to repre‐
sent Unicode code points with larger values. The result is that the worst case for
UTF-8 is the same as using UTF-32. UTF-8 has some other nice properties. Unlike
UTF-32 and UTF-16, you don’t have to worry about little-endian versus big-endian. It
also allows you to look at any byte in a sequence and tell if you are at the start of a
UTF-8 sequence, or somewhere in the middle. That means you can’t accidentally read
a character incorrectly.

The only downside is that you cannot randomly access a string encoded with UTF-8.
While you can detect if you are in the middle of a character, you can’t tell how many
characters in you are. You need to start at the beginning of the string and count. Go
doesn’t require a string to be written in UTF-8, but it strongly encourages it. We’ll see
how to work with UTF-8 strings in upcoming chapters.

Fun fact: UTF-8 was invented in 1992 by Ken Thompson and Rob Pike, two of the
creators of Go.

50 | Chapter 3: Composite Types



Rather than use the slice and index expressions with strings, you should extract sub‐
strings and code points from strings using the functions in the strings and unicode/
utf8 packages in the standard library. In the next chapter, we’ll see how to use a
for-range loop to iterate over the code points in a string.

Maps
Slices are useful when you have sequential data. Like most languages, Go provides a
built-in data type for situations where you want to associate one value to another. The
map type is written as map[keyType]valueType. Let’s take a look at a few ways to
declare maps. First, you can use a var declaration to create a map variable that’s set to
its zero value:

var nilMap map[string]int

In this case, nilMap is declared to be a map with string keys and int values. The zero
value for a map is nil. A nil map has a length of 0. Attempting to read a nil map
always returns the zero value for the map’s value type. However, attempting to write
to a nil map variable causes a panic.

We can use a := declaration to create a map variable by assigning it a map literal:
totalWins := map[string]int{}

In this case, we are using an empty map literal. This is not the same as a nil map. It
has a length of 0, but you can read and write to a map assigned an empty map literal.
Here’s what a nonempty map literal looks like:

teams := map[string][]string {
    "Orcas": []string{"Fred", "Ralph", "Bijou"},
    "Lions": []string{"Sarah", "Peter", "Billie"},
    "Kittens": []string{"Waldo", "Raul", "Ze"},
}

A map literal’s body is written as the key, followed by a colon (:), then the value.
There’s a comma separating each key-value pair in the map, even on the last line. In
this example, the value is a slice of strings. The type of the value in a map can be any‐
thing. There are some restrictions on the types of the keys that we’ll discuss in a bit.

If you know how many key-value pairs you intend to put in the map, but don’t know
the exact values, you can use make to create a map with a default size:

ages := make(map[int][]string, 10)

Maps created with make still have a length of 0, and they can grow past the initially
specified size.

Maps | 51



Maps are like slices in several ways:

• Maps automatically grow as you add key-value pairs to them.
• If you know how many key-value pairs you plan to insert into a map, you can use
make to create a map with a specific initial size.

• Passing a map to the len function tells you the number of key-value pairs in a
map.

• The zero value for a map is nil.
• Maps are not comparable. You can check if they are equal to nil, but you cannot

check if two maps have identical keys and values using == or differ using !=.

The key for a map can be any comparable type. This means you cannot use a slice or
a map as the key for a map.

When should you use a map and when should you use a slice? Slices are for lists of
data, especially for data that’s processed sequentially. Maps are useful when you have
data that’s organized according to a value that’s not a strictly increasing order.

Use a map when the order of elements doesn’t matter. Use a slice
when the order of elements is important.

What Is a Hash Map?
In computer science, a map is a data structure that associates (or maps) one value to
another. Maps can be implemented several ways, each with their own trade-offs. The
map that’s built-in to Go is a hash map. In case you aren’t familiar with the concept,
here is a really quick overview.

A hash map does fast lookups of values based on a key. Internally, it’s implemented as
an array. When you insert a key and value, the key is turned into a number using a
hash algorithm. These numbers are not unique for each key. The hash algorithm can
turn different keys into the same number. That number is then used as an index into
the array. Each element in that array is called a bucket. The key-value pair is then
stored in the bucket. If there is already an identical key in the bucket, the previous
value is replaced with the new value.

Each bucket is also an array; it can hold more than one value. When two keys map to
the same bucket, that’s called a collision, and the keys and values for both are stored in
the bucket.

52 | Chapter 3: Composite Types



A read from a hash map works in the same way. You take the key, run the hash algo‐
rithm to turn it into a number, find the associated bucket, and then iterate over all the
keys in the bucket to see if one of them is equal to the supplied key. If one is found,
the value is returned.

You don’t want to have too many collisions, because the more collisions, the slower
the hash map gets, as you have to iterate over all the keys that mapped to the same
bucket to find the one that you want. Clever hash algorithms are designed to keep
collisions to a minimum. If enough elements are added, hash maps resize to rebalance
the buckets and allow more entries.

Hash maps are really useful, but building your own is hard to get right. If you’d like to
learn more about how Go does it, watch this talk from GopherCon 2016, Inside the
Map Implementation.

Go doesn’t require (or even allow) you to define your own hash algorithm or equality
definition. Instead, the Go runtime that’s compiled into every Go program has code
that implements hash algorithms for all types that are allowed to be keys.

Reading and Writing a Map
Let’s look at a short program that declares, writes to, and reads from a map. You can
run the program in Example 3-10 on The Go Playground.

Example 3-10. Using a map

totalWins := map[string]int{}
totalWins["Orcas"] = 1
totalWins["Lions"] = 2
fmt.Println(totalWins["Orcas"])
fmt.Println(totalWins["Kittens"])
totalWins["Kittens"]++
fmt.Println(totalWins["Kittens"])
totalWins["Lions"] = 3
fmt.Println(totalWins["Lions"])

When you run this program, you’ll see the following output:

1
0
1
3

We assign a value to a map key by putting the key within brackets and using = to
specify the value, and we read the value assigned to a map key by putting the key
within brackets. Note that you cannot use := to assign a value to a map key.

Maps | 53

https://oreil.ly/kIeJM
https://oreil.ly/kIeJM
https://oreil.ly/gBMvf


When we try to read the value assigned to a map key that was never set, the map
returns the zero value for the map’s value type. In this case, the value type is an int, so
we get back a 0. You can use the ++ operator to increment the numeric value for a
map key. Because a map returns its zero value by default, this works even when there’s
no existing value associated with the key.

The comma ok Idiom
As we’ve seen, a map returns the zero value if you ask for the value associated with a
key that’s not in the map. This is handy when implementing things like the counter
we saw earlier. However, you sometimes do need to find out if a key is in a map. Go
provides the comma ok idiom to tell the difference between a key that’s associated
with a zero value and a key that’s not in the map:

m := map[string]int{
    "hello": 5,
    "world": 0,
}
v, ok := m["hello"]
fmt.Println(v, ok)

v, ok = m["world"]
fmt.Println(v, ok)

v, ok = m["goodbye"]
fmt.Println(v, ok)

Rather than assign the result of a map read to a single variable, with the comma ok
idiom you assign the results of a map read to two variables. The first gets the value
associated with the key. The second value returned is a bool. It is usually named ok. If
ok is true, the key is present in the map. If ok is false, the key is not present. In this
example, the code prints out 5 true, 0 true, and 0 false.

The comma ok idiom is used in Go when we want to differentiate
between reading a value and getting back the zero value. We’ll see it
again when we read from channels in Chapter 10 and when we use
type assertions in Chapter 7.

Deleting from Maps
Key-value pairs are removed from a map via the built-in delete function:

m := map[string]int{
    "hello": 5,
    "world": 10,
}
delete(m, "hello")

54 | Chapter 3: Composite Types



The delete function takes a map and a key and then removes the key-value pair with
the specified key. If the key isn’t present in the map or if the map is nil, nothing hap‐
pens. The delete function doesn’t return a value.

Using Maps as Sets
Many languages include a set in their standard library. A set is a data type that ensures
there is at most one of a value, but doesn’t guarantee that the values are in any partic‐
ular order. Checking to see if an element is in a set is fast, no matter how many ele‐
ments are in the set. (Checking to see if an element is in a slice takes longer as you
add more elements to the slice.)

Go doesn’t include a set, but you can use a map to simulate some of its features. Use
the key of the map for the type that you want to put into the set and use a bool for the
value. The code in Example 3-11 demonstrates the concept. You can run it on The Go
Playground.

Example 3-11. Using a map as a set

intSet := map[int]bool{}
vals := []int{5, 10, 2, 5, 8, 7, 3, 9, 1, 2, 10}
for _, v := range vals {
    intSet[v] = true
}
fmt.Println(len(vals), len(intSet))
fmt.Println(intSet[5])
fmt.Println(intSet[500])
if intSet[100] {
    fmt.Println("100 is in the set")
}

We want a set of ints, so we create a map where the keys are of int type and the
values are of bool type. We iterate over the values in vals using a for-range loop
(which we discuss in “The for-range Statement” on page 71) to place them into
intSet, associating each int with the boolean value true.

We wrote 11 values into intSet, but the length of intSet is 8, because you cannot
have duplicate keys in a map. If we look for 5 in intSet, it returns true, because we
have a key with the value 5. However, if we look for 500 or 100 in intSet, it returns
false. This is because we haven’t put either value into intSet, which causes the map
to return the zero value for the map value, and the zero value for a bool is false.

If you need sets that provide operations like union, intersection, and subtraction, you
can either write one yourself or use one of the many third-party libraries that provide
the functionality. (We’ll learn more about using third-party libraries in Chapter 9.)

Maps | 55

https://oreil.ly/wC6XK
https://oreil.ly/wC6XK


Some people prefer to use struct{} for the value when a map is
being used to implement a set. (We’ll discuss structs in the next sec‐
tion.) The advantage is that an empty struct uses zero bytes, while a
boolean uses one byte.
The disadvantage is that using a struct{} makes your code more
clumsy. You have a less obvious assignment, and you need to use
the comma ok idiom to check if a value is in the set:

intSet := map[int]struct{}{}
vals := []int{5, 10, 2, 5, 8, 7, 3, 9, 1, 2, 10}
for _, v := range vals {
    intSet[v] = struct{}{}
}
if _, ok := intSet[5]; ok {
    fmt.Println("5 is in the set")
}

Unless you have very large sets, it is unlikely that the difference in
memory usage is significant enough to outweigh the disadvantages.

Structs
Maps are a convenient way to store some kinds of data, but they have limitations.
They don’t define an API since there’s no way to constrain a map to only allow certain
keys. Also, all of the values in a map must be of the same type. For these reasons,
maps are not an ideal way to pass data from function to function. When you have
related data that you want to group together, you should define a struct.

If you already know an object-oriented language, you might be
wondering about the difference between classes and structs. The
difference is simple: Go doesn’t have classes, because it doesn’t have
inheritance. This doesn’t mean that Go doesn’t have some of the
features of object-oriented languages, it just does things a little dif‐
ferently. We’ll learn more about the object-oriented features of Go
in Chapter 7.

Most languages have a concept that’s similar to a struct, and the syntax that Go uses
to read and write structs should look familiar:

type person struct {
    name string
    age  int
    pet  string
}

A struct type is defined with the keyword type, the name of the struct type, the key‐
word struct, and a pair of braces ({}). Within the braces, you list the fields in the

56 | Chapter 3: Composite Types



struct. Just like we put the variable name first and the variable type second in a var
declaration, we put the struct field name first and the struct field type second. Also
note that unlike map literals, there are no commas separating the fields in a struct
declaration. You can define a struct type inside or outside of a function. A struct type
that’s defined within a function can only be used within that function. (We’ll learn
more about functions in Chapter 5.)

Technically, you can scope a struct definition to any block level.
We’ll learn more about blocks in Chapter 4.

Once a struct type is declared, we can define variables of that type:

var fred person

Here we are using a var declaration. Since no value is assigned to fred, it gets the
zero value for the person struct type. A zero value struct has every field set to the
field’s zero value.

A struct literal can be assigned to a variable as well:

bob := person{}

Unlike maps, there is no difference between assigning an empty struct literal and not
assigning a value at all. Both initialize all of the fields in the struct to their zero values.
There are two different styles for a nonempty struct literal. A struct literal can be
specified as a comma-separated list of values for the fields inside of braces:

julia := person{
    "Julia",
    40,
    "cat",
}

When using this struct literal format, a value for every field in the struct must be
specified, and the values are assigned to the fields in the order they were declared in
the struct definition.

The second struct literal style looks like the map literal style:

beth := person{
    age:  30,
    name: "Beth",
}

You use the names of the fields in the struct to specify the values. When you use this
style, you can leave out keys and specify the fields in any order. Any field not speci‐
fied is set to its zero value. You cannot mix the two struct literal styles: either all of the

Structs | 57



fields are specified with keys, or none of them are. For small structs where all fields
are always specified, the simpler struct literal style is fine. In other cases, use the key
names. It’s more verbose, but it makes clear what value is being assigned to what field
without having to reference the struct definition. It’s also more maintainable. If you
initialize a struct without using the field names and a future version of the struct adds
additional fields, your code will no longer compile.

A field in a struct is accessed with dotted notation:

bob.name = "Bob"
fmt.Println(beth.name)

Just like we use brackets for both reading and writing to a map, we use dotted nota‐
tion for reading and writing to struct fields.

Anonymous Structs
You can also declare that a variable implements a struct type without first giving the
struct type a name. This is called an anonymous struct:

var person struct {
    name string
    age  int
    pet  string
}

person.name = "bob"
person.age = 50
person.pet = "dog"

pet := struct {
    name string
    kind string
}{
    name: "Fido",
    kind: "dog",
}

In this example, the types of the variables person and pet are anonymous structs. You
assign (and read) fields in an anonymous struct just like you do for a named struct
type. Just like you can initialize an instance of a named struct with a struct literal, you
can do the same for an anonymous struct as well.

You might wonder when it’s useful to have a data type that’s only associated with a
single instance. There are two common situations where anonymous structs are
handy. The first is when you translate external data into a struct or a struct into exter‐
nal data (like JSON or protocol buffers). This is called unmarshaling and marshaling
data. We’ll learn how to do this in “encoding/json” on page 241.

58 | Chapter 3: Composite Types



Writing tests is another place where anonymous structs pop up. We’ll use a slice of
anonymous structs when writing table-driven tests in Chapter 13.

Comparing and Converting Structs
Whether or not a struct is comparable depends on the struct’s fields. Structs that are
entirely composed of comparable types are comparable; those with slice or map fields
are not (as we will see in later chapters, function and channel fields also prevent a
struct from being comparable).

Unlike in Python or Ruby, in Go there’s no magic method that can be overridden to
redefine equality and make == and != work for incomparable structs. You can, of
course, write your own function that you use to compare structs.

Just like Go doesn’t allow comparisons between variables of different primitive types,
Go doesn’t allow comparisons between variables that represent structs of different
types. Go does allow you to perform a type conversion from one struct type to
another if the fields of both structs have the same names, order, and types. Let’s see what
this means. Given this struct:

type firstPerson struct {
    name string
    age  int
}

We can use a type conversion to convert an instance of firstPerson to
secondPerson, but we can’t use == to compare an instance of firstPerson and an
instance of secondPerson, because they are different types:

type secondPerson struct {
    name string
    age  int
}

We can’t convert an instance of firstPerson to thirdPerson, because the fields are in
a different order:

type thirdPerson struct {
    age  int
    name string
}

We can’t convert an instance of firstPerson to fourthPerson because the field
names don’t match:

type fourthPerson struct {
    firstName string
    age       int
}

Structs | 59



Finally, we can’t convert an instance of firstPerson to fifthPerson because there’s
an additional field:

type fifthPerson struct {
    name          string
    age           int
    favoriteColor string
}

Anonymous structs add a small twist to this: if two struct variables are being com‐
pared and at least one of them has a type that’s an anonymous struct, you can com‐
pare them without a type conversion if the fields of both structs have the same names,
order, and types. You can also assign between named and anonymous struct types if
the fields of both structs have the same names, order, and types:

type firstPerson struct {
    name string
    age  int
}
f := firstPerson{
    name: "Bob",
    age:  50,
}
var g struct {
    name string
    age  int
}

// compiles -- can use = and == between identical named and anonymous structs
g = f
fmt.Println(f == g)

Wrapping Up
We’ve learned a lot about container types in Go. In addition to learning more about
strings, we now know how to use the built-in generic container types, slices and
maps. We can also construct our own composite types via structs. In our next chapter,
we’re going to take a look at Go’s control structures, for, if/else, and switch. We
will also learn how Go organizes code into blocks, and how the different block levels
can lead to surprising behavior.

60 | Chapter 3: Composite Types



CHAPTER 4

Blocks, Shadows, and Control Structures

Now that we have covered variables, constants, and built-in types, we are ready to
look at programming logic and organization. We’ll start by explaining blocks and
how they control when an identifier is available. Then we’ll look at Go’s control struc‐
tures: if, for, and switch. Finally, we will talk about goto and the one situation when
you should use it.

Blocks
Go lets you declare variables in lots of places. You can declare them outside of func‐
tions, as the parameters to functions, and as local variables within functions.

So far, we’ve only written the main function, but we’ll write func‐
tions with parameters in the next chapter.

Each place where a declaration occurs is called a block. Variables, constants, types,
and functions declared outside of any functions are placed in the package block.
We’ve used import statements in our programs to gain access to printing and math
functions (and will talk about them in detail in Chapter 9). They define names for
other packages that are valid for the file that contains the import statement. These
names are in the file block. All of the variables defined at the top level of a function
(including the parameters to a function) are in a block. Within a function, every set
of braces ({}) defines another block, and in a bit we will see that the control struc‐
tures in Go define blocks of their own.

61



You can access an identifier defined in any outer block from within any inner block.
This raises the question: what happens when you have a declaration with the same
name as an identifier in a containing block? If you do that, you shadow the identifier
created in the outer block.

Shadowing Variables
Before explaining what shadowing is, let’s take a look at some code (see Example 4-1).
You can run it on The Go Playground.

Example 4-1. Shadowing variables

func main() {
    x := 10
    if x > 5 {
        fmt.Println(x)
        x := 5
        fmt.Println(x)
    }
    fmt.Println(x)
}

Before you run this code, try to guess what it’s going to print out:

• Nothing prints; the code does not compile
• 10 on line one, 5 on line two, 5 on line three
• 10 on line one, 5 on line two, 10 on line three

Here’s what happens:

10
5
10

A shadowing variable is a variable that has the same name as a variable in a contain‐
ing block. For as long as the shadowing variable exists, you cannot access a shadowed
variable.

In this case, we almost certainly didn’t want to create a brand-new x inside the if
statement. Instead, we probably wanted to assign 5 to the x declared at the top level of
the function block. At the first fmt.Println inside the if statement, we are able to
access the x declared at the top level of the function. On the next line, though, we
shadow x by declaring a new variable with the same name inside the block created by
the if statement’s body. At the second fmt.Println, when we access the variable
named x, we get the shadowing variable, which has the value of 5. The closing brace
for the if statement’s body ends the block where the shadowing x exists, and at the

62 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/50t6b


third fmt.Println, when we access the variable named x, we get the variable declared
at the top level of the function, which has the value of 10. Notice that this x didn’t
disappear or get reassigned; there was just no way to access it once it was shadowed in
the inner block.

I mentioned in the last chapter that there are situations where I avoid using :=
because it can make it unclear what variables are being used. That’s because it is very
easy to accidentally shadow a variable when using :=. Remember, we can use := to
create and assign to multiple variables at once. Also, not all of the variables on the
lefthand side have to be new for := to be legal. You can use := as long as there is at
least one new variable on the lefthand side. Let’s look at another program (see
Example 4-2), which can be found on The Go Playground.

Example 4-2. Shadowing with multiple assignment

func main() {
    x := 10
    if x > 5 {
        x, y := 5, 20
        fmt.Println(x, y)
    }
    fmt.Println(x)
}

Running this code gives you:

5 20
10

Although there was an existing definition of x in an outer block, x was still shadowed
within the if statement. That’s because := only reuses variables that are declared in
the current block. When using :=, make sure that you don’t have any variables from
an outer scope on the lefthand side, unless you intend to shadow them.

You also need to be careful to ensure that you don’t shadow a package import. We’ll
talk more about importing packages in Chapter 9, but we’ve been importing the fmt
package to print out results of our programs. Let’s see what happens when we declare
a variable called fmt within our main function, as shown in Example 4-3. You can try
to run it on The Go Playground.

Blocks | 63

https://oreil.ly/U_m4B
https://oreil.ly/CKQvm


Example 4-3. Shadowing package names

func main() {
    x := 10
    fmt.Println(x)
    fmt := "oops"
    fmt.Println(fmt)
}

When we try to run this code, we get an error:

fmt.Println undefined (type string has no field or method Println)

Notice that the problem isn’t that we named our variable fmt, it’s that we tried to
access something that the local variable fmt didn’t have. Once the local variable fmt is
declared, it shadows the package named fmt in the file block, making it impossible to
use the fmt package for the rest of the main function.

Detecting Shadowed Variables
Given the subtle bugs that shadowing can introduce, it’s a good idea to make sure that
you don’t have any shadowed variables in your programs. Neither go vet nor
golangci-lint include a tool to detect shadowing, but you can add shadowing detec‐
tion to your build process by installing the shadow linter on your machine:

$ go install golang.org/x/tools/go/analysis/passes/shadow/cmd/shadow@latest

If you are building with a Makefile, consider including shadow in the vet task:

vet:
        go vet ./...
        shadow ./...
.PHONY:vet

When you run make vet against the previous code, you’ll see that the shadowed vari‐
able is now detected:

declaration of "x" shadows declaration at line 6

64 | Chapter 4: Blocks, Shadows, and Control Structures



The Universe Block
There’s actually one more block that is a little weird: the universe block. Remember,
Go is a small language with only 25 keywords. What’s interesting is that the built-in
types (like int and string), constants (like true and false), and functions (like make
or close) aren’t included in that list. Neither is nil. So, where are they?

Rather than make them keywords, Go considers these predeclared identifiers and
defines them in the universe block, which is the block that contains all other blocks.

Because these names are declared in the universe block, it means that they can be
shadowed in other scopes. You can see this happen by running the code in
Example 4-4 on The Go Playground.

Example 4-4. Shadowing true

fmt.Println(true)
true := 10
fmt.Println(true)

When you run it, you’ll see:

true
10

You must be very careful to never redefine any of the identifiers in the universe block. If
you accidentally do so, you will get some very strange behavior. If you are lucky, you’ll
get compilation failures. If you are not, you’ll have a harder time tracking down the
source of your problems.

You might think that something this potentially destructive would be caught by lint‐
ing tools. Amazingly, it isn’t. Not even shadow detects shadowing of universe block
identifiers.

if   
The if statement in Go is much like the if statement in most programming lan‐
guages. Because it is such a familiar construct, I’ve used it in early sample code
without worrying that it’d be confusing. Example 4-5 shows a more complete sample.

if    | 65

https://oreil.ly/eoU2A


Example 4-5. if and else

n := rand.Intn(10)
if n == 0 {
    fmt.Println("That's too low")
} else if n > 5 {
    fmt.Println("That's too big:", n)
} else {
    fmt.Println("That's a good number:", n)
}

If you run this code, you’ll find that it always assigns 1 to n. This
happens because the default random number seed in math/rand is
hard-coded. In “Overriding a Package’s Name” on page 183, we’ll
look at a way to ensure a good seed for random number generation
while demonstrating how to handle package name collisions.

The most visible difference between if statements in Go and other languages is that
you don’t put parenthesis around the condition. But there’s another feature that Go
adds to if statements that helps you better manage your variables.

As we discussed in the section on shadowing variables, any variable declared within
the braces of an if or else statement exists only within that block. This isn’t that
uncommon; it is true in most languages. What Go adds is the ability to declare vari‐
ables that are scoped to the condition and to both the if and else blocks. Let’s take a
look by rewriting our previous example to use this scope, as shown in Example 4-6.

Example 4-6. Scoping a variable to an if statement

if n := rand.Intn(10); n == 0 {
    fmt.Println("That's too low")
} else if n > 5 {
    fmt.Println("That's too big:", n)
} else {
    fmt.Println("That's a good number:", n)
}

Having this special scope is very handy. It lets you create variables that are available
only where they are needed. Once the series of if/else statements ends, n is unde‐
fined. You can test this by trying to run the code in Example 4-7 on
The Go Playground.

66 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/rz671


Example 4-7. Out of scope…

if n := rand.Intn(10); n == 0 {
    fmt.Println("That's too low")
} else if n > 5 {
    fmt.Println("That's too big:", n)
} else {
    fmt.Println("That's a good number:", n)
}
fmt.Println(n)

Attempting to run this code produces a compilation error:

undefined: n

Technically, you can put any simple statement before the compari‐
son in an if statement. This includes things like a function call that
doesn’t return a value or assigning a new value to an existing vari‐
able. But don’t do this. Only use this feature to define new variables
that are scoped to the if/else statements; anything else would be
confusing.
Also be aware that just like any other block, a variable declared as
part of an if statement will shadow variables with the same name
that are declared in containing blocks.

for, Four Ways
As in other languages in the C family, Go uses a for statement to loop. What makes
Go different from other languages is that for is the only looping keyword in the lan‐
guage. Go accomplishes this by using the for keyword in four different formats:

• A complete, C-style for
• A condition-only for
• An infinite for
• for-range

The Complete for Statement
The first one we’ll look at is the complete for declaration you might be familiar with
from C, Java, or JavaScript, as shown in Example 4-8.

for, Four Ways | 67



Example 4-8. A complete for statement

for i := 0; i < 10; i++ {
    fmt.Println(i)
}

You would probably be unsurprised to find that this program prints out the numbers
from 0 to 9, inclusive.

Just like the if statement, there are no parenthesis around the parts of the for state‐
ment. Otherwise, it should look very familiar. There are three parts, separated by
semicolons. The first is an initialization that sets one or more variables before the
loop begins. There are two important details to remember about the initialization sec‐
tion. First, you must use := to initialize the variables; var is not legal here. Second,
just like variable declarations in if statements, you can shadow a variable here.

The second part is the comparison. This must be an expression that evaluates to a
bool. It is checked immediately before the loop body runs, after the initialization, and
after the loop reaches the end. If the expression evaluates to true, the loop body is
executed.

The last part of a standard for statement is the increment. You usually see something
like i++ here, but any assignment is valid. It runs immediately after each iteration of
the loop, before the condition is evaluated.

The Condition-Only for Statement
Go allows you to leave off both the initialization and the increment in a for state‐
ment. That leaves a for statement that functions like the while statement found in C,
Java, JavaScript, Python, Ruby, and many other languages. It looks like Example 4-9.

Example 4-9. A condition-only for statement

i := 1
for i < 100 {
        fmt.Println(i)
        i = i * 2
}

The Infinite for Statement
The third for statement format does away with the condition, too. Go has a version
of a for loop that loops forever. If you learned to program in the 1980s, your first
program was probably an infinite loop in BASIC that printed HELLO to the screen
forever:

68 | Chapter 4: Blocks, Shadows, and Control Structures



10 PRINT "HELLO"
20 GOTO 10

Example 4-10 shows the Go version of this program. You can run it locally or try it
out on The Go Playground.

Example 4-10. Infinite looping nostalgia

package main

import "fmt"

func main() {
    for {
        fmt.Println("Hello")
    }
}

Running this program gives you the same output that filled the screens of millions of
Commodore 64s and Apple ][s:

Hello
Hello
Hello
Hello
Hello
Hello
Hello
...

Press Ctrl-C when you are tired of walking down memory lane.

If you run this on The Go Playground, you’ll find that it will stop
execution after a few seconds. As a shared resource, the playground
doesn’t allow any one program to run for too long.

break and continue
How do you get out of an infinite for loop without using the keyboard or turning off
your computer? That’s the job of the break statement. It exits the loop immediately,
just like the break statement in other languages. Of course, you can use break with
any for statement, not just the infinite for statement.

for, Four Ways | 69

https://oreil.ly/whOi-


There is no Go equivalent of the do keyword in Java, C, and Java‐
Script. If you want to iterate at least once, the cleanest way is to use
an infinite for loop that ends with an if statement. If you have
some Java code, for example, that uses a do/while loop:

do {
    // things to do in the loop
} while (CONDITION);

The Go version looks like this:
for {
    // things to do in the loop
    if !CONDITION {
        break
    }
}

Note that the condition has a leading ! to negate the condition
from the Java code. The Go code is specifying how to exit the loop,
while the Java code specifies how to stay in it.

Go also includes the continue keyword, which skips over the rest of the body of a for
loop and proceeds directly to the next iteration. Technically, you don’t need a
continue statement. You could write code like Example 4-11.

Example 4-11. Confusing code

for i := 1; i <= 100; i++ {
    if i%3 == 0 {
        if i%5 == 0 {
            fmt.Println("FizzBuzz")
        } else {
            fmt.Println("Fizz")
        }
    } else if i%5 == 0 {
        fmt.Println("Buzz")
    } else {
        fmt.Println(i)
    }
}

But this is not idiomatic. Go encourages short if statement bodies, as left-aligned as
possible. Nested code is difficult to follow. Using a continue statement makes it easier
to understand what’s going on. Example 4-12 shows the code from the previous
example, rewritten to use continue instead.

70 | Chapter 4: Blocks, Shadows, and Control Structures



Example 4-12. Using continue to make code clearer

for i := 1; i <= 100; i++ {
    if i%3 == 0 && i%5 == 0 {
        fmt.Println("FizzBuzz")
        continue
    }
    if i%3 == 0 {
        fmt.Println("Fizz")
        continue
    }
    if i%5 == 0 {
        fmt.Println("Buzz")
        continue
    }
    fmt.Println(i)
}

As you can see, replacing chains of if/else statements with a series of if statements
that use continue makes the conditions line up. This improves the layout of your
conditions, which means your code is easier to read and understand.

The for-range Statement
The fourth for statement format is for iterating over elements in some of Go’s built-in
types. It is called a for-range loop and resembles the iterators found in other lan‐
guages. In this section, we will look at how to use a for-range loop with strings,
arrays, slices, and maps. When we cover channels in Chapter 10, we will talk about
how to use them with for-range loops.

You can only use a for-range loop to iterate over the built-in com‐
pound types and user-defined types that are based on them.

First, let’s take a look at using a for-range loop with a slice. You can try out the code
in Example 4-13 on The Go Playground.

Example 4-13. The for-range loop

evenVals := []int{2, 4, 6, 8, 10, 12}
for i, v := range evenVals {
    fmt.Println(i, v)
}

for, Four Ways | 71

https://oreil.ly/XwuTL


Running this code produces the following output:

0 2
1 4
2 6
3 8
4 10
5 12

What makes a for-range loop interesting is that you get two loop variables. The first
variable is the position in the data structure being iterated, while the second is the
value at that position. The idiomatic names for the two loop variables depend on
what is being looped over. When looping over an array, slice, or string, an i for index
is commonly used. When iterating through a map, k (for key) is used instead.

The second variable is frequently called v for value, but is sometimes given a name
based on the type of the values being iterated. Of course, you can give the variables
any names that you like. If there are only a few statements in the body of the loop,
single letter variable names work well. For longer (or nested) loops, you’ll want to use
more descriptive names.

What if you don’t need to use the key within your for-range loop? Remember, Go
requires you to access all declared variables, and this rule applies to the ones declared
as part of a for loop, too. If you don’t need to access the key, use an underscore (_) as
the variable’s name. This tells Go to ignore the value. Let’s rewrite our slice ranging
code to not print out the position. We can run the code in Example 4-14 on The Go
Playground.

Example 4-14. Ignoring the key in a for-range loop

evenVals := []int{2, 4, 6, 8, 10, 12}
for _, v := range evenVals {
    fmt.Println(v)
}

Running this code produces the following output:

2
4
6
8
10
12

Any time you are in a situation where there’s a value returned, but
you want to ignore it, use an underscore to hide the value. You’ll
see the underscore pattern again when we talk about functions in
Chapter 5 and packages in Chapter 9.

72 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/2fO12
https://oreil.ly/2fO12


What if you want the key, but don’t want the value? In this situation, Go allows you to
just leave off the second variable. This is valid Go code:

uniqueNames := map[string]bool{"Fred": true, "Raul": true, "Wilma": true}
for k := range uniqueNames {
    fmt.Println(k)
}

The most common reason for iterating over the key is when a map is being used as a
set. In those situations, the value is unimportant. However, you can also leave off the
value when iterating over arrays or slices. This is rare, as the usual reason for iterating
over a linear data structure is to access the data. If you find yourself using this format
for an array or slice, there’s an excellent chance that you have chosen the wrong data
structure and should consider refactoring.

When we look at channels in Chapter 10, we’ll see a situation
where a for-range loop only returns a single value each time the
loop iterates.

Iterating over maps

There’s something interesting about how a for-range loop iterates over a map. You
can run the code in Example 4-15 on The Go Playground.

Example 4-15. Map iteration order varies

m := map[string]int{
    "a": 1,
    "c": 3,
    "b": 2,
}

for i := 0; i < 3; i++ {
    fmt.Println("Loop", i)
    for k, v := range m {
        fmt.Println(k, v)
    }
}

When you build and run this program, the output varies. Here is one possibility:

Loop 0
c 3
b 2
a 1
Loop 1
a 1
c 3

for, Four Ways | 73

https://oreil.ly/VplnA


b 2
Loop 2
b 2
a 1
c 3

The order of the keys and values varies; some runs may be identical. This is actually a
security feature. In earlier Go versions, the iteration order for keys in a map was usu‐
ally (but not always) the same if you inserted the same items into a map. This caused
two problems:

• People would write code that assumed that the order was fixed, and this would
break at weird times.

• If maps always hash items to the exact same values, and you know that a server is
storing some user data in a map, you can actually slow down a server with an
attack called Hash DoS by sending it specially crafted data where all of the keys
hash to the same bucket.

To prevent both of these problems, the Go team made two changes to the map imple‐
mentation. First, they modified the hash algorithm for maps to include a random
number that’s generated every time a map variable is created. Next, they made the
order of a for-range iteration over a map vary a bit each time the map is looped over.
These two changes make it far harder to implement a Hash DoS attack.

There is one exception to this rule. To make it easier to debug and
log maps, the formatting functions (like fmt.Println) always out‐
put maps with their keys in ascending sorted order.

Iterating over strings

As I mentioned earlier, you can also use a string with a for-range loop. Let’s take a
look. You can run the code in Example 4-16 on your computer or on The Go Play‐
ground.

Example 4-16. Iterating over strings

samples := []string{"hello", "apple_π!"}
for _, sample := range samples {
    for i, r := range sample {
        fmt.Println(i, r, string(r))
    }
    fmt.Println()
}

74 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/C3LRy
https://oreil.ly/C3LRy


The output when we iterate over the word “hello” has no surprises:

0 104 h
1 101 e
2 108 l
3 108 l
4 111 o

In the first column, we have the index; in the second, the numeric value of the letter;
and in the third, we have the numeric value of the letter type converted to a string.

Looking at the result for “apple_π!” is more interesting:

0 97 a
1 112 p
2 112 p
3 108 l
4 101 e
5 95 _
6 960 π
8 33 !

There are two things to notice. First, notice that the first column skips the number 7.
Second, the value at position 6 is 960. That’s far larger than what can fit in a byte. But
in Chapter 3, we said that strings were made out of bytes. What’s going on?

What we are seeing is special behavior from iterating over a string with a for-range
loop. It iterates over the runes, not the bytes. Whenever a for-range loop encounters
a multibyte rune in a string, it converts the UTF-8 representation into a single 32-bit
number and assigns it to the value. The offset is incremented by the number of bytes
in the rune. If the for-range loop encounters a byte that doesn’t represent a valid
UTF-8 value, the Unicode replacement character (hex value 0xfffd) is returned
instead.

Use a for-range loop to access the runes in a string in order. The
key is the number of bytes from the beginning of the string, but the
type of the value is rune.

The for-range value is a copy

You should be aware that each time the for-range loop iterates over your compound
type, it copies the value from the compound type to the value variable. Modifying the
value variable will not modify the value in the compound type. Example 4-17 shows a
quick program to demonstrate this. You can try it out on The Go Playground.

for, Four Ways | 75

https://oreil.ly/ShwR0


Example 4-17. Modifying the value doesn’t modify the source

evenVals := []int{2, 4, 6, 8, 10, 12}
for _, v := range evenVals {
    v *= 2
}
fmt.Println(evenVals)

Running this code gives the following output:

[2 4 6 8 10 12]

The implications of this behavior are subtle. When we talk about goroutines in Chap‐
ter 10, you’ll see that if you launch goroutines in a for-range loop, you need to be
very careful in how you pass the index and value to the goroutines, or you’ll get sur‐
prisingly wrong results.

Just like the other three forms of the for statement, you can use break and continue
with a for-range loop.

Labeling Your for Statements
By default, the break and continue keywords apply to the for loop that directly con‐
tains them. What if you have nested for loops and you want to exit or skip over an
iterator of an outer loop? Let’s look at an example. We’re going to modify our earlier
string iterating program to stop iterating through a string as soon as it hits a letter “l.”
You can run the code in Example 4-18 on The Go Playground.

Example 4-18. Labels

func main() {
    samples := []string{"hello", "apple_π!"}
outer:
    for _, sample := range samples {
        for i, r := range sample {
            fmt.Println(i, r, string(r))
            if r == 'l' {
                continue outer
            }
        }
        fmt.Println()
    }
}

Notice that the label outer is indented by go fmt to the same level as the surrounding
function. Labels are always indented to the same level as the braces for the block. This
makes them easier to notice. Running our program gives the following output:

76 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/ToDkq


0 104 h
1 101 e
2 108 l
0 97 a
1 112 p
2 112 p
3 108 l

Nested for loops with labels are rare. They are most commonly used to implement
algorithms similar to the pseudocode below:

outer:
    for _, outerVal := range outerValues {
        for _, innerVal := range outerVal {
            // process innerVal
            if invalidSituation(innerVal) {
                continue outer
            }
        }
        // here we have code that runs only when all of the
        // innerVal values were sucessfully processed
    }

Choosing the Right for Statement
Now that we’ve covered all of the forms of the for statement, you might be wonder‐
ing when to use which format. Most of the time, you’re going to use the for-range
format. A for-range loop is the best way to walk through a string, since it properly
gives you back runes instead of bytes. We have also seen that a for-range loop works
well for iterating through slices and maps, and we’ll see in Chapter 10 that channels
work naturally with for-range as well.

Favor a for-range loop when iterating over all the contents of an
instance of one of the built-in compound types. It avoids a great
deal of boilerplate code that’s required when you use an array, slice,
or map with one of the other for loop styles.

When should you use the complete for loop? The best place for it is when you aren’t
iterating from the first element to the last element in a compound type. While you
could use some combination of if, continue, and break within a for-range loop, a
standard for loop is a clearer way to indicate the start and end of your iteration.
Compare these two code snippets, both of which iterate over the second through the
second-to-last elements in an array. First the for-range loop:

evenVals := []int{2, 4, 6, 8, 10}
for i, v := range evenVals {
    if i == 0 {
        continue

for, Four Ways | 77



    }
    if i == len(evenVals)-2 {
        break
    }
    fmt.Println(i, v)
}

And here’s the same code, with a standard for loop:

evenVals := []int{2, 4, 6, 8, 10}
for i := 1; i < len(evenVals)-1; i++ {
    fmt.Println(i, evenVals[i])
}

The standard for loop code is both shorter and easier to understand.

This pattern does not work for skipping over the beginning of a
string. Remember, a standard for loop doesn’t properly handle
multibyte characters. If you want to skip over some of the runes in
a string, you need to use a for-range loop so that it will properly
process runes for you.

The remaining two for statement formats are used less frequently. The condition-
only for loop is, like the while loop it replaces, useful when you are looping based on
a calculated value.

The infinite for loop is useful in some situations. There should always be a break
somewhere within the body of the for loop since it’s rare that you want to loop for‐
ever. Real-world programs should bound iteration and fail gracefully when opera‐
tions cannot be completed. As shown previously, an infinite for loop can be
combined with an if statement to simulate the do statement that’s present in other
languages. An infinite for loop is also used to implement some versions of the itera‐
tor pattern, which we will look at when we review the standard library in “io and
Friends” on page 233.

switch
Like many C-derived languages, Go has a switch statement. Most developers in those
languages avoid switch statements because of their limitations on values that can be
switched on and the default fall-through behavior. But Go is different. It makes
switch statements useful.

For those readers who are more familiar with Go, we’re going to
cover expression switch statements in this chapter. We’ll discuss type
switch statements when we talk about interfaces in Chapter 7.

78 | Chapter 4: Blocks, Shadows, and Control Structures



At first glance, switch statements in Go don’t look all that different from how they
appear in C/C++, Java, or JavaScript, but there are a few surprises. Let’s take a look
at a sample switch statement. You can run the code in Example 4-19 on
The Go Playground.

Example 4-19. The switch statement

words := []string{"a", "cow", "smile", "gopher",
    "octopus", "anthropologist"}
for _, word := range words {
    switch size := len(word); size {
    case 1, 2, 3, 4:
        fmt.Println(word, "is a short word!")
    case 5:
        wordLen := len(word)
        fmt.Println(word, "is exactly the right length:", wordLen)
    case 6, 7, 8, 9:
    default:
        fmt.Println(word, "is a long word!")
    }
}

When we run this code, we get the following output:

a is a short word!
cow is a short word!
smile is exactly the right length: 5
anthropologist is a long word!

Let’s go over the features of the switch statement to explain the output. As is the case
with if statements, you don’t put parenthesis around the value being compared in a
switch. Also like an if statement, you can declare a variable that’s scoped to all of the
branches of the switch statement. In our case, we are scoping the variable word to all
of the cases in the switch statement.

All of the case clauses (and the optional default clause) are contained inside a set of
braces. But you should note that you don’t put braces around the contents of the case
clauses. You can have multiple lines inside a case (or default) clause and they are all
considered to be part of the same block.

Inside case 5:, we declare wordLen, a new variable. Since this is a new block, you can
declare new variables within it. Just like any other block, any variables declared
within a case clause’s block are only visible within that block.

If you are used to putting a break statement at the end of every case in your switch
statements, you’ll be happy to notice that they are gone. By default, cases in switch
statements in Go don’t fall through. This is more in line with the behavior in Ruby or
(if you are an old-school programmer) Pascal.

switch | 79

https://oreil.ly/VKf4N


This prompts the question: if cases don’t fall through, what do you do if there are
multiple values that should trigger the exact same logic? In Go, you separate multiple
matches with commas, like we do when matching 1, 2, 3, and 4 or 6, 7, 8, and 9. That’s
why we get the same output for both a and cow.

Which leads to the next question: if you don’t have fall-through, and you have an
empty case (like we do in our sample program when the length of our argument is 6,
7, 8, or 9 characters), what happens? In Go, an empty case means nothing happens.
That’s why we don’t see any output from our program when we use octopus or gopher
as the parameter.

For the sake of completeness, Go does include a fallthrough key‐
word, which lets one case continue on to the next one. Please think
twice before implementing an algorithm that uses it. If you find
yourself needing to use fallthrough, try to restructure your logic
to remove the dependencies between cases.

In our sample program we are switching on the value of an integer, but that’s not all
you can do. You can switch on any type that can be compared with ==, which includes
all of the built-in types except slices, maps, channels, functions, and structs that con‐
tain fields of these types.

Even though you don’t need to put a break statement at the end of each case clause,
you can use them in situations where you want to exit early from a case. However,
the need for a break statement might indicate that you are doing something too com‐
plicated. Consider refactoring your code to remove it.

There is one more place where you might find yourself using a break statement in a
case in a switch statement. If you have a switch statement inside a for loop, and you
want to break out of the for loop, put a label on the for statement and put the name
of the label on the break. If you don’t use a label, Go assumes that you want to break
out of the case. Let’s look at a quick example. You can run the code in Example 4-20
on The Go Playground.

Example 4-20. The case of the missing label

func main() {
    for i := 0; i < 10; i++ {
        switch {
        case i%2 == 0:
            fmt.Println(i, "is even")
        case i%3 == 0:
            fmt.Println(i, "is divisible by 3 but not 2")
        case i%7 == 0:
            fmt.Println("exit the loop!")

80 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/o2xg2


            break
        default:
            fmt.Println(i, "is boring")
        }
    }
}

Running this code produces the following output:

0 is even
1 is boring
2 is even
3 is divisible by 3 but not 2
4 is even
5 is boring
6 is even
exit the loop!
8 is even
9 is divisible by 3 but not 2

That’s not what we intended. The goal was to break out of the for loop when we got a
7. To do this, we need to introduce a label, just like we did when breaking out of a
nested for loop. First, we label the for statement:

loop:
    for i := 0; i < 10; i++ {

Then we use the label on our break:

break loop

You can see these changes on The Go Playground. When we run it again, we get the
output that we expected:

0 is even
1 is boring
2 is even
3 is divisible by 3 but not 2
4 is even
5 is boring
6 is even
exit the loop!

Blank Switches
There’s another, more powerful way to use switch statements. Just like Go allows you
to leave out parts from a for statement’s declaration, you can write a switch state‐
ment that doesn’t specify the value that you’re comparing against. This is called a
blank switch. A regular switch only allows you to check a value for equality. A blank
switch allows you to use any boolean comparison for each case. You can try out the
code in Example 4-21 on The Go Playground.

Blank Switches | 81

https://oreil.ly/gA0O3
https://oreil.ly/v7qI5


Example 4-21. The blank switch

words := []string{"hi", "salutations", "hello"}
for _, word := range words {
    switch wordLen := len(word); {
    case wordLen < 5:
        fmt.Println(word, "is a short word!")
    case wordLen > 10:
        fmt.Println(word, "is a long word!")
    default:
        fmt.Println(word, "is exactly the right length.")
    }
}

When you run this program, you get the following output:

hi is a short word!
salutations is a long word!
hello is exactly the right length.

Just like a regular switch statement, you can optionally include a short variable decla‐
ration as part of your blank switch. But unlike a regular switch, you can write logical
tests for your cases. Blank switches are pretty cool, but don’t overdo them. If you find
that you have written a blank switch where all of your cases are equality comparisons
against the same variable:

switch {
case a == 2:
    fmt.Println("a is 2")
case a == 3:
    fmt.Println("a is 3")
case a == 4:
    fmt.Println("a is 4")
default:
    fmt.Println("a is ", a)
}

you should replace it with an expression switch statement:

switch a {
case 2:
    fmt.Println("a is 2")
case 3:
    fmt.Println("a is 3")
case 4:
    fmt.Println("a is 4")
default:
    fmt.Println("a is ", a)
}

82 | Chapter 4: Blocks, Shadows, and Control Structures



Choosing Between if and switch
As a matter of functionality, there isn’t a lot of difference between a series of if/else
statements and a blank switch statement. Both of them allow a series of comparisons.
So, when should you use switch and when should you use a set of if/else state‐
ments? A switch statement, even a blank switch, indicates that there is some rela‐
tionship between the values or comparisons in each case. To demonstrate the
difference in clarity, let’s rewrite our random number classifier from the section on if
using a switch instead, as shown in Example 4-22.

Example 4-22. Rewriting if/else with a blank switch

switch n := rand.Intn(10); {
case n == 0:
    fmt.Println("That's too low")
case n > 5:
    fmt.Println("That's too big:", n)
default:
    fmt.Println("That's a good number:", n)
}

Most people would agree that this is more readable. The value being compared is lis‐
ted on a line by itself, and all of the cases line up on the lefthand side. The regularity
of the location of the comparisons makes them easy to follow and modify.

Of course, there is nothing in Go that prevents you from doing all sorts of unrelated
comparisons on each case in a blank switch. However, this is not idiomatic. If you
find yourself in a situation where you want to do this, use a series of if/else state‐
ments (or perhaps consider refactoring your code).

Favor blank switch statements over if/else chains when you have
multiple related cases. Using a switch makes the comparisons
more visible and reinforces that they are a related set of concerns.

goto—Yes, goto
There is a fourth control statement in Go, but chances are, you will never use it. Ever
since Edgar Dijkstra wrote “Go To Statement Considered Harmful” in 1968, the goto
statement has been the black sheep of the coding family. There are good reasons for
this. Traditionally, goto was dangerous because it could jump to nearly anywhere in a
program; you could jump into or out of a loop, skip over variable definitions, or into
the middle of a set of statements in an if statement. This made it difficult to under‐
stand what a goto-using program did.

Choosing Between if and switch | 83

https://oreil.ly/YK2tl


Most modern languages don’t include goto. Yet Go has a goto statement. You should
still do what you can to avoid using it, but it has some uses, and the limitations that
Go places on it make it a better fit with structured programming.

In Go, a goto statement specifies a labeled line of code and execution jumps to it.
However, you can’t jump anywhere. Go forbids jumps that skip over variable declara‐
tions and jumps that go into an inner or parallel block.

The program in Example 4-23 shows two illegal goto statements. You can attempt to
run it on The Go Playground.

Example 4-23. Go’s goto has rules

func main() {
    a := 10
    goto skip
    b := 20
skip:
    c := 30
    fmt.Println(a, b, c)
    if c > a {
        goto inner
    }
    if a < b {
    inner:
        fmt.Println("a is less than b")
    }
}

Trying to run this program produces the following errors:

goto skip jumps over declaration of b at ./main.go:8:4
goto inner jumps into block starting at ./main.go:15:11

So what should you use goto for? Mostly, you shouldn’t. Labeled break and continue
statements allow you to jump out of deeply nested loops or skip iteration. The pro‐
gram in Example 4-24 has a legal goto and demonstrates one of the few valid use
cases.

Example 4-24. A reason to use goto

func main() {
    a := rand.Intn(10)
    for a < 100 {
        if a%5 == 0 {
            goto done
        }
        a = a*2 + 1
    }

84 | Chapter 4: Blocks, Shadows, and Control Structures

https://oreil.ly/l016p


    fmt.Println("do something when the loop completes normally")
done:
    fmt.Println("do complicated stuff no matter why we left the loop")
    fmt.Println(a)
}

This example is contrived, but it shows how goto can make a program clearer. In our
simple case, there is some logic that we don’t want to run in the middle of the func‐
tion, but we do want to run the end of the function. There are ways to do this without
goto. We could set up a boolean flag or duplicate the complicated code after the for
loop instead of having a goto, but there are drawbacks to both of these approaches.
Littering your code with boolean flags to control the logic flow is arguably the same
functionality as the goto statement, just more verbose. Duplicating complicated code
is problematic because it makes your code harder to maintain. These situations are
rare, but if you cannot find a way to restructure your logic, using a goto like this
actually improves your code.

If you want to see a real-world example, you can take a look at the floatBits method
in the file atof.go in the strconv package in the standard library. It’s too long to
include in its entirety, but the method ends with this code:

overflow:
    // ±Inf
    mant = 0
    exp = 1<<flt.expbits - 1 + flt.bias
    overflow = true

out:
    // Assemble bits.
    bits := mant & (uint64(1)<<flt.mantbits - 1)
    bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
    if d.neg {
        bits |= 1 << flt.mantbits << flt.expbits
    }
    return bits, overflow

Before these lines, there are several condition checks. Some require the code after the
overflow label to run, while other conditions require skipping that code and going
directly to out. Depending on the condition, there are goto statements that jump to
overflow or out. You could probably come up with a way to avoid the goto state‐
ments, but they all make the code harder to understand.

You should try very hard to avoid using goto. But in the rare situa‐
tions where it makes your code more readable, it is an option.

goto—Yes, goto | 85



Wrapping Up
This chapter covered a lot of important topics for writing idiomatic Go. We’ve learned
about blocks, shadowing, and control structures, and how to use them correctly. At
this point, we’re able to write simple Go programs that fit within the main function.
It’s time to move on to larger programs, using functions to organize our code.

86 | Chapter 4: Blocks, Shadows, and Control Structures



CHAPTER 5

Functions

So far, our programs have been limited to a few lines in the main function. It’s time to
get bigger. In this chapter, we’re going to learn how to write functions in Go and see
all of the interesting things we can do with them.

Declaring and Calling Functions
The basics of Go functions are familiar to anyone who has programmed in other lan‐
guages with first-class functions, like C, Python, Ruby, or JavaScript. (Go also has
methods, which we’ll cover in Chapter 7.) Just like control structures, Go adds its own
twist on function features. Some are improvements and others are experiments that
should be avoided. We’ll cover both in this chapter.

We’ve already seen functions being declared and used. Every program we’ve written
has a main function that’s the starting point for every Go program, and we’ve been
calling the fmt.Println function to display output to the screen. Since main func‐
tions don’t take in any parameters or return any values, let’s see what it looks like
when we have a function that does:

func div(numerator int, denominator int) int {
    if denominator == 0 {
        return 0
    }
    return numerator / denominator
}

Let’s look at all the new things in this code sample. A function declaration has four
parts: the keyword func, the name of the function, the input parameters, and the
return type. The input parameters are listed in parentheses, separated by commas,
with the parameter name first and the type second. Go is a typed language, so you

87



must specify the types of the parameters. The return type is written between the input
parameter’s closing parenthesis and the opening brace for the function body.

Just like other languages, Go has a return keyword for returning values from a func‐
tion. If a function returns a value, you must supply a return. If a function returns
nothing, a return statement is not needed at the end of the function. The return
keyword is only needed in a function that returns nothing if you are exiting from the
function before the last line.

The main function has no input parameters or return values. When a function has no
input parameters, use empty parentheses (()). When a function returns nothing, you
write nothing between the input parameter’s closing parenthesis and the opening
brace for the function body:

func main() {
    result := div(5, 2)
    fmt.Println(result)
}

Calling a function should be familiar to experienced developers. On the right side of
the :=, we call our div function with the values 5 and 2. On the left side, we assign the
returned value to the variable result.

When you have multiple input parameters of the same type, you
can write your input parameters like this:

func div(numerator, denominator int) int {

Simulating Named and Optional Parameters
Before we get to the unique function features that Go has, let’s mention two that Go
doesn’t have: named and optional input parameters. With one exception that we will
cover in the next section, you must supply all of the parameters for a function. If you
want to emulate named and optional parameters, define a struct that has fields that
match the desired parameters, and pass the struct to your function. Example 5-1
shows a snippet of code that demonstrates this pattern.

Example 5-1. Using a struct to simulate named parameters

type MyFuncOpts struct {
    FirstName string
    LastName string
    Age int
}

func MyFunc(opts MyFuncOpts) error {

88 | Chapter 5: Functions



    // do something here
}

func main() {
    MyFunc(MyFuncOpts {
        LastName: "Patel",
        Age: 50,
    })
    My Func(MyFuncOpts {
        FirstName: "Joe",
        LastName: "Smith",
    })
}

In practice, not having named and optional parameters isn’t a limitation. A function
shouldn’t have more than a few parameters, and named and optional parameters are
mostly useful when a function has many inputs. If you find yourself in that situation,
your function is quite possibly too complicated.

Variadic Input Parameters and Slices
We’ve been using fmt.Println to print results to the screen and you’ve probably
noticed that it allows any number of input parameters. How does it do that? Like
many languages, Go supports variadic parameters. The variadic parameter must be
the last (or only) parameter in the input parameter list. You indicate it with three dots
(…) before the type. The variable that’s created within the function is a slice of the
specified type. You use it just like any other slice. Let’s see how they work by writing a
program that adds a base number to a variable number of parameters and returns the
result as a slice of int. You can run this program on The Go Playground. First we’ll
write our variadic function:

func addTo(base int, vals ...int) []int {
    out := make([]int, 0, len(vals))
    for _, v := range vals {
        out = append(out, base+v)
    }
    return out
}

And now we’ll call it a few different ways:

func main() {
    fmt.Println(addTo(3))
    fmt.Println(addTo(3, 2))
    fmt.Println(addTo(3, 2, 4, 6, 8))
    a := []int{4, 3}
    fmt.Println(addTo(3, a...))
    fmt.Println(addTo(3, []int{1, 2, 3, 4, 5}...))
}

Declaring and Calling Functions | 89

https://oreil.ly/nSad4


As you can see, you can supply however many values you want for the variadic
parameter, or no values at all. Since the variadic parameter is converted to a slice, you
can supply a slice as the input. However, you must put three dots (…) after the variable
or slice literal. If you do not, it is a compile-time error.

When you build and run this program, you get:

[]
[5]
[5 7 9 11]
[7 6]
[4 5 6 7 8]

Multiple Return Values
The first difference that we’ll see between Go and other languages is that Go allows
for multiple return values. Let’s add a small feature to our previous division program.
We’re going to return both the dividend and the remainder from our function. Here’s
our updated function:

func divAndRemainder(numerator int, denominator int) (int, int, error) {
    if denominator == 0 {
        return 0, 0, errors.New("cannot divide by zero")
    }
    return numerator / denominator, numerator % denominator, nil
}

There are a few changes to support multiple return values. When a Go function
returns multiple values, the types of the return values are listed in parentheses, sepa‐
rated by commas. Also, if a function returns multiple values, you must return all of
them, separated by commas. Don’t put parentheses around the returned values; that’s
a compile-time error.

There’s something else that we haven’t seen yet: creating and returning an error. If
you want to learn more about errors, skip ahead to Chapter 8. For now, you only need
to know that you use Go’s multiple return value support to return an error if some‐
thing goes wrong in a function. If the function completes successfully, we return nil
for the error’s value. By convention, the error is always the last (or only) value
returned from a function.

Calling our updated function looks like this:

func main() {
    result, remainder, err := divAndRemainder(5, 2)
    if err != nil {
        fmt.Println(err)
        os.Exit(1)
    }
    fmt.Println(result, remainder)
}

90 | Chapter 5: Functions



We talked about assigning multiple values at once in “var Versus :=” on page 27. Here
we are using that feature to assign the results of a function call to three different vari‐
ables. On the right side of the :=, we call our divAndRemainder function with the val‐
ues 5 and 2. On the left side, we assign the returned values to the variables result,
remainder, and err. We check to see if there was an error by comparing err to nil.

Multiple Return Values Are Multiple Values
If you are familiar with Python, you might think that multiple return values are like
Python functions returning a tuple that’s optionally destructured if the tuple’s values
are assigned to multiple variables. Example 5-2 shows some sample code run in the
Python interpreter.

Example 5-2. Multiple return values in Python are destructured tuples

>>> def div_and_remainder(n,d):
...   if d == 0:
...     raise Exception("cannot divide by zero")
...   return n / d, n % d
>>> v = div_and_remainder(5,2)
>>> v
(2.5, 1)
>>> result, remainder = div_and_remainder(5,2)
>>> result
2.5
>>> remainder
1

That’s not how Go works. You must assign each value returned from a function. If
you try to assign multiple return values to one variable, you get a compile-time error.

Ignoring Returned Values
But what if you call a function and don’t want to use all of the returned values? As we
covered in “Unused Variables” on page 32, Go does not allow unused variables. If a
function returns multiple values, but you don’t need to read one or more of the val‐
ues, assign the unused values to the name _. For example, if we weren’t going to read
remainder, we would write the assignment as result, _, err := divAndRemain
der(5, 2).

Surprisingly, Go does let you implicitly ignore all of the return values for a function.
You can write divAndRemainder(5,2) and the returned values are dropped. We have
actually been doing this since our earliest examples: fmt.Println returns two values,
but it is idiomatic to ignore them. In almost all other cases, you should make it
explicit that you are ignoring return values by using underscores.

Declaring and Calling Functions | 91



Use _ whenever you don’t need to read a value that’s returned by a
function.

Named Return Values
In addition to letting you return more than one value from a function, Go also allows
you to specify names for your return values. Let’s rewrite our divAndRemainder func‐
tion one more time, this time using named return values:

func divAndRemainder(numerator int, denominator int) (result int, remainder int,
                                                                  err error) {
    if denominator == 0 {
        err = errors.New("cannot divide by zero")
        return result, remainder, err
    }
    result, remainder = numerator/denominator, numerator%denominator
    return result, remainder, err
}

When you supply names to your return values, what you are doing is pre-declaring
variables that you use within the function to hold the return values. They are written
as a comma-separated list within parentheses. You must surround named return val‐
ues with parentheses, even if there is only a single return value. Named return values
are initialized to their zero values when created. This means that we can return them
before any explicit use or assignment.

One important thing to note: the name that’s used for a named returned value is local
to the function; it doesn’t enforce any name outside of the function. It is perfectly
legal to assign the return values to variables of different names:

func main() {
    x, y, z := divAndRemainder(5, 2)
    fmt.Println(x, y, z)
}

If you only want to name some of the return values, you can do so
by using _ as the name for any return values you want to remain
nameless.

While named return values can sometimes help clarify your code, they do have some
potential corner cases. First is the problem of shadowing. Just like any other variable,
you can shadow a named return value. Be sure that you are assigning to the return
value and not to a shadow of it.

92 | Chapter 5: Functions



The other problem with named return values is that you don’t have to return them.
Let’s take a look at another variation on divAndRemainder. You can run it on The Go
Playground:

func divAndRemainder(numerator, denominator int) (result int, remainder int,
                                                              err error) {
    // assign some values
    result, remainder = 20, 30
    if denominator == 0 {
        return 0, 0, errors.New("cannot divide by zero")
    }
    return numerator / denominator, numerator % denominator, nil
}

Notice that we assigned values to result and remainder and then returned different
values directly. Before running this code, try to guess what happens when we pass 5
and 2 to this function. The result might surprise you:

2 1

The values from the return statement were returned even though they were never
assigned to the named return parameters. That’s because the Go compiler inserts code
that assigns whatever is returned to the return parameters. The named return param‐
eters give a way to declare an intent to use variables to hold the return values, but
don’t require you to use them.

Some developers like to use named return parameters because they provide addi‐
tional documentation. However, I find them of limited value. Shadowing makes them
confusing, as does simply ignoring them. There is one situation where named return
parameters are essential. We will talk about that when we cover defer later in the
chapter.

Blank Returns—Never Use These!
If you use named return values, you need to be aware of one severe misfeature in Go:
blank (sometimes called naked) returns. If you have named return values, you can
just write return without specifying the values that are returned. This returns the last
values assigned to the named return values. Let’s rewrite our divAndRemainder func‐
tion one last time, this time using blank returns:

func divAndRemainder(numerator, denominator int) (result int, remainder int,
                                                              err error) {
    if denominator == 0 {
        err = errors.New("cannot divide by zero")
        return
    }
    result, remainder = numerator/denominator, numerator%denominator
    return
}

Declaring and Calling Functions | 93

https://oreil.ly/FzUkw
https://oreil.ly/FzUkw


Using blank returns makes a few additional changes to our function. When there’s
invalid input, we return immediately. Since no values were assigned to result and
remainder, their zero values are returned. If you are returning the zero values for
your named return values, be sure they make sense. Also notice that we still have to
put a return at the end of the function. Even though we are using blank returns, this
function returns values. It is a compile-time error to leave return out.

At first, you might find blank returns handy since they allow you to avoid some typ‐
ing. However, most experienced Go developers consider blank returns a bad idea
because they make it harder to understand data flow. Good software is clear and read‐
able; it’s obvious what is happening. When you use a blank return, the reader of your
code needs to scan back through the program to find the last value assigned to the
return parameters to see what is actually being returned.

If your function returns values, never use a blank return. It can
make it very confusing to figure out what value is actually returned.

Functions Are Values
Just like in many other languages, functions in Go are values. The type of a function
is built out of the keyword func and the types of the parameters and return values.
This combination is called the signature of the function. Any function that has the
exact same number and types of parameters and return values meets the type
signature.

Having functions as values allows us to do some clever things, such as build a primi‐
tive calculator using functions as values in a map. Let’s see how this works. The code
is available on The Go Playground. First, we’ll create a set of functions that all have
the same signature:

func add(i int, j int) int { return i + j }

func sub(i int, j int) int { return i - j }

func mul(i int, j int) int { return i * j }

func div(i int, j int) int { return i / j }

Next, we create a map to associate a math operator with each function:

var opMap = map[string]func(int, int) int{
    "+": add,
    "-": sub,
    "*": mul,

94 | Chapter 5: Functions

https://oreil.ly/L59VY


    "/": div,
}

Finally, let’s try out our calculator with a few expressions:

func main() {
    expressions := [][]string{
        []string{"2", "+", "3"},
        []string{"2", "-", "3"},
        []string{"2", "*", "3"},
        []string{"2", "/", "3"},
        []string{"2", "%", "3"},
        []string{"two", "+", "three"},
        []string{"5"},
    }
    for _, expression := range expressions {
        if len(expression) != 3 {
            fmt.Println("invalid expression:", expression)
            continue
        }
        p1, err := strconv.Atoi(expression[0])
        if err != nil {
            fmt.Println(err)
            continue
        }
        op := expression[1]
        opFunc, ok := opMap[op]
        if !ok {
            fmt.Println("unsupported operator:", op)
            continue
        }
        p2, err := strconv.Atoi(expression[2])
        if err != nil {
            fmt.Println(err)
            continue
        }
        result := opFunc(p1, p2)
        fmt.Println(result)
    }
}

We’re using the strconv.Atoi function in the standard library to convert a string to
an int. The second value returned by this function is an error. Just like before, we
check for errors that are returned by functions and handle error conditions properly.

We use op as the key to the opMap map, and assign the value associated with the key to
the variable opFunc. The type of opFunc is func(int, int) int. If there wasn’t a
function in the map associated with the provided key, we print an error message and
skip the rest of the loop. We then call the function assigned to the opFunc variable
with the p1 and p2 variables that we decoded earlier. Calling a function in a variable
looks just like calling a function directly.

Functions Are Values | 95



When you run this program, you can see our simple calculator at work:

5
-1
6
0
unsupported operator: %
strconv.Atoi: parsing "two": invalid syntax
invalid expression: [5]

Don’t write fragile programs. The core logic for this example is rel‐
atively short. Of the 22 lines inside the for loop, 6 of them imple‐
ment the actual algorithm and the other 16 are error checking and
data validation. You might be tempted to not validate incoming
data or check errors, but doing so produces unstable, unmaintaina‐
ble code. Error handling is what separates the professionals from
the amateurs.

Function Type Declarations
Just like you can use the type keyword to define a struct, you can use it to define a
function type, too (we’ll go into more details on type declarations in Chapter 7):

type opFuncType func(int,int) int

We can then rewrite the opMap declaration to look like this:

var opMap = map[string]opFuncType {
    // same as before
}

We don’t have to modify the functions at all. Any function that has two input parame‐
ters of type int and a single return value of type int automatically meets the type and
can be assigned as a value in the map.

What’s the advantage of declaring a function type? One use is documentation. It’s use‐
ful to give something a name if you are going to refer to it multiple times. We will see
another use in “Function Types Are a Bridge to Interfaces” on page 154.

Anonymous Functions
Not only can you assign functions to variables, you can also define new functions
within a function and assign them to variables.

These inner functions are anonymous functions; they don’t have a name. You don’t
have to assign them to a variable, either. You can write them inline and call them
immediately. Here’s a simple example that you can run on The Go Playground:

func main() {
    for i := 0; i < 5; i++ {

96 | Chapter 5: Functions

https://oreil.ly/EnkN6


        func(j int) {
            fmt.Println("printing", j, "from inside of an anonymous function")
        }(i)
    }
}

You declare an anonymous function with the keyword func immediately followed by
the input parameters, the return values, and the opening brace. It is a compile-time
error to try to put a function name between func and the input parameters.

Just like any other function, an anonymous function is called by using parenthesis. In
this example, we are passing the i variable from the for loop in here. It is assigned to
the j input parameter of our anonymous function.

Running the program gives the following output:

printing 0 from inside of an anonymous function
printing 1 from inside of an anonymous function
printing 2 from inside of an anonymous function
printing 3 from inside of an anonymous function
printing 4 from inside of an anonymous function

Now, this is not something that you would normally do. If you are declaring and exe‐
cuting an anonymous function immediately, you might as well get rid of the anony‐
mous function and just call the code. However, there are two situations where
declaring anonymous functions without assigning them to variables is useful: defer
statements and launching goroutines. We’ll talk about defer statements in a bit.
Goroutines are covered in Chapter 10.

Closures
Functions declared inside of functions are special; they are closures. This is a com‐
puter science word that means that functions declared inside of functions are able to
access and modify variables declared in the outer function.

All of this inner function and closure stuff might not seem all that interesting at first.
What benefit do you get from making mini-functions within a larger function? Why
does Go have this feature?

One thing that closures allow you to do is limit a function’s scope. If a function is only
going to be called from one other function, but it’s called multiple times, you can use
an inner function to “hide” the called function. This reduces the number of declara‐
tions at the package level, which can make it easier to find an unused name.

Closures really become interesting when they are passed to other functions or
returned from a function. They allow you to take the variables within your function
and use those values outside of your function.

Closures | 97



Passing Functions as Parameters
Since functions are values and you can specify the type of a function using its param‐
eter and return types, you can pass functions as parameters into functions. If you
aren’t used to treating functions like data, you might need a moment to think about
the implications of creating a closure that references local variables and then passing
that closure to another function. It’s a very useful pattern and appears several times in
the standard library.

One example is sorting slices. There’s a function in the sort package in the standard
library called sort.Slice. It takes in any slice and a function that is used to sort the
slice that’s passed in. Let’s see how it works by sorting a slice of a struct using two
different fields.

Go doesn’t have generics (yet) so sort.Slice does some internal
magic to make it work with any kind of slice. We’ll talk about this
magic more in Chapter 14.

Let’s see how we use closures to sort the same data different ways. You can run this
code on The Go Playground. First, we’ll define a simple type, a slice of values of that
type, and print out the slice:

type Person struct {
    FirstName string
    LastName  string
    Age       int
}

people := []Person{
    {"Pat", "Patterson", 37},
    {"Tracy", "Bobbert", 23},
    {"Fred", "Fredson", 18},
}
fmt.Println(people)

Next, we’ll sort our slice by last name and print out the results:

// sort by last name
sort.Slice(people, func(i int, j int) bool {
    return people[i].LastName < people[j].LastName
})
fmt.Println(people)

The closure that’s passed to sort.Slice has two parameters, i and j, but within the
closure, we can refer to people so we can sort it by the LastName field. In computer
science terms, people is captured by the closure. Next we do the same, sorting by the
Age field:

98 | Chapter 5: Functions

https://oreil.ly/3kjg3


// sort by age
sort.Slice(people, func(i int, j int) bool {
    return people[i].Age < people[j].Age
})
fmt.Println(people)

Running this code gives the following output:

[{Pat Patterson 37} {Tracy Bobbert 23} {Fred Fredson 18}]
[{Tracy Bobbert 23} {Fred Fredson 18} {Pat Patterson 37}]
[{Fred Fredson 18} {Tracy Bobbert 23} {Pat Patterson 37}]

The people slice is changed by the call to sort.Slice. We talk about this briefly in
“Go Is Call By Value” on page 104 and in more detail in the next chapter.

Passing functions as parameters to other functions is often useful
for performing different operations on the same kind of data.

Returning Functions from Functions
Not only can you use a closure to pass some function state to another function, you
can also return a closure from a function. Let’s show this off by writing a function
that returns a multiplier function. You can run this program on The Go Playground.
Here is our function that returns a closure:

func makeMult(base int) func(int) int {
    return func(factor int) int {
        return base * factor
    }
}

And here is how we use it:

func main() {
    twoBase := makeMult(2)
    threeBase := makeMult(3)
    for i := 0; i < 3; i++ {
        fmt.Println(twoBase(i), threeBase(i))
    }
}

Closures | 99

https://oreil.ly/8tpbN


Running this program gives the following output:

0 0
2 3
4 6

Now that you’ve seen closures in action, you might wonder how often they are used
by Go developers. It turns out that they are surprisingly useful. We saw how they are
used to sort slices. A closure is also used to efficiently search a sorted slice with
sort.Search. As for returning closures, we will see this pattern used when we build
middleware for a web server in “Middleware” on page 251. Go also uses closures to
implement resource cleanup, via the defer keyword.

If you spend any time with programmers who use functional pro‐
gramming languages like Haskell, you might hear the term higher-
order functions. That’s a very fancy way to say that a function has a
function for an input parameter or a return value. As a Go devel‐
oper, you are as cool as they are!

defer
Programs often create temporary resources, like files or network connections, that
need to be cleaned up. This cleanup has to happen, no matter how many exit points a
function has, or whether a function completed successfully or not. In Go, the cleanup
code is attached to the function with the defer keyword.

Let’s take a look at how to use defer to release resources. We’ll do this by writing a
simple version of cat, the Unix utility for printing the contents of a file. We can’t open
files on The Go Playground, but you can find the code for this example on GitHub in
the simple_cat directory:

func main() {
    if len(os.Args) < 2 {
        log.Fatal("no file specified")
    }
    f, err := os.Open(os.Args[1])
    if err != nil {
        log.Fatal(err)
    }
    defer f.Close()
    data := make([]byte, 2048)
    for {
        count, err := f.Read(data)
        os.Stdout.Write(data[:count])
        if err != nil {
            if err != io.EOF {
                log.Fatal(err)
            }

100 | Chapter 5: Functions

https://oreil.ly/P4RuC


            break
        }
    }
}

This example introduces a few new features that we cover in more detail in later
chapters. Feel free to read ahead to learn more.

First, we make sure that a file name was specified on the command line by checking
the length of os.Args, a slice in the os package that contains the name of the program
launched and the arguments passed to it. If the argument is missing, we use the Fatal
function in the log package to print a message and exit the program. Next, we
acquire a read-only file handle with the Open function in the os package. The second
value that’s returned by Open is an error. If there’s a problem opening the file, we print
the error message and exit the program. As mentioned earlier, we’ll talk about errors
in Chapter 8.

Once we know we have a valid file handle, we need to close it after we use it, no mat‐
ter how we exit the function. To ensure the cleanup code runs, we use the defer key‐
word, followed by a function or method call. In this case, we use the Close method
on the file variable. (We look at methods in Go in Chapter 7.) Normally, a function
call runs immediately, but defer delays the invocation until the surrounding function
exits.

We read from a file handle by passing a slice of bytes into the Read method on a file
variable. We’ll cover how to use this method in detail in “io and Friends” on page 233,
but Read returns the number of bytes that were read into the slice and an error. If
there’s an error, we check to see if it’s an end-of-file marker. If we are at the end of the
file, we use break to exit the for loop. For all other errors, we report it and exit
immediately using log.Fatal. We’ll talk a little more about slices and function
parameters in “Go Is Call By Value” on page 104 and go into details on this pattern
when we discuss pointers in the next chapter.

Building and running the program from within the simple_cat directory produces the
following result:

$ go build
$ ./simple_cat simple_cat.go
package main

import (
    "fmt"
    "os"
)
...

defer | 101



There are a few more things that you should know about defer. First, you can defer
multiple closures in a Go function. They run in last-in-first-out order; the last defer
registered runs first.

The code within defer closures runs after the return statement. As I mentioned, you
can supply a function with input parameters to a defer. Just as defer doesn’t run
immediately, any variables passed into a deferred closure aren’t evaluated until the
closure runs.

You can supply a function that returns values to a defer, but there’s
no way to read those values.

func example() {
    defer func() int {
        return 2 // there's no way to read this value
    }()
}

You might be wondering if there’s a way for a deferred function to examine or modify
the return values of its surrounding function. There is, and it’s the best reason to use
named return values. It allows us to take actions based on an error. When we talk
about errors in Chapter 8, we will discuss a pattern that uses a defer to add contex‐
tual information to an error returned from a function. Let’s look at a way to handle
database transaction cleanup using named return values and defer:

func DoSomeInserts(ctx context.Context, db *sql.DB, value1, value2 string)
                  (err error) {
    tx, err := db.BeginTx(ctx, nil)
    if err != nil {
        return err
    }
    defer func() {
        if err == nil {
            err = tx.Commit()
        }
        if err != nil {
            tx.Rollback()
        }
    }()
    _, err = tx.ExecContext(ctx, "INSERT INTO FOO (val) values $1", value1)
    if err != nil {
        return err
    }
    // use tx to do more database inserts here
    return nil
}

102 | Chapter 5: Functions



We’re not going to cover Go’s database support in this book, but the standard library
includes extensive support for databases in the database/sql package. In our exam‐
ple function, we create a transaction to do a series of database inserts. If any of them
fails, we want to roll back (not modify the database). If all of them succeed, we want
to commit (store the database changes). We use a closure with defer to check if err
has been assigned a value. If it hasn’t, we run a tx.Commit(), which could also return
an error. If it does, the value err is modified. If any database interaction returned an
error, we call tx.Rollback().

New Go developers tend to forget the parentheses when specifying
a closure for defer. It is a compile-time error to leave them out and
eventually the habit sets in. It helps to remember that supplying
parentheses allows you to specify values that will be passed into the
closure when it runs.

A common pattern in Go is for a function that allocates a resource to also return a
closure that cleans up the resource. In the simple_cat_cancel directory in our GitHub
project, there is a rewrite of our simple cat program that does this. First we write a
helper function that opens a file and returns a closure:

func getFile(name string) (*os.File, func(), error) {
    file, err := os.Open(name)
    if err != nil {
        return nil, nil, err
    }
    return file, func() {
        file.Close()
    }, nil
}

Our helper function returns a file, a function, and an error. That * means that a file
reference in Go is a pointer. We’ll talk more about that in the next chapter.

Now in main, we use our getFile function:

f, closer, err := getFile(os.Args[1])
if err != nil {
    log.Fatal(err)
}
defer closer()

Because Go doesn’t allow unused variables, returning the closer from the function
means that the program will not compile if the function is not called. That reminds
the user to use defer. As we covered earlier, you put parentheses after closer when
you defer it.

defer | 103



Using defer can feel strange if you are used to a language that uses
a block within a function to control when a resource is cleaned up,
like the try/catch/finally blocks in Java, Javascript, and Python
or the begin/rescue/ensure blocks in Ruby.
The downside to these resource cleanup blocks is that they create
another level of indentation in your function, and that makes the
code harder to read. It’s not just my opinion that nested code is
harder to follow. In research described in a 2017 paper in Empirical
Software Engineering, Vard Antinyan, Miroslaw Staron, and Anna
Sandberg discovered that “Of…eleven proposed code characteris‐
tics, only two markedly influence complexity growth: the nesting
depth and the lack of structure.”
Research on what makes a program easier to read and understand
isn’t new. You can find papers that are many decades old, including
a paper from 1983 by Richard Miara, Joyce Musseman, Juan Nav‐
arro, and Ben Shneiderman that tries to figure out the right amount
of indentation to use (according to their results, two to four
spaces).

Go Is Call By Value
You might hear people say that Go is a call by value language and wonder what that
means. It means that when you supply a variable for a parameter to a function, Go
always makes a copy of the value of the variable. Let’s take a look. You can run this
code on The Go Playground. First, we define a simple struct:

type person struct {
    age  int
    name string
}

Next, we write a function that takes in an int, a string, and a person, and modifies
their values:

func modifyFails(i int, s string, p person) {
    i = i * 2
    s = "Goodbye"
    p.name = "Bob"
}

We then call this function from main and see if the modifications stick:

func main() {
    p := person{}
    i := 2
    s := "Hello"
    modifyFails(i, s, p)

104 | Chapter 5: Functions

https://oreil.ly/VcYrR
https://oreil.ly/VcYrR
https://oreil.ly/s0xcq
https://oreil.ly/yo_rY


    fmt.Println(i, s, p)
}

As the name of the function indicates, running this code shows that a function won’t
change the values of the parameters passed into it:

2 Hello {0 }

I included the person struct to show that this isn’t just true for primitive types. If you
have programming experience in Java, JavaScript, Python, or Ruby, you might find
the struct behavior very strange. After all, those languages let you modify the fields
in an object when you pass an object as a parameter to a function. The reason for the
difference is something we will cover when we talk about pointers.

The behavior is a little different for maps and slices. Let’s see what happens when we
try to modify them within a function. You can run this code on The Go Playground.
We’re going to write a function to modify a map parameter and a function to modify
a slice parameter:

func modMap(m map[int]string) {
    m[2] = "hello"
    m[3] = "goodbye"
    delete(m, 1)
}

func modSlice(s []int) {
    for k, v := range s {
        s[k] = v * 2
    }
    s = append(s, 10)
}

We then call these functions from main:

func main() {
    m := map[int]string{
        1: "first",
        2: "second",
    }
    modMap(m)
    fmt.Println(m)

    s := []int{1, 2, 3}
    modSlice(s)
    fmt.Println(s)
}

When you run this code, you’ll see something interesting:

map[2:hello 3:goodbye]
[2 4 6]

Go Is Call By Value | 105

https://oreil.ly/kKL4R


For the map, it’s easy to explain what happens: any changes made to a map parameter
are reflected in the variable passed into the function. For a slice, it’s more compli‐
cated. You can modify any element in the slice, but you can’t lengthen the slice. This is
true for maps and slices that are passed directly into functions as well as map and
slice fields in structs.

This program leads to the question: why do maps and slices behave differently than
other types? It’s because maps and slices are both implemented with pointers. We’ll go
into more detail in the next chapter.

Every type in Go is a value type. It’s just that sometimes the value is
a pointer.

Call by value is one reason why Go’s limited support for constants is only a minor
handicap. Since variables are passed by value, you can be sure that calling a function
doesn’t modify the variable whose value was passed in (unless the variable is a slice or
map). In general, this is a good thing. It makes it easier to understand the flow of data
through your program when functions don’t modify their input parameters and
instead return newly computed values.

While this approach is easy to understand, there are cases where you need to pass
something mutable to a function. What do you do then? That’s when you need a
pointer.

Wrapping Up
In this chapter, we’ve looked at functions in Go, how they are similar to functions in
other languages, and their unique features. In the next chapter, we’re going to look at
pointers, find out that they aren’t nearly as scary as many new Go developers expect
them to be, and learn how to take advantage of them to write efficient programs.

106 | Chapter 5: Functions



CHAPTER 6

Pointers

Now that we’ve seen variables and functions, we’re going to take a quick look at
pointer syntax. Then we’ll clarify the behavior of pointers in Go by comparing them
to the behavior of classes in other languages. We’ll also learn how and when to use
pointers, how memory is allocated in Go, and how using pointers and values properly
makes Go programs faster and more efficient.

A Quick Pointer Primer
A pointer is simply a variable that holds the location in memory where a value is
stored. If you’ve taken computer science courses, you might have seen a graphic to
represent how variables are stored in memory. The representation of the following
two variables would look something like Figure 6-1:

var x int32 = 10
var y bool = true

Figure 6-1. Storing two variables in memory

Every variable is stored in one or more contiguous memory locations, called
addresses. Different types of variables can take up different amounts of memory. In
this example, we have two variables, x, which is a 32-bit int, and y, which is a boolean.
Storing a 32-bit int requires four bytes, so the value for x is stored in four bytes, start‐
ing at address 1 and ending at address 4. A boolean only requires a single byte (you
only need a bit to represent true or false, but the smallest amount of memory that can

107



be independently addressed is a byte), so the value for y is stored in one byte at
address 5, with true represented by the value 1.

A pointer is simply a variable whose contents are the address where another variable
is stored. Figure 6-2 demonstrates how pointers are stored in memory:

var x int32 = 10
var y bool = true
pointerX := &x
pointerY := &y
var pointerZ *string

Figure 6-2. Storing pointers in memory

While different types of variables can take up different numbers of memory locations,
every pointer, no matter what type it is pointing to, is always the same size: a number
that holds the location in memory where the data is stored. Our pointer to x,
pointerX, is stored at location 6 and has the value 1, the address of x. Similarly, our
pointer to y, pointerY, is stored at location 10 and has the value 5, the address of y.
The last pointer, pointerZ, is stored at location 14 and has the value 0, because it
doesn’t point to anything.

The zero value for a pointer is nil. We’ve seen nil a few times before, as the zero
value for slices, maps, and functions. All of these types are implemented with point‐
ers. (Two more types, channels and interfaces, are also implemented with pointers.
We’ll look at them in detail in “A Quick Lesson on Interfaces” on page 141 and
“Channels” on page 206.) As we covered in Chapter 3, nil is an untyped identifier
that represents the lack of a value for certain types. Unlike NULL in C, nil is not
another name for 0; you can’t convert it back and forth with a number.

As alluded to in Chapter 4, nil is defined in the universe block.
Because nil is a value defined in the universe block, it can be shad‐
owed. Never name a variable or function nil, unless you are trying
to trick your coworker and are unconcerned about your annual
review.

108 | Chapter 6: Pointers



Go’s pointer syntax is partially borrowed from C and C++. Since Go has a garbage
collector, most of the pain of memory management is removed. Furthermore, some
of the tricks that you can do with pointers in C and C++, including pointer arithmetic,
are not allowed in Go.

The Go standard library does have an unsafe package that lets you
do some low-level operations on data structures. While pointer
manipulation is used in C for common operations, it is exceedingly
rare for Go developers to use unsafe. We’ll take a quick look at it in
Chapter 14.

The & is the address operator. It precedes a value type and returns the address of the
memory location where the value is stored:

x := "hello"
pointerToX := &x

The * is the indirection operator. It precedes a variable of pointer type and returns the
pointed-to value. This is called dereferencing:

x := 10
pointerToX := &x
fmt.Println(pointerToX)  // prints a memory address
fmt.Println(*pointerToX) // prints 10
z := 5 + *pointerToX
fmt.Println(z)           // prints 15

Before dereferencing a pointer, you must make sure that the pointer is non-nil. Your
program will panic if you attempt to dereference a nil pointer:

var x *int
fmt.Println(x == nil) // prints true
fmt.Println(*x)       // panics

A pointer type is a type that represents a pointer. It is written with a * before a type
name. A pointer type can be based on any type:

x := 10
var pointerToX *int
pointerToX = &x

The built-in function new creates a pointer variable. It returns a pointer to a zero
value instance of the provided type:

var x = new(int)
fmt.Println(x == nil) // prints false
fmt.Println(*x)       // prints 0

A Quick Pointer Primer | 109



The new function is rarely used. For structs, use an & before a struct literal to create a
pointer instance. You can’t use an & before a primitive literal (numbers, booleans, and
strings) or a constant because they don’t have memory addresses; they exist only at
compile time. When you need a pointer to a primitive type, declare a variable and
point to it:

x := &Foo{}
var y string
z := &y

Not being able to take the address of a constant is sometimes inconvenient. If you
have a struct with a field of a pointer to a primitive type, you can’t assign a literal
directly to the field:

type person struct {
    FirstName  string
    MiddleName *string
    LastName   string
}

p := person{
  FirstName:  "Pat",
  MiddleName: "Perry", // This line won't compile
  LastName:   "Peterson",
}

Compiling this code returns the error:

cannot use "Perry" (type string) as type *string in field value

If you try to put an & before "Perry", you’ll get the error message:

cannot take the address of "Perry"

There are two ways around this problem. The first is to do what we showed previ‐
ously, introduce a variable to hold the constant value. The second way is to write a
helper function that takes in a boolean, numeric, or string type and returns a pointer
to that type:

func stringp(s string) *string {
    return &s
}

With that function, you can now write:

p := person{
  FirstName:  "Pat",
  MiddleName: stringp("Perry"), // This works
  LastName:   "Peterson",
}

110 | Chapter 6: Pointers



Why does this work? When we pass a constant to a function, the constant is copied to
a parameter, which is a variable. Since it’s a variable, it has an address in memory. The
function then returns the variable’s memory address.

Use a helper function to turn a constant value into a pointer.

Don’t Fear the Pointers
The first rule of pointers is to not be afraid of them. If you are used to Java, JavaScript,
Python, or Ruby, you might find pointers intimidating. However, pointers are actually
the familiar behavior for classes. It’s the nonpointer structs in Go that are unusual.

In Java and JavaScript, there is a difference in the behavior between primitive types
and classes (Python and Ruby don’t have primitive values, but use immutable instan‐
ces to simulate them). When a primitive value is assigned to another variable or
passed to a function or method, any changes made to the other variable aren’t reflec‐
ted in the original, as shown in Example 6-1.

Example 6-1. Assigning primitive variables doesn’t share memory in Java

int x = 10;
int y = x;
y = 20;
System.out.println(x); // prints 10

However, let’s take a look at what happens when an instance of a class is assigned to
another variable or passed to a function or method (the code in Example 6-2 is writ‐
ten in Python, but similar code for Java, JavaScript, and Ruby can be found on
GitHub).

Example 6-2. Passing a class instance into a function

class Foo:
    def __init__(self, x):
        self.x = x

def outer():
    f = Foo(10)
    inner1(f)
    print(f.x)
    inner2(f)
    print(f.x)

Don’t Fear the Pointers | 111

https://oreil.ly/9IpUK


    g = None
    inner2(g)
    print(g is None)

def inner1(f):
    f.x = 20

def inner2(f):
    f = Foo(30)

outer()

Running this code prints out:

20
20
True

That’s because the following things are true in Java, Python, JavaScript, and Ruby:

• If you pass an instance of a class to a function and you change the value of a field,
the change is reflected in the variable that was passed in.

• If you reassign the parameter, the change is not reflected in the variable that was
passed in.

• If you pass nil/null/None for a parameter value, setting the parameter itself to a
new value doesn’t modify the variable in the calling function.

Some people explain this behavior by saying that class instances are passed by refer‐
ence in these languages. This is untrue. If they were being passed by reference, cases
two and three would change the variable in the calling function. These languages are
always pass-by-value, just like Go.

What we are seeing is that every instance of a class in these languages is implemented
as a pointer. When a class instance is passed to a function or method, the value being
copied is the pointer to the instance. Since outer and inner1 are referring to the
same memory, changes made to fields in f in inner1 are reflected in the variable in
outer. When inner2 reassigns f to a new class instance, this creates a separate
instance and does not affect the variable in outer.

When you use a pointer variable or parameter in Go, you see the exact same behav‐
iors. The difference between Go and these languages is that Go gives you the choice to
use pointers or values for both primitives and structs. Most of the time, you should
use a value. They make it easier to understand how and when your data is modified.
A secondary benefit is that using values reduces the amount of work that the garbage

112 | Chapter 6: Pointers



collector has to do. We’ll talk about that in “Reducing the Garbage Collector’s Work‐
load” on page 123.

Pointers Indicate Mutable Parameters
As we’ve already seen, Go constants provide names for literal expressions that can be
calculated at compile time. There is no mechanism in the language to declare that
other kinds of values are immutable. Modern software engineering embraces immut‐
ability. MIT’s course on Software Construction sums up the reasons why: “[I]mmuta‐
ble types are safer from bugs, easier to understand, and more ready for change.
Mutability makes it harder to understand what your program is doing, and much
harder to enforce contracts.”

The lack of immutable declarations in Go might seem problematic, but the ability to
choose between value and pointer parameter types addresses the issue. As the Soft‐
ware Construction course materials go on to explain: “[U]sing mutable objects is just
fine if you are using them entirely locally within a method, and with only one refer‐
ence to the object.” Rather than declare that some variables and parameters are
immutable, Go developers use pointers to indicate that a parameter is mutable.

Since Go is a call by value language, the values passed to functions are copies. For
nonpointer types like primitives, structs, and arrays, this means that the called func‐
tion cannot modify the original. Since the called function has a copy of the original
data, the immutability of the original data is guaranteed.

We’ll talk about passing maps and slices to functions in “The Dif‐
ference Between Maps and Slices” on page 119.

However, if a pointer is passed to a function, the function gets a copy of the pointer.
This still points to the original data, which means that the original data can be modi‐
fied by the called function.

There are a couple of related implications of this.

The first implication is that when you pass a nil pointer to a function, you cannot
make the value non-nil. You can only reassign the value if there was a value already
assigned to the pointer. While confusing at first, it makes sense. Since the memory
location was passed to the function via call-by-value, we can’t change the memory
address, any more than we could change the value of an int parameter. We can
demonstrate this with the following program:

Pointers Indicate Mutable Parameters | 113

https://oreil.ly/FbUTJ


func failedUpdate(g *int) {
    x := 10
    g = &x
}

func main() {
    var f *int // f is nil
    failedUpdate(f)
    fmt.Println(f) // prints nil
}

The flow through this code is shown in Figure 6-3.

Figure 6-3. Failing to update a nil pointer

114 | Chapter 6: Pointers



We start with a nil variable f in main. When we call failedUpdate, we copy the value
of f, which is nil, into the parameter named g. This means that g is also set to nil.
We then declare a new variable x within failedUpdate with the value 10. Next, we
change g in failedUpdate to point to x. This does not change the f in main, and
when we exit failedUpdate and return to main, f is still nil.

The second implication of copying a pointer is that if you want the value assigned to a
pointer parameter to still be there when you exit the function, you must dereference
the pointer and set the value. If you change the pointer, you have changed the copy,
not the original. Dereferencing puts the new value in the memory location pointed to
by both the original and the copy. Here’s a short program that shows how this works:

func failedUpdate(px *int) {
    x2 := 20
    px = &x2
}

func update(px *int) {
    *px = 20
}

func main() {
    x := 10
    failedUpdate(&x)
    fmt.Println(x) // prints 10
    update(&x)
    fmt.Println(x) // prints 20
}

The flow through this code is shown in Figure 6-4.

In this example, we start with x in main set to 10. When we call failedUpdate, we
copy the address of x into the parameter px. Next, we declare x2 in failedUpdate, set
to 20. We then point px in failedUpdate to the address of x2. When we return to
main, the value of x is unchanged. When we call update, we copy the address of x into
px again. However, this time we change the value of what px in update points to, the
variable x in main. When we return to main, x has been changed.

Pointers Indicate Mutable Parameters | 115



Figure 6-4. The wrong way and the right way to update a pointer

116 | Chapter 6: Pointers



Pointers Are a Last Resort
That said, you should be careful when using pointers in Go. As discussed earlier, they
make it harder to understand data flow and can create extra work for the garbage col‐
lector. Rather than populating a struct by passing a pointer to it into a function, have
the function instantiate and return the struct (see Example 6-3 and Example 6-4).

Example 6-3. Don’t do this

func MakeFoo(f *Foo) error {
  f.Field1 = "val"
  f.Field2 = 20
  return nil
}

Example 6-4. Do this

func MakeFoo() (Foo, error) {
  f := Foo{
    Field1: "val",
    Field2: 20,
  }
  return f, nil
}

The only time you should use pointer parameters to modify a variable is when the
function expects an interface. You see this pattern when working with JSON (we’ll
talk more about the JSON support in Go’s standard library in “encoding/json” on
page 241):

f := struct {
  Name string `json:"name"`
  Age int `json:"age"`
}
err := json.Unmarshal([]byte(`{"name": "Bob", "age": 30}`), &f)

The Unmarshal function populates a variable from a slice of bytes containing JSON. It
is declared to take a slice of bytes and an interface{} parameter. The value passed in
for the interface{} parameter must be a pointer. If it is not, an error is returned.
This pattern is used because Go doesn’t have generics. That means there isn’t a conve‐
nient way to pass a type into a function to specify what to unmarshal into nor is there
a way to specify a different return type for different types.

Because JSON integration is so common, this API is sometimes treated as a common
case by new Go developers, instead of the exception that it should be.

Pointers Are a Last Resort | 117



There is a way to represent a type in Go in a variable, by using the
Type type in the reflect package. The reflect package is reserved
for situations where there is no other way to accomplish a task.
We’ll look at reflection in Chapter 14.

When returning values from a function, you should favor value types. Only use a
pointer type as a return type if there is state within the data type that needs to be
modified. When we look at I/O in “io and Friends” on page 233, we’ll see that with
buffers for reading or writing data. In addition, there are data types that are used with
concurrency that must always be passed as pointers. We’ll see those in Chapter 10.

Pointer Passing Performance
If a struct is large enough, there are performance improvements from using a pointer
to the struct as either an input parameter or a return value. The time to pass a pointer
into a function is constant for all data sizes, roughly one nanosecond. This makes
sense, as the size of a pointer is the same for all data types. Passing a value into a func‐
tion takes longer as the data gets larger. It takes about a millisecond once the value
gets to be around 10 megabytes of data.

The behavior for returning a pointer versus returning a value is more interesting. For
data structures that are smaller than a megabyte, it is actually slower to return a
pointer type than a value type. For example, a 100-byte data structure takes around 10
nanoseconds to be returned, but a pointer to that data structure takes about 30 nano‐
seconds. Once your data structures are larger than a megabyte, the performance
advantage flips. It takes nearly 2 milliseconds to return 10 megabytes of data, but a
little more than half a millisecond to return a pointer to it.

You should be aware that these are very short times. For the vast majority of cases, the
difference between using a pointer and a value won’t affect your program’s perfor‐
mance. But if you are passing megabytes of data between functions, consider using a
pointer even if the data is meant to be immutable.

All of these numbers are from an i7-8700 computer with 32GB of RAM. You can run
your own performance tests by using the code on GitHub.

The Zero Value Versus No Value
The other common usage of pointers in Go is to indicate the difference between a
variable or field that’s been assigned the zero value and a variable or field that hasn’t
been assigned a value at all. If this distinction matters in your program, use a nil
pointer to represent an unassigned variable or struct field.

118 | Chapter 6: Pointers

https://oreil.ly/uVEin


Because pointers also indicate mutability, be careful when using this pattern. Rather
than return a pointer set to nil from a function, use the comma ok idiom that we saw
for maps and return a value type and a boolean.

Remember, if a nil pointer is passed into a function via a parameter or a field on a
parameter, you cannot set the value within the function as there’s nowhere to store
the value. If a non-nil value is passed in for the pointer, do not modify it unless you
document the behavior.

Again, JSON conversions are the exception that proves the rule. When converting
data back and forth from JSON (yes, we’ll talk more about the JSON support in Go’s
standard library in “encoding/json” on page 241), you often need a way to differenti‐
ate between the zero value and not having a value assigned at all. Use a pointer value
for fields in the struct that are nullable.

When not working with JSON (or other external protocols), resist the temptation to
use a pointer field to indicate no value. While a pointer does provide a handy way to
indicate no value, if you are not going to modify the value, you should use a value
type instead, paired with a boolean.

The Difference Between Maps and Slices
As we saw in the previous chapter, any modifications made to a map that’s passed to a
function are reflected in the original variable that was passed in. Now that we know
about pointers, we can understand why: within the Go runtime, a map is imple‐
mented as a pointer to a struct. Passing a map to a function means that you are copy‐
ing a pointer.

Because of this, you should avoid using maps for input parameters or return values,
especially on public APIs. On an API-design level, maps are a bad choice because
they say nothing about what values are contained within; there’s nothing that explic‐
itly defines what keys are in the map, so the only way to know what they are is to trace
through the code. From the standpoint of immutability, maps are bad because the
only way to know what ended up in the map is to trace through all of the functions
that interact with it. This prevents your API from being self-documenting. If you are
used to dynamic languages, don’t use a map as a replacement for another language’s
lack of structure. Go is a strongly typed language; rather than passing a map around,
use a struct. (We’ll learn another reason to prefer structs when we talk about memory
layout in “Reducing the Garbage Collector’s Workload” on page 123.)

The Difference Between Maps and Slices | 119



Meanwhile, passing a slice to a function has more complicated behavior: any modifi‐
cation to the contents of the slice is reflected in the original variable, but using append
to change the length isn’t reflected in the original variable, even if the slice has a
capacity greater than its length. That’s because a slice is implemented as a struct with
three fields: an int field for length, an int field for capacity, and a pointer to a block
of memory. Figure 6-5 demonstrates the relationship.

Figure 6-5. The memory layout of a slice

When a slice is copied to a different variable or passed to a function, a copy is made
of the length, capacity, and the pointer. Figure 6-6 shows how both slice variables
point to the same memory.

Figure 6-6. The memory layout of a slice and its copy

Changing the values in the slice changes the memory that the pointer points to, so the
changes are seen in both the copy and the original. We see in Figure 6-7 how this
looks in memory.

120 | Chapter 6: Pointers



Figure 6-7. Modifying the contents of a slice

Changes to the length and capacity are not reflected back in the original, because they
are only in the copy. Changing the capacity means that the pointer is now pointing to
a new, bigger block of memory. In Figure 6-8 we show how each slice variable now
points to a different memory block.

Figure 6-8. Changing the capacity changes the storage

If the slice copy is appended to and there is enough capacity to not allocate a new
slice, the length changes in the copy and the new values are stored in the block of
memory that’s shared by the copy and the original. However, the length in the origi‐
nal slice remains unchanged. This means the Go runtime prevents the original slice
from seeing those values since they are beyond the length of the original slice.

The Difference Between Maps and Slices | 121



Figure 6-9 highlights the values that are visible in one slice variable but not in the
other.

Figure 6-9. Changing the length is invisible in the original

The result is that a slice that’s passed to a function can have its contents modified, but
the slice can’t be resized. As the only usable linear data structure, slices are frequently
passed around in Go programs. By default, you should assume that a slice is not
modified by a function. Your function’s documentation should specify if it modifies
the slice’s contents.

The reason you can pass a slice of any size to a function is that the
data that’s passed to the function is the same for any size slice: two
int values and a pointer. The reason that you can’t write a function
that takes an array of any size is because the entire array is passed
to the function, not just a pointer to the data.

There’s another use for slices as input parameters: they are ideal for reusable buffers.

Slices as Buffers
When reading data from an external resource (like a file or a network connection),
many languages use code like this:

r = open_resource()
while r.has_data() {
  data_chunk = r.next_chunk()
  process(data_chunk)
}
close(r)

122 | Chapter 6: Pointers



The problem with this pattern is that every time we iterate through that while loop,
we allocate another data_chunk even though each one is only used once. This creates
lots of unnecessary memory allocations. Garbage-collected languages handle those
allocations for you automatically, but the work still needs to be done to clean them up
when you are done processing.

Even though Go is a garbage-collected language, writing idiomatic Go means avoid‐
ing unneeded allocations. Rather than returning a new allocation each time we read
from a data source, we create a slice of bytes once and use it as a buffer to read data
from the data source:

file, err := os.Open(fileName)
if err != nil {
    return err
}
defer file.Close()
data := make([]byte, 100)
for {
    count, err := file.Read(data)
    if err != nil {
        return err
    }
    if count == 0 {
        return nil
    }
    process(data[:count])
}

Remember that we can’t change the length or capacity of a slice when we pass it to a
function, but we can change the contents up to the current length. In this code, we
create a buffer of 100 bytes and each time through the loop, we copy the next block of
bytes (up to 100) into the slice. We then pass the populated portion of the buffer to
process. We’ll look at more details about I/O in “io and Friends” on page 233.

Reducing the Garbage Collector’s Workload
Using buffers is just one example of how we reduce the work done by the garbage
collector. When programmers talk about “garbage” what they mean is “data that has
no more pointers pointing to it.” Once there are no more pointers pointing to some
data, the memory that this data takes up can be reused. If the memory isn’t recovered,
the program’s memory usage would continue to grow until the computer ran out of
RAM. The job of a garbage collector is to automatically detect unused memory and
recover it so it can be reused. It is fantastic that Go has a garbage collector, because
decades of experience have shown that it is very difficult for people to properly man‐
age memory manually. But just because we have a garbage collector doesn’t mean we
should create lots of garbage.

Reducing the Garbage Collector’s Workload | 123



If you’ve spent time learning how programming languages are implemented, you’ve
probably learned about the heap and the stack. If you’re unfamiliar, here’s how a stack
works. A stack is a consecutive block of memory, and every function call in thread of
execution shares the same stack. Allocating memory on the stack is fast and simple. A
stack pointer tracks the last location where memory was allocated; allocating addi‐
tional memory is done by moving the stack pointer. When a function is invoked, a
new stack frame is created for the function’s data. Local variables are stored on the
stack, along with parameters passed into a function. Each new variable moves the
stack pointer by the size of the value. When a function exits, its return values are
copied back to the calling function via the stack and the stack pointer is moved back
to the beginning of the stack frame for the exited function, deallocating all of the
stack memory that was used by that function’s local variables and parameters.

Go is unusual in that it can actually increase the size of a stack
while the program is running. This is possible because each gorout‐
ine has its own stack and goroutines are managed by the Go run‐
time, not by the underlying operating system (we discuss
goroutines when we talk about concurrency in Chapter 10). This
has advantages (Go stacks start small and use less memory) and
disadvantages (when the stack needs to grow, all of the data on the
stack needs to be copied, which is slow). It’s also possible to write
worst-case scenario code that causes the stack to grow and shrink
over and over.

To store something on the stack, you have to know exactly how big it is at compile
time. When you look at the value types in Go (primitive values, arrays, and structs),
they all have one thing in common: we know exactly how much memory they take at
compile time. This is why the size is considered part of the type for an array. Because
their sizes are known, they can be allocated on the stack instead of the heap. The size
of a pointer type is also known, and it is also stored on the stack.

The rules are more complicated when it comes to the data that the pointer points to.
In order for Go to allocate the data the pointer points to on the stack, several condi‐
tions must be true. It must be a local variable whose data size is known at compile
time. The pointer cannot be returned from the function. If the pointer is passed into a
function, the compiler must be able to ensure that these conditions still hold. If the
size isn’t known, you can’t make space for it by simply moving the stack pointer. If the
pointer variable is returned, the memory that the pointer points to will no longer be
valid when the function exits. When the compiler determines that the data can’t be
stored on the stack, we say that the data the pointer points to escapes the stack and the
compiler stores the data on the heap.

124 | Chapter 6: Pointers



The heap is the memory that’s managed by the garbage collector (or by hand in lan‐
guages like C and C++). We’re not going to discuss garbage collector algorithm
implementation details, but they are much more complicated than simply moving a
stack pointer. Any data that’s stored on the heap is valid as long as it can be tracked
back to a pointer type variable on a stack. Once there are no more pointers pointing
to that data (or to data that points to that data), the data becomes garbage and it’s the
job of the garbage collector to clear it out.

A common source of bugs in C programs is returning a pointer to
a local variable. In C, this results in a pointer pointing to invalid
memory. The Go compiler is smarter. When it sees that a pointer to
a local variable is returned, the local variable’s value is stored on the
heap.

The escape analysis done by the Go compiler isn’t perfect. There are some cases where
data that could be stored on the stack escapes to the heap. However, the compiler has
to be conservative; it can’t take the chance of leaving a value on the stack when it
might need to be on the heap because leaving a reference to invalid data causes mem‐
ory corruption. Newer Go releases improve escape analysis.

You might be wondering: what’s so bad about storing things on the heap? There are
two problems related to performance. First is that the garbage collector takes time to
do its work. It isn’t trivial to keep track of all of the available chunks of free memory
on the heap or tracking which used blocks of memory still have valid pointers. This is
time that’s taken away from doing the processing that your program is written to do.
Many garbage collection algorithms have been written, and they can be placed into
two rough categories: those that are designed for higher throughput (find the most
garbage possible in a single scan) or lower latency (finish the garbage scan as quickly
as possible). Jeff Dean, the genius behind many of Google’s engineering successes, co-
wrote a paper in 2013 called The Tail at Scale. It argues that systems should be opti‐
mized for latency, to keep response times low. The garbage collector used by the Go
runtime favors low latency. Each garbage collection cycle is designed to take less than
500 microseconds. However, if your Go program creates lots of garbage, then the
garbage collector won’t be able to find all of the garbage during a cycle, slowing down
the collector and increasing memory usage.

If you are interested in the implementation details, you may want
to listen to the talk Rick Hudson gave at the International Sympo‐
sium on Memory Management in 2018, describing the history and
implementation of the Go garbage collector.

Reducing the Garbage Collector’s Workload | 125

https://oreil.ly/x2Rxr
https://oreil.ly/cvLpa
https://oreil.ly/UUhGK
https://oreil.ly/UUhGK


The second problem deals with the nature of computer hardware. RAM might mean
“random access memory,” but the fastest way to read from memory is to read it
sequentially. A slice of structs in Go has all of the data laid out sequentially in mem‐
ory. This makes it fast to load and fast to process. A slice of pointers to structs (or
structs whose fields are pointers) has its data scattered across RAM, making it far
slower to read and process. Forrest Smith wrote an in-depth blog post that explores
how much this can affect performance. His numbers indicate that it’s roughly two
orders of magnitude slower to access data via pointers that are stored randomly in
RAM.

This approach of writing software that’s aware of the hardware it’s running on is
called mechanical sympathy. The term comes from the world of car racing, where the
idea is that a driver who understands what the car is doing can best squeeze the last
bits of performance out of it. In 2011, Martin Thompson began applying the term to
software development. Following best practices in Go gives it to you automatically.

Compare Go’s approach to Java’s. In Java, local variables and parameters are stored in
the stack, just like Go. However, as we discussed earlier, objects in Java are imple‐
mented as pointers. That means for every object variable instance, only the pointer to
it is allocated on the stack; the data within the object is allocated on the heap. Only
primitive values (numbers, booleans, and chars) are stored entirely on the stack. This
means that the garbage collector in Java has to do a great deal of work. It also means
that things like Lists in Java are actually a pointer to an array of pointers. Even though
it looks like a linear data structure, reading it actually involves bouncing through
memory, which is highly inefficient. There are similar behaviors in Python, Ruby, and
JavaScript. To work around all of this inefficiency, the Java Virtual Machine includes
some very clever garbage collectors that do lots of work, some optimized for through‐
put, some for latency, and all with configuration settings to tune them for the best
performance. The virtual machines for Python, Ruby, and JavaScript are less opti‐
mized and their performance suffers accordingly.

Now you can see why Go encourages you to use pointers sparingly. We reduce the
workload of the garbage collector by making sure that as much as possible is stored
on the stack. Slices of structs or primitive types have their data lined up sequentially
in memory for rapid access. And when the garbage collector does do work, it is opti‐
mized to return quickly rather than gather the most garbage. The key to making this
approach work is to simply create less garbage in the first place. While focusing on
optimizing memory allocations can feel like premature optimization, the idiomatic
approach in Go is also the most efficient.

If you want to learn more about heap versus stack allocation and escape analysis in
Go, there are excellent blog posts that cover the topic, including ones by Bill Kennedy
of Arden Labs and Achille Roussel and Rick Branson of Segment.

126 | Chapter 6: Pointers

https://oreil.ly/v_urr
https://oreil.ly/juu44
https://oreil.ly/juu44
https://oreil.ly/c_gvC


Wrapping Up
This chapter peeked under the covers a bit to help us understand pointers, what they
are, how to use them, and, most importantly, when to use them. In the next chapter,
we’ll take a look at Go’s implementation of methods, interfaces, and types, how they
differ from other languages, and the power they possess.

Wrapping Up | 127





CHAPTER 7

Types, Methods, and Interfaces

As we saw in earlier chapters, Go is a statically typed language with both built-in
types and user-defined types. Like most modern languages, Go allows you to attach
methods to types. It also has type abstraction, allowing you to write code that invokes
methods without explicitly specifying the implementation.

However, Go’s approach to methods, interfaces, and types is very different from most
other languages in common use today. Go is designed to encourage the best practices
that are advocated by software engineers, avoiding inheritance while encouraging
composition. In this chapter, we’ll take a look at types, methods, and interfaces, and
see how to use them to build testable and maintainable programs.

Types in Go
Back in “Structs” on page 56 we saw how to define a struct type:

type Person struct {
    FirstName string
    LastName string
    Age int
}

This should be read as declaring a user-defined type with the name Person to have
the underlying type of the struct literal that follows. In addition to struct literals, you
can use any primitive type or compound type literal to define a concrete type. Here
are a few examples:

type Score int
type Converter func(string)Score
type TeamScores map[string]Score

129



Go allows you to declare a type at any block level, from the package block down.
However, you can only access the type from within its scope. The only exceptions are
exported package block level types. We’ll talk more about those in Chapter 9.

To make it easier to talk about types, we’re going to define a couple
of terms. An abstract type is one that specifies what a type should
do, but not how it is done. A concrete type specifies what and how.
This means that it has a specified way to store its data and provides
an implementation of any methods declared on the type. While all
types in Go are either abstract or concrete, some languages allow
hybrid types, such as abstract classes or interfaces with default
methods in Java.

Methods
Like most modern languages, Go supports methods on user-defined types.

The methods for a type are defined at the package block level:

type Person struct {
    FirstName string
    LastName string
    Age int
}

func (p Person) String() string {
    return fmt.Sprintf("%s %s, age %d", p.FirstName, p.LastName, p.Age)
}

Method declarations look just like function declarations, with one addition: the
receiver specification. The receiver appears between the keyword func and the name
of the method. Just like all other variable declarations, the receiver name appears
before the type. By convention, the receiver name is a short abbreviation of the type’s
name, usually its first letter. It is nonidiomatic to use this or self.

Just like functions, method names cannot be overloaded. You can use the same
method names for different types, but you can’t use the same method name for two
different methods on the same type. While this philosophy feels limiting when com‐
ing from languages that have method overloading, not reusing names is part of Go’s
philosophy of making clear what your code is doing.

We’ll talk more about packages in Chapter 9, but be aware that methods must be
declared in the same package as their associated type; Go doesn’t allow you to add
methods to types you don’t control. While you can define a method in a different file
within the same package as the type declaration, it is best to keep your type definition
and its associated methods together so that it’s easy to follow the implementation.

130 | Chapter 7: Types, Methods, and Interfaces



Method invocations should look familiar to those who have used methods in other
languages:

p := Person {
    FirstName: "Fred",
    LastName:"Fredson",
    Age: 52,
}
output := p.String()

Pointer Receivers and Value Receivers
As we covered in Chapter 6, Go uses parameters of pointer type to indicate that a
parameter might be modified by the function. The same rules apply for method
receivers, too. They can be pointer receivers (the type is a pointer) or value receivers
(the type is a value type). The following rules help you determine when to use each
kind of receiver:

• If your method modifies the receiver, you must use a pointer receiver.
• If your method needs to handle nil instances (see “Code Your Methods for nil

Instances” on page 133), then it must use a pointer receiver.
• If your method doesn’t modify the receiver, you can use a value receiver.

Whether or not you use a value receiver for a method that doesn’t modify the receiver
depends on the other methods declared on the type. When a type has any pointer
receiver methods, a common practice is to be consistent and use pointer receivers for
all methods, even the ones that don’t modify the receiver.

Here’s some simple code to demonstrate pointer and value receivers. We’ll start with a
type that has two methods on it, one using a value receiver, the other with a pointer
receiver:

type Counter struct {
    total             int
    lastUpdated time.Time
}

func (c *Counter) Increment() {
    c.total++
    c.lastUpdated = time.Now()
}

func (c Counter) String() string {
    return fmt.Sprintf("total: %d, last updated: %v", c.total, c.lastUpdated)
}

We can then try out these methods with the following code. You can run it yourself
on The Go Playground:

Methods | 131

https://oreil.ly/aqY0i


var c Counter
fmt.Println(c.String())
c.Increment()
fmt.Println(c.String())

You should see the following output:

total: 0, last updated: 0001-01-01 00:00:00 +0000 UTC
total: 1, last updated: 2009-11-10 23:00:00 +0000 UTC m=+0.000000001

One thing you might notice is that we were able to call the pointer receiver method
even though c is a value type. When you use a pointer receiver with a local variable
that’s a value type, Go automatically converts it to a pointer type. In this case,
c.Increment() is converted to (&c).Increment().

However, be aware that the rules for passing values to functions still apply. If you pass
a value type to a function and call a pointer receiver method on the passed value, you
are invoking the method on a copy. You can try out the following code on The Go
Playground:

func doUpdateWrong(c Counter) {
    c.Increment()
    fmt.Println("in doUpdateWrong:", c.String())
}

func doUpdateRight(c *Counter) {
    c.Increment()
    fmt.Println("in doUpdateRight:", c.String())
}

func main() {
    var c Counter
    doUpdateWrong(c)
    fmt.Println("in main:", c.String())
    doUpdateRight(&c)
    fmt.Println("in main:", c.String())
}

When you run this code, you’ll get the output:

in doUpdateWrong: total: 1, last updated: 2009-11-10 23:00:00 +0000 UTC
    m=+0.000000001
in main: total: 0, last updated: 0001-01-01 00:00:00 +0000 UTC
in doUpdateRight: total: 1, last updated: 2009-11-10 23:00:00 +0000 UTC
    m=+0.000000001
in main: total: 1, last updated: 2009-11-10 23:00:00 +0000 UTC m=+0.000000001

The parameter in doUpdateRight is of type *Counter, which is a pointer instance. As
you can see, we can call both Increment and String on it. Go considers both pointer
and value receiver methods to be in the method set for a pointer instance. For a value
instance, only the value receiver methods are in the method set. This seems like a

132 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/bGdDi
https://oreil.ly/bGdDi


pedantic detail right now, but we’ll come back to it when talking about interfaces in
just a bit.

One final note: do not write getter and setter methods for Go structs, unless you need
them to meet an interface (we’ll start covering interfaces in “A Quick Lesson on Inter‐
faces” on page 141). Go encourages you to directly access a field. Reserve methods for
business logic. The exceptions are when you need to update multiple fields as a single
operation or when the update isn’t a straightforward assignment of a new value. The
Increment method defined earlier demonstrates both of these properties.

Code Your Methods for nil Instances
We just mentioned pointer instances, which might make you wonder what happens
when you call a method on a nil instance. In most languages, this produces some
sort of error. (Objective-C allows you to call a method on a nil instance, but it always
does nothing.)

Go does something a little different. It actually tries to invoke the method. If it’s a
method with a value receiver, you’ll get a panic (we discuss panics in “panic and
recover” on page 174), as there is no value being pointed to by the pointer. If it’s a
method with a pointer receiver, it can work if the method is written to handle the
possibility of a nil instance.

In some cases, expecting a nil receiver actually makes the code simpler. Here’s an
implementation of a binary tree that takes advantage of nil values for the receiver:

type IntTree struct {
    val         int
    left, right *IntTree
}

func (it *IntTree) Insert(val int) *IntTree {
    if it == nil {
        return &IntTree{val: val}
    }
    if val < it.val {
        it.left = it.left.Insert(val)
    } else if val > it.val {
        it.right = it.right.Insert(val)
    }
    return it
}

func (it *IntTree) Contains(val int) bool {
    switch {
    case it == nil:
        return false
    case val < it.val:
        return it.left.Contains(val)

Methods | 133



    case val > it.val:
        return it.right.Contains(val)
    default:
        return true
    }
}

The Contains method doesn’t modify the *IntTree, but it is
declared with a pointer receiver. This demonstrates the rule men‐
tioned previously about supporting a nil receiver. A method with a
value receiver can’t check for nil and as mentioned earlier, panics
if invoked with a nil receiver.

The following code uses the tree. You can try it out on The Go Playground:

func main() {
    var it *IntTree
    it = it.Insert(5)
    it = it.Insert(3)
    it = it.Insert(10)
    it = it.Insert(2)
    fmt.Println(it.Contains(2))  // true
    fmt.Println(it.Contains(12)) // false
}

It’s very clever that Go allows you to call a method on a nil receiver, and there are
situations where it is useful, like our tree node example. However, most of the time it’s
not very useful. Pointer receivers work just like pointer function parameters; it’s a
copy of the pointer that’s passed into the method. Just like nil parameters passed to
functions, if you change the copy of the pointer, you haven’t changed the original.
This means you can’t write a pointer receiver method that handles nil and makes the
original pointer non-nil. If your method has a pointer receiver and won’t work for a
nil receiver, check for nil and return an error (we discuss errors in Chapter 8).

Methods Are Functions Too
Methods in Go are so much like functions that you can use a method as a replace‐
ment for a function any time there’s a variable or parameter of a function type.

Let’s start with this simple type:

type Adder struct {
    start int
}

func (a Adder) AddTo(val int) int {
    return a.start + val
}

134 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/-F2i-


We create an instance of the type in the usual way and invoke its method:

myAdder := Adder{start: 10}
fmt.Println(myAdder.AddTo(5)) // prints 15

We can also assign the method to a variable or pass it to a parameter of type
func(int)int. This is called a method value:

f1 := myAdder.AddTo
fmt.Println(f1(10))           // prints 20

A method value is a bit like a closure, since it can access the values in the fields of the
instance from which it was created.

You can also create a function from the type itself. This is called a method expression:

f2 := Adder.AddTo
fmt.Println(f2(myAdder, 15))  // prints 25

In the case of a method expression, the first parameter is the receiver for the method;
our function signature is func(Adder, int) int.

Method values and method expressions aren’t just clever corner cases. We’ll see one
way to use them when we look at dependency injection in “Implicit Interfaces Make
Dependency Injection Easier” on page 155.

Functions Versus Methods
Since you can use a method as a function, you might wonder when you should
declare a function and when you should use a method.

The differentiator is whether or not your function depends on other data. As we’ve
covered several times, package-level state should be effectively immutable. Any time
your logic depends on values that are configured at startup or changed while your
program is running, those values should be stored in a struct and that logic should be
implemented as a method. If your logic only depends on the input parameters, then it
should be a function.

Types, packages, modules, testing, and dependency injection are interrelated con‐
cepts. We’ll look at dependency injection later in this chapter. You can find out more
about packages and modules in Chapter 9 and testing in Chapter 13.

Type Declarations Aren’t Inheritance
In addition to declaring types based on built-in Go types and struct literals, you can
also declare a user-defined type based on another user-defined type:

type HighScore Score
type Employee Person

Methods | 135



There are many concepts that can be considered “object-oriented,” but one stands
out: inheritance. This is where the state and methods of a parent type are declared to
be available on a child type and values of the child type can be substituted for the par‐
ent type. (For the computer scientists in the audience, I realize that subtyping is not
inheritance. However, most programming languages use inheritance to implement
subtyping so the definitions are often conflated in popular usage.)

Declaring a type based on another type looks a bit like inheritance, but it isn’t.
The two types have the same underlying type, but that’s all. There is no hierarchy
between these types. In languages with inheritance, a child instance can be used
anywhere the parent instance is used. The child instance also has all the methods
and  data  structures of  the  parent  instance.  That’s  not  the  case  in  Go.  You  can’t
assign  an  instance  of  type  HighScore to  a  variable  of  type  Score or  vice  versa
without  a type conversion, nor can you assign either of them to a variable of type int
without a type conversion. Furthermore, any methods defined on Score aren’t
defined on HighScore:

// assigning untyped constants is valid
var i int = 300
var s Score = 100
var hs HighScore = 200
hs = s                  // compilation error!
s = i                   // compilation error!
s = Score(i)            // ok
hs = HighScore(s)       // ok

For user-defined types whose underlying types are built-in types, a user-declared type
can be used with the operators for those types. As we see in the preceding code, they
can also be assigned literals and constants compatible with the underlying type.

A type conversion between types that share an underlying type
keeps the same underlying storage but associates different
methods.

Types Are Executable Documentation
While it’s well understood that you should declare a struct type to hold a set of related
data, it’s less clear when you should declare a user-defined type based on other built-
in types or one user-defined type that’s based on another user-defined type. The short
answer is that types are documentation. They make code clearer by providing a name
for a concept and describing the kind of data that is expected. It’s clearer for someone
reading your code when a method has a parameter of type Percentage than of type
int, and it’s harder for it to be invoked with an invalid value.

136 | Chapter 7: Types, Methods, and Interfaces



The same logic applies when declaring one user-defined type based on another user-
defined type. When you have the same underlying data, but different sets of opera‐
tions to perform, make two types. Declaring one as being based on the other avoids
some repetition and makes it clear that the two types are related.

iota Is for Enumerations—Sometimes
Many programming languages have the concept of enumerations, where you can
specify that a type can only have a limited set of values. Go doesn’t have an enumera‐
tion type. Instead, it has iota, which lets you assign an increasing value to a set of
constants.

The concept of iota comes from the programming language APL
(which stood for “A Programming Language”). APL is famous for
being so reliant on its own custom notation that it required com‐
puters with a special keyboard. For example, (~R∊R∘.×R)/R←1↓ιR
is an APL program to find all the prime numbers up to the value of
the variable R.
It may seem ironic that a language as focused on readability as Go
would borrow a concept from a language that is concise to a fault,
but this is why you should learn many different programming lan‐
guages: you can find inspiration everywhere.

When using iota, the best practice is to first define a type based on int that will rep‐
resent all of the valid values:

type MailCategory int

Next, use a const block to define a set of values for your type:

const (
    Uncategorized MailCategory = iota
    Personal
    Spam
    Social
    Advertisements
)

The first constant in the const block has the type specified and its value is set to iota.
Every subsequent line has neither the type nor a value assigned to it. When the Go
compiler sees this, it repeats the type and the assignment to all of the subsequent con‐
stants in the block, and increments the value of iota on each line. This means that it
assigns 0 to the first constant (Uncategorized), 1 to the second constant (Personal),
and so on. When a new const block is created, iota is set back to 0.

Methods | 137



This is the best advice I’ve seen on iota:

Don’t use iota for defining constants where its values are explicitly defined (elsewhere).
For example, when implementing parts of a specification and the specification says
which values are assigned to which constants, you should explicitly write the constant
values. Use iota for “internal” purposes only. That is, where the constants are referred
to by name rather than by value. That way you can optimally enjoy iota by inserting
new constants at any moment in time / location in the list without the risk of breaking
everything.

—Danny van Heumen

The important thing to understand is that there is nothing in Go to stop you (or any‐
one else) from creating additional values of your type. Furthermore, if you insert a
new identifier in the middle of your list of literals, all of the subsequent ones will be
renumbered. This will break your application in a subtle way if those constants repre‐
sented values in another system or in a database. Given these two limitations, iota-
based enumerations only make sense when you care about being able to differentiate
between a set of values, and don’t particularly care what the value is behind the
scenes. If the actual value matters, specify it explicitly.

Because you can assign a literal expression to a constant, you’ll see
sample code that suggests you should use iota for cases like this:

type BitField int

const (
    Field1 BitField = 1 << iota // assigned 1
    Field2                      // assigned 2
    Field3                      // assigned 4
    Field4                      // assigned 8
)

While this is clever, be careful when using this pattern. If you do so,
document what you are doing. As mentioned previously, using
iota with constants is fragile when you care about the value. You
don’t want a future maintainer to insert a new constant in the mid‐
dle of the list and break your code.

Be aware that iota starts numbering from 0. If you are using your set of constants to
represent different configuration states, the zero value might be useful. We saw this
earlier in our MailCategory type. When mail first arrives, it is uncategorized, so the
zero value makes sense. If there isn’t a sensical default value for your constants, a
common pattern is to assign the first iota value in the constant block to _ or to a
constant that indicates the value is invalid. This makes it easy to detect when a vari‐
able has not been properly initialized.

138 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/3MKwn


Use Embedding for Composition
The software engineering advice “Favor object composition over class inheritance”
dates back to at least the 1994 book Design Patterns by Gamma, Helm, Johnson, and
Vlissides (Addison-Wesley), better known as the Gang of Four book. While Go
doesn’t have inheritance, it encourages code reuse via built-in support for composi‐
tion and promotion:

type Employee struct {
    Name         string
    ID           string
}

func (e Employee) Description() string {
    return fmt.Sprintf("%s (%s)", e.Name, e.ID)
}

type Manager struct {
    Employee
    Reports []Employee
}

func (m Manager) FindNewEmployees() []Employee {
    // do business logic
}

Note that Manager contains a field of type Employee, but no name is assigned to that
field. This makes Employee an embedded field. Any fields or methods declared on an
embedded field are promoted to the containing struct and can be invoked directly on
it. That makes the following code valid:

m := Manager{
    Employee: Employee{
        Name:         "Bob Bobson",
        ID:             "12345",
    },
    Reports: []Employee{},
}
fmt.Println(m.ID)            // prints 12345
fmt.Println(m.Description()) // prints Bob Bobson (12345)

You can embed any type within a struct, not just another struct.
This promotes the methods on the embedded type to the contain‐
ing struct.

Use Embedding for Composition | 139



If the containing struct has fields or methods with the same name as an embedded
field, you need to use the embedded field’s type to refer to the obscured fields or
methods. If you have types defined like this:

type Inner struct {
    X int
}

type Outer struct {
    Inner
    X int
}

You can only access the X on Inner by specifying Inner explicitly:

o := Outer{
    Inner: Inner{
        X: 10,
    },
    X: 20,
}
fmt.Println(o.X)       // prints 20
fmt.Println(o.Inner.X) // prints 10

Embedding Is Not Inheritance
Built-in embedding support is rare in programming languages (I’m not aware of
another popular language that supports it). Many developers who are familiar with
inheritance (which is available in many languages) try to understand embedding by
treating it as inheritance. That way lies tears. You cannot assign a variable of type
Manager to a variable of type Employee. If you want to access the Employee field
in Manager, you must do so explicitly. You can run the following code on
The Go Playground:

var eFail Employee = m        // compilation error!
var eOK Employee = m.Employee // ok!

You’ll get the error:

cannot use m (type Manager) as type Employee in assignment

Furthermore, there is no dynamic dispatch for concrete types in Go. The methods on
the embedded field have no idea they are embedded. If you have a method on an
embedded field that calls another method on the embedded field, and the containing
struct has a method of the same name, the method on the embedded field will not
invoke the method on the containing struct. This behavior is demonstrated in the fol‐
lowing code, which you can run on The Go Playground:

140 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/vBl7o
https://oreil.ly/yN6bV


type Inner struct {
    A int
}

func (i Inner) IntPrinter(val int) string {
    return fmt.Sprintf("Inner: %d", val)
}

func (i Inner) Double() string {
    return i.IntPrinter(i.A * 2)
}

type Outer struct {
    Inner
    S string
}

func (o Outer) IntPrinter(val int) string {
    return fmt.Sprintf("Outer: %d", val)
}

func main() {
    o := Outer{
        Inner: Inner{
            A: 10,
        },
        S: "Hello",
    }
    fmt.Println(o.Double())
}

Running this code produces the output:

Inner: 20

While embedding one concrete type inside another won’t allow you to treat the outer
type as the inner type, the methods on an embedded field do count toward the
method set of the containing struct. This means they can make the containing struct
implement an interface.

A Quick Lesson on Interfaces
While Go’s concurrency model (which we cover in Chapter 10) gets all of the publi‐
city, the real star of Go’s design is its implicit interfaces, the only abstract type in Go.
Let’s see what makes them so great.

We’ll start by taking a quick look at how to declare interfaces. At their core, interfaces
are simple. Like other user-defined types, you use the type keyword.

A Quick Lesson on Interfaces | 141



Here’s the definition of the Stringer interface in the fmt package:

type Stringer interface {
    String() string
}

In an interface declaration, an interface literal appears after the name of the interface
type. It lists the methods that must be implemented by a concrete type to meet the
interface. The methods defined by an interface are called the method set of the
interface.

Like other types, interfaces can be declared in any block.

Interfaces are usually named with “er” endings. We’ve already seen fmt.Stringer, but
there are many more, including io.Reader, io.Closer, io.ReadCloser, json.Mar
shaler, and http.Handler.

Interfaces Are Type-Safe Duck Typing
So far, nothing that’s been said is much different from interfaces in other languages.
What makes Go’s interfaces special is that they are implemented implicitly. A concrete
type does not declare that it implements an interface. If the method set for a concrete
type contains all of the methods in the method set for an interface, the concrete type
implements the interface. This means that the concrete type can be assigned to a vari‐
able or field declared to be of the type of the interface.

This implicit behavior makes interfaces the most interesting thing about types in Go,
because they enable both type-safety and decoupling, bridging the functionality in
both static and dynamic languages.

To understand why, let’s talk about why languages have interfaces. Earlier we men‐
tioned that Design Patterns taught developers to favor composition over inheritance.
Another piece of advice from the book is “Program to an interface, not an implemen‐
tation.” Doing so allows you to depend on behavior, not on implementation, allowing
you to swap implementations as needed. This allows your code to evolve over time, as
requirements inevitably change.

Dynamically typed languages like Python, Ruby, and JavaScript don’t have interfaces.
Instead, those developers use “duck typing,” which is based on the expression “If it
walks like a duck and quacks like a duck, it’s a duck.” The concept is that you can pass
an instance of a type as a parameter to a function as long as the function can find a
method to invoke that it expects:

class Logic:
def process(self, data):
    # business logic

def program(logic):

142 | Chapter 7: Types, Methods, and Interfaces



    # get data from somewhere
    logic.process(data)

logicToUse = Logic()
program(logicToUse)

Duck typing might sound weird at first, but it’s been used to build large and success‐
ful systems. If you program in a statically typed language, this sounds like utter chaos.
Without an explicit type being specified, it’s hard to know exactly what functionality
should be expected. As new developers move on to a project or the existing develop‐
ers forget what the code is doing, they have to trace through the code to figure out
what the actual dependencies are.

Java developers use a different pattern. They define an interface, create an implemen‐
tation of the interface, but only refer to the interface in the client code:

public interface Logic {
    String process(String data);
}

public class LogicImpl implements Logic {
    public String process(String data) {
        // business logic
    }
}

public class Client {
    private final Logic logic;
    // this type is the interface, not the implementation

    public Client(Logic logic) {
        this.logic = logic;
    }

    public void program() {
        // get data from somewhere
        this.logic(data);
    }
}

public static void main(String[] args) {
    Logic logic = new LogicImpl();
    Client client = new Client(logic);
    client.program();
}

Dynamic language developers look at the explicit interfaces in Java and don’t see how
you can possibly refactor your code over time when you have explicit dependencies.
Switching to a new implementation from a different provider means rewriting your
code to depend on a new interface.

Interfaces Are Type-Safe Duck Typing | 143



Go’s developers decided that both groups are right. If your application is going to
grow and change over time, you need flexibility to change implementation. However,
in order for people to understand what your code is doing (as new people work on
the same code over time), you also need to specify what the code depends on. That’s
where implicit interfaces come in. Go code is a blend of the previous two styles:

type LogicProvider struct {}

func (lp LogicProvider) Process(data string) string {
    // business logic
}

type Logic interface {
    Process(data string) string
}

type Client struct{
    L Logic
}

func(c Client) Program() {
    // get data from somewhere
    c.L.Process(data)
}

main() {
    c := Client{
        L: LogicProvider{},
    }
    c.Program()
}

In the Go code, there is an interface, but only the caller (Client) knows about it;
there is nothing declared on LogicProvider to indicate that it meets the interface.
This is sufficient to both allow a new logic provider in the future and provide exe‐
cutable documentation to ensure that any type passed into the client will match the
client’s need.

Interfaces specify what callers need. The client code defines the
interface to specify what functionality it requires.

This doesn’t mean that interfaces can’t be shared. We’ve already seen several interfaces
in the standard library that are used for input and output. Having a standard interface
is powerful; if you write your code to work with io.Reader and io.Writer, it will
function correctly whether it is writing to a file on local disk or a value in memory.

144 | Chapter 7: Types, Methods, and Interfaces



Furthermore, using standard interfaces encourages the decorator pattern. It is com‐
mon in Go to write factory functions that take in an instance of an interface and
return another type that implements the same interface. For example, say you have a
function with the following definition:

func process(r io.Reader) error

You can process data from a file with the following code:

r, err := os.Open(fileName)
if err != nil {
    return err
}
defer r.Close()
return process(r)
return nil

The os.File instance returned by os.Open meets the io.Reader interface and can be
used in any code that reads in data. If the file is gzip-compressed, you can wrap the
io.Reader in another io.Reader:

r, err := os.Open(fileName)
if err != nil {
    return err
}
defer r.Close()
gz, err = gzip.NewReader(r)
if err != nil {
    return err
}
defer gz.Close()
return process(gz)

Now the exact same code that was reading from an uncompressed file is reading from
a compressed file instead.

If there’s an interface in the standard library that describes what
your code needs, use it!

It’s perfectly fine for a type that meets an interface to specify additional methods that
aren’t part of the interface. One set of client code may not care about those methods,
but others do. For example, the io.File type also meets the io.Writer interface. If
your code only cares about reading from a file, use the io.Reader interface to refer to
the file instance and ignore the other methods.

Interfaces Are Type-Safe Duck Typing | 145



Embedding and Interfaces
Just like you can embed a type in a struct, you can also embed an interface in an inter‐
face. For example, the io.ReadCloser interface is built out of an io.Reader and an
io.Closer:

type Reader interface {
        Read(p []byte) (n int, err error)
}

type Closer interface {
        Close() error
}

type ReadCloser interface {
        Reader
        Closer
}

Just like you can embed a concrete type in a struct, you can also
embed an interface in a struct. We’ll see a use for this in “Stubs in
Go” on page 286.

Accept Interfaces, Return Structs
You’ll often hear experienced Go developers say that your code should “Accept inter‐
faces, return structs.” What this means is that the business logic invoked by your
functions should be invoked via interfaces, but the output of your functions should
be a concrete type. We’ve already covered why functions should accept interfaces:
they make your code more flexible and explicitly declare exactly what functionality is
being used.

If you create an API that returns interfaces, you are losing one of the main advantages
of implicit interfaces: decoupling. You want to limit the third-party interfaces that
your client code depends on because your code is now permanently dependent on the
module that contains those interfaces, as well as any dependencies of that module,
and so on. (We talk about modules and dependencies in Chapter 9.) This limits
future flexibility. To avoid the coupling, you’d have to write another interface and do a
type conversion from one to the other. While depending on concrete instances can
lead to dependencies, using a dependency injection layer in your application limits
the effect. We’ll talk more about dependency injection in “Implicit Interfaces Make
Dependency Injection Easier” on page 155.

Another reason to avoid returning interfaces is versioning. If a concrete type is
returned, new methods and fields can be added without breaking existing code. The

146 | Chapter 7: Types, Methods, and Interfaces



same is not true for an interface. Adding a new method to an interface means that
you need to update all existing implementations of the interface, or your code breaks.
If you make a backward-breaking change to an API, you should increment your
major version number.

Rather than writing a single factory function that returns different instances behind
an interface based on input parameters, try to write separate factory functions for
each concrete type. In some situations (such as a parser that can return one or more
different kinds of tokens), it’s unavoidable and you have no choice but to return an
interface.

Errors are an exception to this rule. As we’ll see in Chapter 8, Go functions and meth‐
ods declare a return parameter of the error interface type. In the case of error, it’s
quite likely that different implementation of the interface could be returned, so you
need to use an interface to handle all possible options, as interfaces are the only
abstract type in Go.

There is one potential drawback to this pattern. As we discussed in “Reducing the
Garbage Collector’s Workload” on page 123, reducing heap allocations improves per‐
formance by reducing the amount of work for the garbage collector. Returning a
struct avoids a heap allocation, which is good. However, when invoking a function
with parameters of interface types, a heap allocation occurs for each of the interface
parameters. Figuring out the trade-off between better abstraction and better perfor‐
mance is something that should be done over the life of your program. Write your
code so that it is readable and maintainable. If you find that your program is too slow
and you have profiled it and you have determined that the performance problems are
due to a heap allocation caused by an interface parameter, then you should rewrite
the function to use a concrete type parameter. If multiple implementations of an
interface are passed into the function, this will mean creating multiple functions with
repeated logic.

Interfaces and nil
When discussing pointers in Chapter 6, we also talked about nil, the zero value for
pointer types. We also use nil to represent the zero value for an interface instance,
but it’s not as simple as it is for concrete types.

In order for an interface to be considered nil both the type and the value must be
nil. The following code prints out true on the first two lines and false on the last:

var s *string
fmt.Println(s == nil) // prints true
var i interface{}
fmt.Println(i == nil) // prints true
i = s
fmt.Println(i == nil) // prints false

Interfaces and nil | 147



You can run it for yourself on The Go Playground.

In the Go runtime, interfaces are implemented as a pair of pointers, one to the under‐
lying type and one to the underlying value. As long as the type is non-nil, the inter‐
face is non-nil. (Since you cannot have a variable without a type, if the value pointer
is non-nil, the type pointer is always non-nil.)

What nil indicates for an interface is whether or not you can invoke methods on it.
As we covered earlier, you can invoke methods on nil concrete instances, so it makes
sense that you can invoke methods on an interface variable that was assigned a nil
concrete instance. If an interface is nil, invoking any methods on it triggers a panic
(which we’ll discuss in “panic and recover” on page 174). If an interface is non-nil,
you can invoke methods on it. (But note that if the value is nil and the methods of
the assigned type don’t properly handle nil, you could still trigger a panic.)

Since an interface instance with a non-nil type is not equal to nil, it is not straight‐
forward to tell whether or not the value associated with the interface is nil when the
type is non-nil. You must use reflection (which we’ll discuss in “Use Reflection to
Check If an Interface’s Value Is nil” on page 306) to find out.

The Empty Interface Says Nothing
Sometimes in a statically typed language, you need a way to say that a variable could
store a value of any type. Go uses interface{} to represent this:

var i interface{}
i = 20
i = "hello"
i = struct {
    FirstName string
    LastName string
} {"Fred", "Fredson"}

You should note that interface{} isn’t special case syntax. An empty interface type
simply states that the variable can store any value whose type implements zero or
more methods. This just happens to match every type in Go. Because an empty inter‐
face doesn’t tell you anything about the value it represents, there isn’t a lot you can do
with it. One common use of the empty interface is as a placeholder for data of uncer‐
tain schema that’s read from an external source, like a JSON file:

// one set of braces for the interface{} type,
// the other to instantiate an instance of the map
data := map[string]interface{}{}
contents, err := ioutil.ReadFile("testdata/sample.json")
if err != nil {
    return err
}
defer contents.Close()

148 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/NBPbC


json.Unmarshal(contents, &data)
// the contents are now in the data map

Another use of interface{} is as a way to store a value in a user-created data struc‐
ture. This is due to Go’s current lack of user-defined generics. If you need a data
structure beyond a slice, array, or map, and you don’t want it to only work with a sin‐
gle type, you need to use a field of type interface{} to hold its value. You can try the
following code on The Go Playground:

type LinkedList struct {
    Value interface{}
    Next    *LinkedList
}

func (ll *LinkedList) Insert(pos int, val interface{}) *LinkedList {
    if ll == nil || pos == 0 {
        return &LinkedList{
            Value: val,
            Next:    ll,
        }
    }
    ll.Next = ll.Next.Insert(pos-1, val)
    return ll
}

This is not an efficient implementation of insert for a linked list,
but it’s short enough to fit in a book. Please don’t use it in real code.

If you see a function that takes in an empty interface, it’s likely that it is using reflec‐
tion (which we’ll talk about in Chapter 14) to either populate or read the value. In our
preceding example, the second parameter of the json.Unmarshal function is declared
to be of type interface{}.

These situations should be relatively rare. Avoid using interface{}. As we’ve seen,
Go is designed as a strongly typed language and attempts to work around this are
unidiomatic.

If you find yourself in a situation where you had to store a value into an empty inter‐
face, you might be wondering how to read the value back again. To do that, we need
to look at type assertions and type switches.

The Empty Interface Says Nothing | 149

https://oreil.ly/SBisO


Type Assertions and Type Switches
Go provides two ways to see if a variable of an interface type has a specific concrete
type or if the concrete type implements another interface. Let’s start by looking at type
assertions. A type assertion names the concrete type that implemented the interface,
or names another interface that is also implemented by the concrete type underlying
the interface. You can try it out on The Go Playground:

type MyInt int

func main() {
    var i interface{}
    var mine MyInt = 20
    i = mine
    i2 := i.(MyInt)
    fmt.Println(i2 + 1)
}

In the preceding code, the variable i2 is of type MyInt.

You might wonder what happens if a type assertion is wrong. In that case, your code
panics. You can try it out on The Go Playground:

i2 := i.(string)
fmt.Println(i2)

Running this code produces the following panic:

panic: interface conversion: interface {} is main.MyInt, not string

As we’ve already seen, Go is very careful about concrete types. Even if two types share
an underlying type, a type assertion must match the type of the underlying value. The
following code panics. You can try it out on The Go Playground:

i2 := i.(int)
fmt.Println(i2 + 1)

Obviously, crashing is not desired behavior. We avoid this by using the comma ok
idiom, just as we saw in “The comma ok Idiom” on page 54 when detecting whether
or not a zero value was in a map:

i2, ok := i.(int)
if !ok {
    return fmt.Errorf("unexpected type for %v",i)
}
fmt.Println(i2 + 1)

The boolean ok is set to true if the type conversion was successful. If it was not, ok is
set to false and the other variable (in this case i2) is set to its zero value. We then
handle the unexpected condition within an if statement, but in idiomatic Go, we
indent the error handling code. We’ll talk more about error handling in Chapter 8.

150 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/_nUSw
https://oreil.ly/qoXu_
https://oreil.ly/YUaka


A type assertion is very different from a type conversion. Type con‐
versions can be applied to both concrete types and interfaces and
are checked at compilation time. Type assertions can only be
applied to interface types and are checked at runtime. Because they
are checked at runtime, they can fail. Conversions change, asser‐
tions reveal.

Even if you are absolutely certain that your type assertion is valid, use the comma ok
idiom version. You don’t know how other people (or you in six months) will reuse
your code. Sooner or later, your unvalidated type assertions will fail at runtime.

When an interface could be one of multiple possible types, use a type switch instead:

func doThings(i interface{}) {
    switch j := i.(type) {
    case nil:
        // i is nil, type of j is interface{}
    case int:
        // j is of type int
    case MyInt:
        // j is of type MyInt
    case io.Reader:
        // j is of type io.Reader
    case string:
        // j is a string
    case bool, rune:
        // i is either a bool or rune, so j is of type interface{}
    default:
        // no idea what i is, so j is of type interface{}
    }
}

A type switch looks a lot like the switch statement that we saw way back in “switch”
on page 78. Instead of specifying a boolean operation, you specify a variable of an
interface type and follow it with .(type). Usually, you assign the variable being
checked to another variable that’s only valid within the switch.

Since the purpose of a type switch is to derive a new variable from
an existing one, it is idiomatic to assign the variable being switched
on to a variable of the same name (i := i.(type)), making this
one of the few places where shadowing is a good idea. To make the
comments more readable, our example doesn’t use shadowing.

The type of the new variable depends on which case matches. You can use nil for one
case to see if the interface has no associated type. If you list more than one type on a
case, the new variable is of type interface{}. Just like a switch statement, you can

Type Assertions and Type Switches | 151



have a default case that matches when no specified type does. Otherwise, the new
variable has the type of the case that matches.

If you don’t know the underlying type, you need to use reflection.
We’ll talk more about reflection in Chapter 14.

Use Type Assertions and Type Switches Sparingly
While it might seem handy to be able to extract the concrete implementation from an
interface variable, you should use these techniques infrequently. For the most part,
treat a parameter or return value as the type that was supplied and not what else it
could be. Otherwise, your function’s API isn’t accurately declaring what types it needs
to perform its task. If you needed a different type, then it should be specified.

That said, there are use cases where type assertions and type switches are useful. One
common use of a type assertion is to see if the concrete type behind the interface also
implements another interface. This allows you to specify optional interfaces. For
example, the standard library uses this technique to allow more efficient copies when
the io.Copy function is called. This function has two parameters of types io.Writer
and io.Reader and calls the io.copyBuffer function to do its work. If the io.Writer
parameter also implements io.WriterTo, or the io.Reader parameter also imple‐
ments io.ReaderFrom, most of the work in the function can be skipped:

// copyBuffer is the actual implementation of Copy and CopyBuffer.
// if buf is nil, one is allocated.
func copyBuffer(dst Writer, src Reader, buf []byte) (written int64, err error) {
    // If the reader has a WriteTo method, use it to do the copy.
    // Avoids an allocation and a copy.
    if wt, ok := src.(WriterTo); ok {
        return wt.WriteTo(dst)
    }
    // Similarly, if the writer has a ReadFrom method, use it to do the copy.
    if rt, ok := dst.(ReaderFrom); ok {
        return rt.ReadFrom(src)
    }
    // function continues...
}

Another place optional interfaces are used is when evolving an API. In Chapter 12
we’ll discuss the context. Context is a parameter that’s passed to functions that pro‐
vides, among other things, a standard way to manage cancellation. It was added to Go
in version 1.7, which means older code doesn’t support it. This includes older data‐
base drivers.

152 | Chapter 7: Types, Methods, and Interfaces



In Go 1.8, new context-aware analogues of existing interfaces were defined in the
database/sql/driver package. For example, the StmtExecContext interface defines
a method called ExecContext, which is a context-aware replacement for the Exec
method in Stmt. When an implementation of Stmt is passed into standard library
database code, it checks to see if it also implements StmtExecContext. If it does,
ExecContext is invoked. If not, the Go standard library provides a fallback imple‐
mentation of the cancellation support provided by newer code:

func ctxDriverStmtExec(ctx context.Context, si driver.Stmt,
                       nvdargs []driver.NamedValue) (driver.Result, error) {
    if siCtx, is := si.(driver.StmtExecContext); is {
        return siCtx.ExecContext(ctx, nvdargs)
    }
    // fallback code is here
}

There is one drawback to the optional interface technique. We saw earlier that it
is common for implementations of interfaces to use the decorator pattern to wrap
other implementations of the same interface to layer behavior. The problem is that if
there is an optional interface implemented by one of the wrapped implementations,
you cannot detect it with a type assertion or type switch. For example, the standard
library includes a bufio package that provides a buffered reader. You can buffer any
other io.Reader implementation by passing it to the bufio.NewReader function and
using the returned *bufio.Reader. If the passed-in io.Reader also implemented
io.ReaderFrom, wrapping it in a buffered reader prevents the optimization.

We also see this when handling errors. As mentioned earlier, they implement the
error interface. Errors can include additional information by wrapping other errors.
A type switch or type assertion cannot detect or match wrapped errors. If you want
different behaviors to handle different concrete implementations of a returned error,
use the errors.Is and errors.As functions to test for and access the wrapped error.

Type switch statements provide the ability to differentiate between multiple imple‐
mentations of an interface that require different processing. They are most useful
when there are only certain possible valid types that can be supplied for an interface.
Be sure to include a default case in the type switch to handle implementations that
aren’t known at development time. This protects you if you forget to update your type
switch statements when adding new interface implementations:

func walkTree(t *treeNode) (int, error) {
    switch val := t.val.(type) {
    case nil:
        return 0, errors.New("invalid expression")
    case number:
        // we know that t.val is of type number, so return the
        // int value
        return int(val), nil

Use Type Assertions and Type Switches Sparingly | 153



    case operator:
        // we know that t.val is of type operator, so
        // find the values of the left and right children, then
        // call the process() method on operator to return the
        // result of processing their values.
        left, err := walkTree(t.lchild)
        if err != nil {
            return 0, err
        }
        right, err := walkTree(t.rchild)
        if err != nil {
            return 0, err
        }
        return val.process(left, right), nil
    default:
        // if a new treeVal type is defined, but walkTree wasn't updated
        // to process it, this detects it
        return 0, errors.New("unknown node type")
    }
}

You can see the complete implementation on The Go Playground.

You can further protect yourself from unexpected interface imple‐
mentations by making the interface unexported and at least one
method unexported. If the interface is exported, then it can be
embedded in a struct in another package, making the struct imple‐
ment the interface. We’ll talk more about packages and exporting
identifiers in Chapter 9.

Function Types Are a Bridge to Interfaces
There’s one last thing that we haven’t talked about with type declarations. It’s pretty
easy to wrap your head around adding a method to an int or a string, but Go allows
methods on any user-defined type, including user-defined function types. This
sounds like an academic corner case, but they are actually very useful. They allow
functions to implement interfaces. The most common usage is for HTTP handlers.
An HTTP handler processes an HTTP server request. It’s defined by an interface:

type Handler interface {
    ServeHTTP(http.ResponseWriter, *http.Request)
}

By using a type conversion to http.HandlerFunc, any function that has the signature
func(http.ResponseWriter,*http.Request) can be used as an http.Handler:

type HandlerFunc func(http.ResponseWriter, *http.Request)

func (f HandlerFunc) ServeHTTP(w http.ResponseWriter, r *http.Request) {

154 | Chapter 7: Types, Methods, and Interfaces

https://oreil.ly/jDhqM


    f(w, r)
}

This lets you implement HTTP handlers using functions, methods, or closures using
the exact same code path as the one used for other types that meet the http.Handler
interface.

Functions in Go are first-class concepts, and as such, they are often passed as param‐
eters into functions. Meanwhile, Go encourages small interfaces, and an interface of
only one method could easily replace a parameter of function type. The question
becomes: when should your function or method specify an input parameter of a
function type and when should you use an interface?

If your single function is likely to depend on many other functions or other state
that’s not specified in its input parameters, use an interface parameter and define a
function type to bridge a function to the interface. That’s what’s done in the http
package; it’s likely that a Handler is just the entry point for a chain of calls that needs
to be configured. However, if it’s a simple function (like the one used in sort.Slice),
then a parameter of function type is a good choice.

Implicit Interfaces Make Dependency Injection Easier
Anyone who has been programming for any length of time quickly learns that appli‐
cations need to change over time. One of the techniques that has been developed to
ease decoupling is called dependency injection. Dependency injection is the concept
that your code should explicitly specify the functionality it needs to perform its task.
It’s quite a bit older than you might think; in 1996, Robert Martin wrote an article
called “The Dependency Inversion Principle”.

One of the surprising benefits of Go’s implicit interfaces is that they make depend‐
ency injection an excellent way to decouple your code. While developers in other lan‐
guages often use large, complicated frameworks to inject their dependencies, the
truth is that it is easy to implement dependency injection in Go without any addi‐
tional libraries. Let’s work through a simple example to see how we use implicit inter‐
faces to compose applications via dependency injection.

To understand this concept better and see how to implement dependency injection in
Go, let’s build a very simple web application. (We’ll talk more about Go’s built-in
HTTP server support in “The Server” on page 249; consider this a preview.) We’ll
start by writing a small utility function, a logger:

func LogOutput(message string) {
    fmt.Println(message)
}

Another thing our app needs is a data store. Let’s create a simple one:

Implicit Interfaces Make Dependency Injection Easier | 155

https://oreil.ly/6HVob


type SimpleDataStore struct {
    userData map[string]string
}

func (sds SimpleDataStore) UserNameForID(userID string) (string, bool) {
    name, ok := sds.userData[userID]
    return name, ok
}

Let’s also define a factory function to create an instance of a SimpleDataStore:

func NewSimpleDataStore() SimpleDataStore {
    return SimpleDataStore{
        userData: map[string]string{
            "1": "Fred",
            "2": "Mary",
            "3": "Pat",
        },
    }
}

Next, we’ll write some business logic that looks up a user and says hello or goodbye.
Our business logic needs some data to work with, so it requires a data store. We also
want our business logic to log when it is invoked, so it depends on a logger. However,
we don’t want to force it to depend on LogOutput or SimpleDataStore, because we
might want to use a different logger or data store later. What our business logic needs
are interfaces to describe what it depends on:

type DataStore interface {
    UserNameForID(userID string) (string, bool)
}

type Logger interface {
    Log(message string)
}

To make our LogOutput function meet this interface, we define a function type with a
method on it:

type LoggerAdapter func(message string)

func (lg LoggerAdapter) Log(message string) {
    lg(message)
}

By a stunning coincidence, our LoggerAdapter and SimpleDataStore happen to
meet the interfaces needed by our business logic, but neither type has any idea that it
does.

Now that we have the dependencies defined, let’s look at the implementation of our
business logic:

156 | Chapter 7: Types, Methods, and Interfaces



type SimpleLogic struct {
    l  Logger
    ds DataStore
}

func (sl SimpleLogic) SayHello(userID string) (string, error) {
    sl.l.Log("in SayHello for " + userID)
    name, ok := sl.ds.UserNameForID(userID)
    if !ok {
        return "", errors.New("unknown user")
    }
    return "Hello, " + name, nil
}

func (sl SimpleLogic) SayGoodbye(userID string) (string, error) {
    sl.l.Log("in SayGoodbye for " + userID)
    name, ok := sl.ds.UserNameForID(userID)
    if !ok {
        return "", errors.New("unknown user")
    }
    return "Goodbye, " + name, nil
}

We have a struct with two fields, one a Logger, the other a DataStore. There’s noth‐
ing in SimpleLogic that mentions the concrete types, so there’s no dependency on
them. There’s no problem if we later swap in new implementations from an entirely
different provider, because the provider has nothing to do with our interface. This is
very different from explicit interfaces in languages like Java. Even though Java uses an
interface to decouple implementation from interface, the explicit interfaces bind the
client and the provider together. This makes replacing a dependency in Java (and
other languages with explicit interfaces) far more difficult than it is in Go.

When we want a SimpleLogic instance, we call a factory function, passing in inter‐
faces and returning a struct:

func NewSimpleLogic(l Logger, ds DataStore) SimpleLogic {
    return SimpleLogic{
        l:    l,
        ds: ds,
    }
}

The fields in SimpleLogic are unexported. This means they can
only be accessed by code within the same package as SimpleLogic.
We can’t enforce immutability in Go, but limiting which code can
access these fields makes their accidental modification less likely.
We’ll talk more about exported and unexported identifiers in
Chapter 9.

Implicit Interfaces Make Dependency Injection Easier | 157



Now we get to our API. We’re only going to have a single endpoint, /hello, which
says hello to the person whose user ID is supplied. (Please do not use query parame‐
ters in your real applications for authentication information; this is just a quick sam‐
ple.) Our controller needs business logic that says hello, so we define an interface for
that:

type Logic interface {
    SayHello(userID string) (string, error)
}

This method is available on our SimpleLogic struct, but once again, the concrete type
is not aware of the interface. Furthermore, the other method on SimpleLogic,
SayGoodbye, is not in the interface because our controller doesn’t care about it. The
interface is owned by the client code, so its method set is customized to the needs of
the client code:

type Controller struct {
    l     Logger
    logic Logic
}

func (c Controller) SayHello(w http.ResponseWriter, r *http.Request) {
    c.l.Log("In SayHello")
    userID := r.URL.Query().Get("user_id")
    message, err := c.logic.SayHello(userID)
    if err != nil {
        w.WriteHeader(http.StatusBadRequest)
        w.Write([]byte(err.Error()))
        return
    }
    w.Write([]byte(message))
}

Just as we have factory functions for our other types, let’s write one for the
Controller:

func NewController(l Logger, logic Logic) Controller {
    return Controller{
        l:     l,
        logic: logic,
    }
}

Again, we accept interfaces and return structs.

Finally, we wire up all of our components in our main function and start our server:

func main() {
    l := LoggerAdapter(LogOutput)
    ds := NewSimpleDataStore()
    logic := NewSimpleLogic(l, ds)
    c := NewController(l, logic)

158 | Chapter 7: Types, Methods, and Interfaces



    http.HandleFunc("/hello", c.SayHello)
    http.ListenAndServe(":8080", nil)
}

The main function is the only part of the code that knows what all the concrete types
actually are. If we want to swap in different implementations, this is the only place
that needs to change. Externalizing the dependencies via dependency injection means
that we limit the changes that are needed to evolve our code over time.

Dependency injection is also a great pattern for making testing easier. It shouldn’t be
surprising, since writing unit tests is effectively reusing your code in a different envi‐
ronment, one where the inputs and outputs are constrained to validate functionality.
For example, we can validate the logging output in a test by injecting a type that cap‐
tures the log output and meets the Logger interface. We’ll talk about this more in
Chapter 13.

The line http.HandleFunc("/hello", c.SayHello) demonstrates
two things we talked about earlier.
First, we are treating the SayHello method as a function.
Second, the http.HandleFunc function takes in a function and
converts it to an http.HandlerFunc function type, which declares a
method to meet the http.Handler interface, which is the type used
to represent a request handler in Go. We took a method from one
type and converted it into another type with its own method. That’s
pretty neat.

Wire
Those who feel like writing dependency injection code by hand is too much work,
can use Wire, a dependency injection helper written by Google. It uses code genera‐
tion to automatically create the concrete type declarations that we wrote ourselves in
main.

Go Isn’t Particularly Object-Oriented (and That’s Great)
Now that we’ve taken a look at the idiomatic use of types in Go, you can see that it’s
hard to categorize Go as a particular style of language. It clearly isn’t a strictly proce‐
dural language. At the same time, Go’s lack of method overriding, inheritance, or,
well, objects means that it is not a particularly object-oriented language, either. Go
has function types and closures, but it isn’t a functional language, either. If you
attempt to shoehorn Go into one of these categories, the result is nonidiomatic code.

Wire | 159

https://oreil.ly/Akwt_


If you had to label Go’s style, the best word to use is practical. It borrows concepts
from many places with the overriding goal of creating a language that is simple, read‐
able, and maintainable by large teams for many years.

Wrapping Up
In this chapter, we covered types, methods, interfaces, and their best practices. In our
next chapter, we are going to learn how to properly use one of Go’s most controversial
features: errors.

160 | Chapter 7: Types, Methods, and Interfaces



CHAPTER 8

Errors

Error handling is one of the biggest challenges for developers moving to Go from
other languages. For those used to exceptions, Go’s approach feels anachronistic. But
there are solid software engineering principles underlying Go’s approach. In this
chapter, we’ll learn how to work with errors in Go. We’ll also take a look at panic and
recover, Go’s system for handling errors that should stop execution.

How to Handle Errors: The Basics
As we covered briefly in Chapter 5, Go handles errors by returning a value of type
error as the last return value for a function. This is entirely by convention, but it is
such a strong convention that it should never be breached. When a function executes
as expected, nil is returned for the error parameter. If something goes wrong, an
error value is returned instead. The calling function then checks the error return
value by comparing it to nil, handling the error, or returning an error of its own. The
code looks like this:

func calcRemainderAndMod(numerator, denominator int) (int, int, error) {
    if denominator == 0 {
        return 0, 0, errors.New("denominator is 0")
    }
    return numerator / denominator, numerator % denominator, nil
}

A new error is created from a string by calling the New function in the errors pack‐
age. Error messages should not be capitalized nor should they end with punctuation
or a newline. In most cases, you should set the other return values to their zero values
when a non-nil error is returned. We’ll see an exception to this rule when we look at
sentinel errors.

161



Unlike languages with exceptions, Go doesn’t have special constructs to detect if an
error was returned. Whenever a function returns, use an if statement to check the
error variable to see if it is non-nil:

func main() {
    numerator := 20
    denominator := 3
    remainder, mod, err := calcRemainderAndMod(numerator, denominator)
    if err != nil {
        fmt.Println(err)
        os.Exit(1)
    }
    fmt.Println(remainder, mod)
}

error is a built-in interface that defines a single method:

type error interface {
    Error() string
}

Anything that implements this interface is considered an error. The reason why we
return nil from a function to indicate that no error occurred is that nil is the zero
value for any interface type.

There are two very good reasons why Go uses a returned error instead of thrown
exceptions. First, exceptions add at least one new code path through the code. These
paths are sometimes unclear, especially in languages whose functions don’t include a
declaration that an exception is possible. This produces code that crashes in surpris‐
ing ways when exceptions aren’t properly handled, or, even worse, code that doesn’t
crash but whose data is not properly initialized, modified, or stored.

The second reason is more subtle, but demonstrates how Go’s features work together.
The Go compiler requires that all variables must be read. Making errors returned val‐
ues forces developers to either check and handle error conditions or make it explicit
that they are ignoring errors by using an underscore (_) for the returned error value.

As noted in Chapter 5, while you cannot ignore some values
returned from a function, you can ignore all of the return values
from a function. If you ignore all the return values, you would be
able to ignore the error, too. In most cases, it is very bad form to
ignore the values returned from a function. Please avoid this,
except for cases like fmt.Println.

Exception handling may produce shorter code, but having fewer lines doesn’t neces‐
sarily make code easier to understand or maintain. As we’ve seen, idiomatic Go favors
clear code, even if it takes more lines.

162 | Chapter 8: Errors



Another thing to note is how code flows in Go. The error handling is indented inside
an if statement. The business logic is not. This gives a quick visual clue to which
code is along the “golden path” and which code is the exceptional condition.

Use Strings for Simple Errors
Go’s standard library provides two ways to create an error from a string. The first is
the errors.New function. It takes in a string and returns an error. This string is
returned when you call the Error method on the returned error instance. If you pass
an error to fmt.Println, it calls the Error method automatically:

func doubleEven(i int) (int, error) {
    if i % 2 != 0 {
        return 0, errors.New("only even numbers are processed")
    }
    return i * 2, nil
}

The second way is to use the fmt.Errorf function. This function allows you to use all
of the formatting verbs for fmt.Printf to create an error. Like errors.New, this string
is returned when you call the Error method on the returned error instance:

func doubleEven(i int) (int, error) {
    if i % 2 != 0 {
        return 0, fmt.Errorf("%d isn't an even number", i)
    }
    return i * 2, nil
}

Sentinel Errors
Some errors are meant to signal that processing cannot continue due to a problem
with the current state. In his blog post “Don’t just check errors, handle them grace‐
fully”, Dave Cheney, a developer who has been active in the Go community for many
years, coined the term sentinel errors to describe these errors:

The name descends from the practice in computer programming of using a specific
value to signify that no further processing is possible. So to [sic] with Go, we use spe‐
cific values to signify an error.

—Dave Cheney

Sentinel errors are one of the few variables that are declared at the package level. By
convention, their names start with Err (with the notable exception of io.EOF). They
should be treated as read-only; there’s no way for the Go compiler to enforce this, but
it is a programming error to change their value.

Use Strings for Simple Errors | 163

https://oreil.ly/TiJnS
https://oreil.ly/TiJnS
https://oreil.ly/3fMAI


Sentinel errors are usually used to indicate that you cannot start or continue process‐
ing. For example, the standard library includes a package for processing ZIP files,
archive/zip. This package defines several sentinel errors, including ErrFormat,
which is returned when data that doesn’t represent a ZIP file is passed in. Try out this
code on The Go Playground:

func main() {
    data := []byte("This is not a zip file")
    notAZipFile := bytes.NewReader(data)
    _, err := zip.NewReader(notAZipFile, int64(len(data)))
    if err == zip.ErrFormat {
        fmt.Println("Told you so")
    }
}

Another example of a sentinel error in the standard library is rsa.ErrMessageToo
Long in the crypto/rsa package. It indicates that a message cannot be encrypted
because it is too long for the provided public key. When we discuss the context in
Chapter 12, you’ll see another commonly used sentinel error, context.Canceled.

Be sure you need a sentinel error before you define one. Once you define one, it is
part of your public API and you have committed to it being available in all future
backward-compatible releases. It’s far better to reuse one of the existing ones in the
standard library or to define an error type that includes information about the condi‐
tion that caused the error to be returned (we’ll see how to do that in the next section).
But if you have an error condition that indicates a specific state has been reached in
your application where no further processing is possible and no contextual informa‐
tion needs to be used to explain the error state, a sentinel error is the correct choice.

How do you test for a sentinel error? As you can see in the preceding code sample,
use == to test if the error was returned when calling a function whose documentation
explicitly says it returns a sentinel error. In an upcoming section, we will discuss how
to check for sentinel errors in other situations.

Using Constants for Sentinel Errors
In Constant errors, Dave Cheney proposed that constants would make useful sentinel
errors. You’d have a type like this in a package (we’ll talk about creating packages in
Chapter 9):

package consterr

type Sentinel string

func(s Sentinel) Error() string {
    return string(s)
}

164 | Chapter 8: Errors

https://oreil.ly/DaW-s
https://oreil.ly/1AnVg


and then use it like this:

package mypkg

const (
    ErrFoo = consterr.Sentinel("foo error")
    ErrBar = consterr.Sentinel("bar error")
)

This looks like a function call, but it’s actually casting a string literal to a type that
implements the error interface. It would be impossible to change the values of Err
Foo and ErrBar. At first glance, this looks like a good solution.

However, this practice isn’t considered idiomatic. If you used the same type to create
constant errors across packages, two errors would be equal if their error strings are
equal. They’d also be equal to a string literal with the same value. Meanwhile, an error
created with errors.New is only equal to itself or to variables explicitly assigned its
value. You almost certainly do not want to make errors in different packages equal to
each other; otherwise, why declare two different errors? (You could avoid this by cre‐
ating a nonpublic error type in every package, but that’s a lot of boilerplate.)

The sentinel error pattern is another example of the Go design philosophy. Sentinel
errors should be rare, so they can be handled by convention instead of language rules.
Yes, they are public package-level variables. This makes them mutable, but it’s highly
unlikely someone would accidentally reassign a public variable in a package. In short,
it’s a corner case that is handled by other features and patterns. The Go philosophy is
that it’s better to keep the language simple and trust the developers and tooling than it
is to add additional features.

So far, all the errors that we’ve seen are strings. But Go errors can contain more infor‐
mation. Let’s see how.

Errors Are Values
Since error is an interface, you can define your own errors that include additional
information for logging or error handling. For example, you might want to include a
status code as part of the error to indicate the kind of error that should be reported
back to the user. This lets you avoid string comparisons (whose text might change) to
determine error causes. Let’s see how this works. First, define your own enumeration
to represent the status codes:

type Status int

const (
    InvalidLogin Status = iota + 1
    NotFound
)

Errors Are Values | 165



Next, define a StatusErr to hold this value:

type StatusErr struct {
    Status    Status
    Message string
}

func (se StatusErr) Error() string {
    return se.Message
}

Now we can use StatusErr to provide more details about what went wrong:

func LoginAndGetData(uid, pwd, file string) ([]byte, error) {
    err := login(uid, pwd)
    if err != nil {
        return nil, StatusErr{
            Status:    InvalidLogin,
            Message: fmt.Sprintf("invalid credentials for user %s", uid),
        }
    }
    data, err := getData(file)
    if err != nil {
        return nil, StatusErr{
            Status:    NotFound,
            Message: fmt.Sprintf("file %s not found", file),
        }
    }
    return data, nil
}

Even when you define your own custom error types, always use error as the return
type for the error result. This allows you to return different types of errors from your
function and allows callers of your function to choose not to depend on the specific
error type.

If you are using your own error type, be sure you don’t return an uninitialized
instance. This means that you shouldn’t declare a variable to be the type of your cus‐
tom error and then return that variable. Let’s see what happens if you do. Try out the
following code on The Go Playground:

func GenerateError(flag bool) error {
    var genErr StatusErr
    if flag {
        genErr = StatusErr{
            Status: NotFound,
        }
    }
    return genErr
}

func main() {

166 | Chapter 8: Errors

https://oreil.ly/5QJVN


    err := GenerateError(true)
    fmt.Println(err != nil)
    err = GenerateError(false)
    fmt.Println(err != nil)
}

Running this program produces the following output:

true
true

This isn’t a pointer type versus value type issue; if we declared genErr to be of type
*StatusErr, we’d see the same output. The reason why err is non-nil is that error is
an interface. As we discussed in “Interfaces and nil” on page 147, for an interface to
be considered nil, both the underlying type and the underlying value must be nil.
Whether or not genErr is a pointer, the underlying type part of the interface is not
nil.

There are two ways to fix this. The most common approach is to explicitly return nil
for the error value when a function completes successfully:

func GenerateError(flag bool) error {
    if flag {
        return StatusErr{
            Status: NotFound,
        }
    }
    return nil
}

This has the advantage of not requiring you to read through code to make sure that
the error variable on the return statement is correctly defined.

Another approach is to make sure that any local variable that holds an error is of
type error:

func GenerateError(flag bool) error {
    var genErr error
    if flag {
        genErr = StatusErr{
            Status: NotFound,
        }
    }
    return genErr
}

When using custom errors, never define a variable to be of the type
of your custom error. Either explicitly return nil when no error
occurs or define the variable to be of type error.

Errors Are Values | 167



As we covered in “Use Type Assertions and Type Switches Sparingly” on page 152,
don’t use a type assertion or a type switch to access the fields and methods of a cus‐
tom error. Instead, use errors.As, which we’ll look at in “Is and As” on page 170.

Wrapping Errors
When an error is passed back through your code, you often want to add additional
context to it. This context can be the name of the function that received the error or
the operation it was trying to perform. When you preserve an error while adding
additional information, it is called wrapping the error. When you have a series of
wrapped errors, it is called an error chain.

There’s a function in the Go standard library that wraps errors, and we’ve already seen
it. The fmt.Errorf function has a special verb, %w. Use this to create an error whose
formatted string includes the formatted string of another error and which contains
the original error as well. The convention is to write : %w at the end of the error for‐
mat string and make the error to be wrapped the last parameter passed to
fmt.Errorf.

The standard library also provides a function for unwrapping errors, the Unwrap
function in the errors package. You pass it an error and it returns the wrapped error,
if there is one. If there isn’t, it returns nil. Here’s a quick program that demonstrates
wrapping with fmt.Errorf and unwrapping with errors.Unwrap. You can run it on
The Go Playground:

func fileChecker(name string) error {
    f, err := os.Open(name)
    if err != nil {
        return fmt.Errorf("in fileChecker: %w", err)
    }
    f.Close()
    return nil
}

func main() {
    err := fileChecker("not_here.txt")
    if err != nil {
        fmt.Println(err)
        if wrappedErr := errors.Unwrap(err); wrappedErr != nil {
            fmt.Println(wrappedErr)
        }
    }
}

When you run this program, you see the following output:

in fileChecker: open not_here.txt: no such file or directory
open not_here.txt: no such file or directory

168 | Chapter 8: Errors

https://oreil.ly/HxdHz


You don’t usually call errors.Unwrap directly. Instead, you use
errors.Is and errors.As to find a specific wrapped error. We’ll
talk about these two functions in the next section.

If you want to wrap an error with your custom error type, your error type needs to
implement the method Unwrap. This method takes in no parameters and returns an
error. Here’s an update to the error that we defined earlier to demonstrate how this
works:

type StatusErr struct {
    Status Status
    Message string
    err error
In some cases, expecting}

func (se StatusErr) Error() string {
    return se.Message
}

func (se StatusError) Unwrap() error {
    return se.err
}

Now we can use StatusErr to wrap underlying errors:

func LoginAndGetData(uid, pwd, file string) ([]byte, error) {
    err := login(uid,pwd)
    if err != nil {
        return nil, StatusErr {
            Status: InvalidLogin,
            Message: fmt.Sprintf("invalid credentials for user %s",uid),
            Err: err,
        }
    }
    data, err := getData(file)
    if err != nil {
        return nil, StatusErr {
            Status: NotFound,
            Message: fmt.Sprintf("file %s not found",file),
            Err: err,
        }
    }
    return data, nil
}

Not all errors need to be wrapped. A library can return an error that means process‐
ing cannot continue, but the error message contains implementation details that
aren’t needed in other parts of your program. In this situation it is perfectly

Wrapping Errors | 169



acceptable to create a brand-new error and return that instead. Understand the situa‐
tion and determine what needs to be returned.

If you want to create a new error that contains the message from
another error, but don’t want to wrap it, use fmt.Errorf to create
an error, but use the %v verb instead of %w:

err := internalFunction()
if err != nil {
    return fmt.Errorf("internal failure: %v", err)
}

Is and As
Wrapping errors is a useful way to get additional information about an error, but it
introduces problems. If a sentinel error is wrapped, you cannot use == to check for it,
nor can you use a type assertion or type switch to match a wrapped custom error. Go
solves this problem with two functions in the errors package, Is and As.

To check if the returned error or any errors that it wraps match a specific sentinel
error instance, use errors.Is. It takes in two parameters, the error that is being
checked and the instance you are comparing against. The errors.Is function returns
true if there is an error in the error chain that matches the provided sentinel error.
Let’s write a short program to see errors.Is in action. You can run it yourself on The
Go Playground:

func fileChecker(name string) error {
    f, err := os.Open(name)
    if err != nil {
        return fmt.Errorf("in fileChecker: %w", err)
    }
    f.Close()
    return nil
}

func main() {
    err := fileChecker("not_here.txt")
    if err != nil {
        if errors.Is(err, os.ErrNotExist) {
            fmt.Println("That file doesn't exist")
        }
    }
}

Running this program produces the output:

That file doesn't exist

170 | Chapter 8: Errors

https://oreil.ly/5_6rI
https://oreil.ly/5_6rI


By default, errors.Is uses == to compare each wrapped error with the specified
error. If this does not work for an error type that you define (for example, if your
error is a noncomparable type), implement the Is method on your error:

type MyErr struct {
    Codes []int
}

func (me MyErr) Error() string {
    return fmt.Sprintf("codes: %v", me.Codes)
}

func (me MyErr) Is(target error) bool {
    if me2, ok := target.(MyErr); ok {
        return reflect.DeepEqual(me, me2)
    }
    return false
}

(We mentioned reflect.DeepEqual back in Chapter 3. It can compare anything,
including slices.)

Another use for defining your own Is method is to allow comparisons against errors
that aren’t identical instances. You might want to pattern match your errors, specify‐
ing a filter instance that matches errors that have some of the same fields. Let’s define
a new error type, ResourceErr:

type ResourceErr struct {
    Resource     string
    Code         int
}

func (re ResourceErr) Error() string {
    return fmt.Sprintf("%s: %d", re.Resource, re.Code)
}

If we want two ResourceErr instances to match when either field is set, we can do so
by writing a custom Is method:

func (re ResourceErr) Is(target error) bool {
    if other, ok := target.(ResourceErr); ok {
        ignoreResource := other.Resource == ""
        ignoreCode := other.Code == 0
        matchResource := other.Resource == re.Resource
        matchCode := other.Code == re.Code
        return matchResource && matchCode ||
            matchResource && ignoreCode ||
            ignoreResource && matchCode
    }
    return false
}

Is and As | 171



Now we can find, for example, all errors that refer to the database, no matter the
code:

if errors.Is(err, ResourceErr{Resource: "Database"}) {
    fmt.Println("The database is broken:", err)
    // process the codes
}

You can see this code on The Go Playground.

The errors.As function allows you to check if a returned error (or any error it
wraps) matches a specific type. It takes in two parameters. The first is the error being
examined and the second is a pointer to a variable of the type that you are looking for.
If the function returns true, an error in the error chain was found that matched, and
that matching error is assigned to the second parameter. If the function returns
false, no match was found in the error chain. Let’s try it out with MyErr:

err := AFunctionThatReturnsAnError()
var myErr MyErr
if errors.As(err, &myErr) {
    fmt.Println(myErr.Code)
}

Note that you use var to declare a variable of a specific type set to the zero value. You
then pass a pointer to this variable into errors.As.

You don’t have to pass a pointer to a variable of an error type as the second parameter
to errors.As. You can pass a pointer to an interface to find an error that meets the
interface:

err := AFunctionThatReturnsAnError()
var coder interface {
    Code() int
}
if errors.As(err, &coder) {
    fmt.Println(coder.Code())
}

We’re using an anonymous interface here, but any interface type is acceptable.

If the second parameter to errors.As is anything other than a
pointer to an error or a pointer to an interface, the method panics.

Just like you can override the default errors.Is comparison with an Is method, you
can override the default errors.As comparison with an As method on your error.
Implementing an As method is nontrivial and requires reflection (we will talk about

172 | Chapter 8: Errors

https://oreil.ly/Mz_Op


reflection in Go we in Chapter 14). You should only do it in unusual circumstances,
such as when you want to match an error of one type and return another.

Use errors.Is when you are looking for a specific instance or spe‐
cific values. Use errors.As when you are looking for a specific
type.

Wrapping Errors with defer
Sometimes you find yourself wrapping multiple errors with the same message:

func DoSomeThings(val1 int, val2 string) (string, error) {
    val3, err := doThing1(val1)
    if err != nil {
        return "", fmt.Errorf("in DoSomeThings: %w", err)
    }
    val4, err := doThing2(val2)
    if err != nil {
        return "", fmt.Errorf("in DoSomeThings: %w", err)
    }
    result, err := doThing3(val3, val4)
    if err != nil {
        return "", fmt.Errorf("in DoSomeThings: %w", err)
    }
    return result, nil
}

We can simplify this code by using defer:

func DoSomeThings(val1 int, val2 string) (_ string, err error) {
    defer func() {
        if err != nil {
            err = fmt.Errorf("in DoSomeThings: %w", err)
        }
    }()
    val3, err := doThing1(val1)
    if err != nil {
        return "", err
    }
    val4, err := doThing2(val2)
    if err != nil {
        return "", err
    }
    return doThing3(val3, val4)
}

We have to name our return values so that we can refer to err in the deferred func‐
tion. If you name a single return value, you must name all of them, so we use an
underscore here for the string return value since we don’t explicitly assign to it.

Wrapping Errors with defer | 173



In the defer closure, we check if an error was returned. If so, we reassign the error to
a new error that wraps the original error with a message that indicates which function
detected the error.

This pattern works well when you are wrapping every error with the same message. If
you want to customize the wrapping error to provide more context about what
caused the error, then put both the specific and the general message in every
fmt.Errorf.

panic and recover
In previous chapters, we’ve mentioned panics in passing without going into any
details on what they are. Go generates a panic whenever there is a situation where the
Go runtime is unable to figure out what should happen next. This could be due to a
programming error (like an attempt to read past the end of a slice) or environmental
problem (like running out of memory). As soon as a panic happens, the current func‐
tion exits immediately and any defers attached to the current function start running.
When those defers complete, the defers attached to the calling function run, and so
on, until main is reached. The program then exits with a message and a stack trace.

If there are situations in your programs that are unrecoverable, you can create your
own panics. The built-in function panic takes one parameter, which can be of any
type. Usually, it is a string. Let’s make a trivial program that panics and run it on The
Go Playground:

func doPanic(msg string) {
    panic(msg)
}

func main() {
    doPanic(os.Args[0])
}

Running this code produces the following output:

panic: /tmpfs/play

goroutine 1 [running]:
main.doPanic(...)
    /tmp/sandbox567884271/prog.go:6
main.main()
    /tmp/sandbox567884271/prog.go:10 +0x5f

As you can see, a panic prints out its message followed by a stack trace.

Go provides a way to capture a panic to provide a more graceful shutdown or to pre‐
vent shutdown at all. The built-in recover function is called from within a defer to
check if a panic happened. If there was a panic, the value assigned to the panic is

174 | Chapter 8: Errors

https://oreil.ly/yCBib
https://oreil.ly/yCBib


returned. Once a recover happens, execution continues normally. Let’s take a look
with another sample program. Run it on The Go Playground:

func div60(i int) {
    defer func() {
        if v := recover(); v != nil {
            fmt.Println(v)
        }
    }()
    fmt.Println(60 / i)
}

func main() {
    for _, val := range []int{1, 2, 0, 6} {
        div60(val)
    }
}

There’s a specific pattern for using recover. We register a function with defer to han‐
dle a potential panic. We call recover within an if statement and check to see if a
non-nil value was found. You must call recover from within a defer because once a
panic happens, only deferred functions are run.

Running this code produces the following output:

60
30
runtime error: integer divide by zero
10

While panic and recover look a lot like exception handling in other languages, they
are not intended to be used that way. Reserve panics for fatal situations and use
recover as a way to gracefully handle these situations. If your program panics, be
very careful about trying to continue executing after the panic. It’s very rare that you
want to keep your program running after a panic occurs. If the panic was triggered
because the computer is out of a resource like memory or disk space, the safest thing
to do is use recover to log the situation to monitoring software and shut down with
os.Exit(1). If there’s a programming error that caused the panic, you can try to con‐
tinue, but you’ll likely hit the same problem again. In the preceding sample program,
it would be idiomatic to check for division by zero and return an error if one was
passed in.

The reason we don’t rely on panic and recover is that recover doesn’t make clear
what could fail. It just ensures that if something fails, we can print out a message and
continue. Idiomatic Go favors code that explicitly outlines the possible failure condi‐
tions over shorter code that handles anything while saying nothing.

There is one situation where recover is recommended. If you are creating a library
for third parties, do not let panics escape the boundaries of your public API. If a

panic and recover | 175

https://oreil.ly/f5Ybe


panic is possible, a public function should use a recover to convert the panic into an
error, return it, and let the calling code decide what to do with them.

While the HTTP server built into Go recovers from panics in han‐
dlers, David Symonds said in a GitHub comment that this is now
considered a mistake by the Go team.

Getting a Stack Trace from an Error
One of the reasons why new Go developers are tempted by panic and recover is that
they want to get a stack trace when something goes wrong. By default, Go doesn’t
provide that. As we’ve shown, you can use error wrapping to build a call stack by
hand, but there are third-party libraries with error types that generate those stacks
automatically (see Chapter 9 to learn how to incorporate third-party code in your
program). The best known third-party library provides functions for wrapping errors
with stack traces.

By default, the stack trace is not printed out. If you want to see the stack trace, use
fmt.Printf and the verbose output verb (%+v). Check the documentation to learn
more.

When you have a stack trace in your error, the output includes the
full path to the file on the computer where the program was com‐
piled. If you don’t want to expose the path, use the -trimpath flag
when building your code. This replaces the full path with the
package.

Wrapping Up
In this chapter, we learned about errors in Go, what they are, how to define your own,
and how to examine them. We also took a look at panic and recover. In the next
chapter, we discuss packages and modules, how to use third-party code in your pro‐
grams, and how to publish your own code for others to use.

176 | Chapter 8: Errors

https://oreil.ly/BGOmg
https://github.com/pkg/errors
https://oreil.ly/mBQRA


CHAPTER 9

Modules, Packages, and Imports

Most modern programming languages have a system for organizing code into name‐
spaces and libraries, and Go is no exception. As we’ve seen while exploring other fea‐
tures, Go introduces some new approaches to this old idea. In this chapter, we’ll learn
about organizing code with packages and modules, how to import them, how to work
with third-party libraries, and how to create libraries of your own.

Repositories, Modules, and Packages
Library management in Go is based around three concepts: repositories, modules, and
packages. A repository is familiar to all developers. It is a place in a version control
system where the source code for a project is stored. A module is the root of a Go
library or application, stored in a repository. Modules consist of one or more pack‐
ages, which give the module organization and structure.

While you can store more than one module in a repository, it isn’t
encouraged. Everything within a module is versioned together.
Maintaining two modules in one repository means tracking sepa‐
rate versions for two different projects in a single repository.

Before we can use code from packages outside of the standard library, we need to
make sure that we have declared that our project is a module. Every module has a
globally unique identifier. This is not unique to Go. Java uses globally unique package
declarations like com.companyname.projectname.library.

In Go, we usually use the path to the module repository where the module is found.
For example, Proteus, a module I wrote to simplify relational database access in Go,
can be found at GitHub. It has a module path of github.com/jonbodner/proteus.

177

https://github.com/jonbodner/proteus


go.mod
A collection of Go source code becomes a module when there’s a valid go.mod file in
its root directory. Rather than create this file manually, we use the subcommands of
the go mod command to manage modules. The command go mod init MODULE_PATH
creates the go.mod file that makes the current directory the root of a module. The
MODULE_PATH is the globally unique name that identifies your module. The module
path is case-sensitive. To reduce confusion, do not use uppercase letters within it.

Let’s take a quick look at the contents of a go.mod file:

module github.com/learning-go-book/money

go 1.15

require (
    github.com/learning-go-book/formatter v0.0.0-20200921021027-5abc380940ae
    github.com/shopspring/decimal v1.2.0
)

Every go.mod file starts with a module declaration that consists of the word module
and the module’s unique path. Next, the go.mod file specifies the minimum compati‐
ble version of Go. Finally, the require section lists the modules that your module
depends on and the minimum version required for each one. We’ll talk more about
what those versions mean in “Importing Third-Party Code” on page 190. Omit the
require section when your module doesn’t depend on any other modules.

There are two optional sections as well. The replace section lets you override the
location where a dependent module is located, and the exclude section prevents a
specific version of a module from being used.

Building Packages
Now that we’ve learned how to make our directory of code into a module, it’s time to
start using packages to organize our code. We’ll start by looking at how import works,
move on to creating and organizing packages, and then look at some of the features
of Go’s packages, both good and bad.

Imports and Exports
We’ve been using the import statement in Go without discussing what it does and
how it differs from other languages. Go’s import statement allows you to access
exported constants, variables, functions, and types in another package. A package’s
exported identifiers (an identifier is the name of a variable, coonstant, type, function,
method, or a field in a struct) cannot be accessed from another current package
without an import statement.

178 | Chapter 9: Modules, Packages, and Imports



This leads to the question: how do you export an identifier in Go? Rather than use a
special keyword, Go uses capitalization to determine if a package-level identifier is
visible outside of the package where it is declared. An identifier whose name starts
with an uppercase letter is exported. Conversely, an identifier whose name starts with
a lowercase letter or underscore can only be accessed from within the package where
it is declared.

Anything you export is part of your package’s API. Before you export an identifier, be
sure that you intend to expose it to clients. Document all exported identifiers and
keep them backward-compatible unless you are intentionally making a major version
change (see “Versioning Your Module” on page 199 for more information).

Creating and Accessing a Package
Making packages in Go is easy. Let’s look at a small program to demonstrate this. You
can find it on GitHub. Inside package_example, you’ll see two additional directories,
math and formatter. In math, there’s a file called math.go with the following contents:

package math

func Double(a int) int {
    return a * 2
}

The first line of the file is called the package clause. It consists of the keyword package
and the name for the package. The package clause is always the first nonblank, non‐
comment line in a Go source file.

In formatter, there’s a file called formatter.go with the following contents:

package print

import "fmt"

func Format(num int) string {
    return fmt.Sprintf("The number is %d", num)
}

Note that we said the package name is print in the package clause, but it’s in the
formatter directory. We’ll talk more about this in a bit.

Building Packages | 179

https://oreil.ly/WE7RN


Finally, the following contents are in the file main.go in the root directory:

package main

import (
    "fmt"

    "github.com/learning-go-book/package_example/formatter"
    "github.com/learning-go-book/package_example/math"
)

func main() {
    num := math.Double(2)
    output := print.Format(num)
    fmt.Println(output)
}

The first line of this file is familiar. All of our programs before this chapter have put
package main as the first line in our code. We’ll talk more about what this means in
just a bit.

Next we have our import section. We’re imported three packages. The first is fmt,
which is in the standard library. We’ve done this in previous chapters. The next two
imports refer to the packages within our program. You must specify an import path
when importing from anywhere besides the standard library. The import path is built
by appending the path to the package within the module to the module path.

It is a compile-time error to import a package but not use any of the identifiers
exported by the package. This ensures that the binary produced by the Go compiler
only includes code that’s actually used in the program.

While you can use a relative path to import a dependent package
within the same module, don’t do this. Absolute import paths clar‐
ify what you are importing and make it easier to refactor your
code. You must fix the imports when a file with a relative path in its
imports is moved to another package, and if you move that file to
another module entirely, you must make the import reference
absolute.

When you run this program, you’ll see the following output:

$ go run main.go
The number is 4

In our main function, we called the Double function in the math package by prefixing
the function name with the package name. We’ve seen this in previous chapters when
calling functions in the standard library. We also called the Format function in the

180 | Chapter 9: Modules, Packages, and Imports



print package. You might wonder where this print package came from, since we
imported github.com/learning-go-book/package_example/formatter.

Every Go file in a directory must have an identical package clause. (There is one tiny
exception to this rule that we’ll see in “Testing Your Public API” on page 276.) We
imported the print package with the import path github.com/learning-go-book/pack‐
age_example/formatter. That’s because the name of a package is determined by its pack‐
age clause, not its import path.

As a general rule, you should make the name of the package match the name of the
directory that contains the package. It is hard to discover a package’s name if it does
not match the containing directory. However, there are a few situations where you
use a different name for the package than for the directory.

The first is something we have been doing all along without realizing it. We declare a
package to be a staring point for a Go application by using the special package name
main. Since you cannot import the main package, this doesn’t produce confusing
import statements.

The other reasons for having a package name not match your directory name are less
common. If your directory name contains a character that’s not valid in a Go identi‐
fier, then you must choose a package name that’s different from your directory name.
It’s better to avoid this by never creating a directory with a name that’s not a valid
identifier.

The final reason for creating a directory whose name doesn’t match the package name
is to support versioning using directories. We’ll talk about this more in “Versioning
Your Module” on page 199.

Package names are in the file block. If you use the same package in two different files
in the same package, you must import the package in both files.

Naming Packages
Having the package name as part of the name used to refer to items in the package
has some implications. The first is that package names should be descriptive. Rather
than have a package called util, create a package name that describes the functional‐
ity provided by the package. For example, say you have two helper functions: one to
extract all names from a string and another to format names properly. Don’t create
two functions in a util package called ExtractNames and FormatNames. If you do,
every time you use these functions, they will be referred to as util.ExtractNames
and util.FormatNames, and that util package tells you nothing about what the func‐
tions do.

Building Packages | 181



It’s better to create one function called Names in a package called extract and a sec‐
ond function called Names in a package called format. It’s OK for these two functions
to have the same name, because they will always be disambiguated by their package
names. The first will be referred to as extract.Names when imported, and the second
will be referred to as format.Names.

You should also avoid repeating the name of the package in the names of functions
and types within the package. Don’t name your function ExtractNames when it is in
the extract package. The exception to this rule is when the name of the identifier is
the same as the name of the package. For example, the package sort in the standard
library has a function called Sort, and the context package defines the Context
interface.

How to Organize Your Module
There’s no one official way to structure the Go packages in your module, but several
patterns have emerged over the years. They are guided by the principle that you
should focus on making your code easy to understand and maintain. When your
module is small, keep all of your code in a single package. As long as there are no
other modules that depend on your module, there is no harm in delaying
organization.

As your project grows, you’ll want to impose some order to make your code more
readable. If your module consists of one or more applications, create a directory
called cmd at the root of your module. Within cmd, create one directory for each
binary built from your module. For example, you might have a module that contains
both a web application and a command-line tool that analyzes data in the web appli‐
cation’s database. Use main as the package name within each of these directories.

If your module’s root directory contains many files for managing the testing and
deployment of your project (such as shell scripts, continuous integration configura‐
tion files, or Dockerfiles), place all of your Go code (besides the main packages under
cmd) into packages under a directory called pkg.

Within the pkg directory, organize your code to limit the dependencies between pack‐
ages. One common pattern is to organize your code by slices of functionality. For
example, if you wrote a shopping site in Go, you might place all of the code to sup‐
port customer management in one package and all of the code to manage inventory
in another. This style limits the dependencies between packages, which makes it eas‐
ier to later refactor a single web application into multiple microservices.

For a good overview of Go project structure advice, watch Kat Zien’s talk from
GopherCon 2018, How Do You Structure Your Go Apps.

182 | Chapter 9: Modules, Packages, and Imports

https://oreil.ly/0zHY4


Overriding a Package’s Name
Sometimes you might find yourself importing two packages whose names collide. For
example, the standard library includes two packages for generating random numbers;
one is cryptographically secure (crypto/rand) and the other is not (math/rand). The
regular generator is fine when you aren’t generating random numbers for encryption,
but you need to seed it with an unpredictable value. A common pattern is to seed a
regular random number generator with a value from a cryptographic generator. In
Go, both packages have the same name (rand). When that happens, you provide an
alternate name for one package within the current file. You can try out this code on
The Go Playground. First, look at the import section:

import (
    crand "crypto/rand"
    "encoding/binary"
    "fmt"
    "math/rand"
)

We import crypto/rand with the name crand. This overrides the name rand that’s
declared within the package. We then import math/rand normally. When you look at
the seedRand function, you see that we access identifiers in math/rand with the rand
prefix, and use the crand prefix with the crypto/rand package:

func seedRand() *rand.Rand {
    var b [8]byte
    _, err := crand.Read(b[:])
    if err != nil {
        panic("cannot seed with cryptographic random number generator")
    }
    r := rand.New(rand.NewSource(int64(binary.LittleEndian.Uint64(b[:]))))
    return r
}

There are two other symbols you can use as a package name. The
package name . places all the exported identifiers in the imported
package into the current package’s namespace; you don’t need a
prefix to refer to them. This is discouraged because it makes your
source code less clear as you no longer know whether something is
defined in the current package or an imported one by simply look‐
ing at its name.
You can also use _ as the package name. We’ll explore what this
does when we talk about init in “The init Function: Avoid if Possi‐
ble” on page 186.

As we discussed in “Shadowing Variables” on page 62, package names can be shad‐
owed. Declaring variables, types, or functions with the same name as a package

Building Packages | 183

https://oreil.ly/YVwkm


makes the package inaccessible within the block with that declaration. If this is
unavoidable (for example, a newly imported package has a name that conflicts with
an existing identifier), override the package’s name to resolve the conflict.

Package Comments and godoc
Go has its own format for writing comments that are automatically converted into
documentation. It’s called godoc format and it’s very simple. There are no special sym‐
bols in a godoc comment. They just follow a convention. Here are the rules:

• Place the comment directly before the item being documented with no blank
lines between the comment and the declaration of the item.

• Start the comment with two forward slashes (//) followed by the name of the
item.

• Use a blank comment to break your comment into multiple paragraphs.
• Insert preformatted comments by indenting the lines.

Comments before the package declaration create package-level comments. If you
have lengthy comments for the package (such as the extensive formatting documen‐
tation in the fmt package), the convention is to put the comments in a file in your
package called doc.go.

Let’s go through a well-commented file. We’ll start with the package-level comment in
Example 9-1.

Example 9-1. A package-level comment

// Package money provides various utilities to make it easy to manage money.
package money

Next, we place a comment on an exported struct (see Example 9-2). Notice that it
starts with the name of the struct.

Example 9-2. A struct comment

// Money represents the combination of an amount of money
// and the currency the money is in.
type Money struct {
    Value decimal.Decimal
    Currency string
}

Finally, we have a comment on a function (see Example 9-3).

184 | Chapter 9: Modules, Packages, and Imports



Example 9-3. A well-commented function

// Convert converts the value of one currency to another.
//
// It has two parameters: a Money instance with the value to convert,
// and a string that represents the currency to convert to. Convert returns
// the converted currency and any errors encountered from unknown or unconvertible
// currencies.
// If an error is returned, the Money instance is set to the zero value.
//
// Supported currencies are:
//        USD - US Dollar
//        CAD - Canadian Dollar
//        EUR - Euro
//        INR - Indian Rupee
//
// More information on exchange rates can be found
// at https://www.investopedia.com/terms/e/exchangerate.asp
func Convert(from Money, to string) (Money, error) {
    // ...
}

Go includes a command-line tool called go doc that views godocs. The command go
doc PACKAGE_NAME displays the package godocs for the specified package and a list of
the identifiers in the package. Use go doc PACKAGE_NAME.IDENTIFIER_NAME to display
the documentation for a specific identifier in the package.

Make sure you comment your code properly. At the very least, any
exported identifier should have a comment. Go linting tools such
as golint and golangci-lint can report missing comments on
exported identifiers.

The internal Package
Sometimes you want to share a function, type, or constant between packages in your
module, but you don’t want to make it part of your API. Go supports this via the spe‐
cial internal package name.

When you create a package called internal, the exported identifiers in that package
and its subpackages are only accessible to the direct parent package of internal and
the sibling packages of internal. Let’s look at an example to see how this works. You
can find the code on GitHub. The directory tree is shown in Figure 9-1.

We’ve declared a simple function in the internal.go file in the internal package:

func Doubler(a int) int {
    return a * 2
}

Building Packages | 185

https://oreil.ly/ksyAO


We can access this function from foo.go in the foo package and from sibling.go in the
sibling package.

Figure 9-1. The file tree for internal_package_example

Be aware that attempting to use the internal function from bar.go in the bar package
or from example.go in the root package results in a compilation error:

$ go build ./...
package github.com/learning-go-book/internal_example
example.go:3:8: use of internal package
github.com/learning-go-book/internal_example/foo/internal not allowed

package github.com/learning-go-book/internal_example/bar
bar/bar.go:3:8: use of internal package
github.com/learning-go-book/internal_example/foo/internal not allowed

The init Function: Avoid if Possible
When you read Go code, it is usually clear which methods and functions are invoked
and when they are called. One of the reasons why Go doesn’t have method overriding
or function overloading is to make it easier to understand what code is running.
However, there is a way to set up state in a package without explicitly calling any‐
thing: the init function. When you declare a function named init that takes no
parameters and returns no values, it runs the first time the package is referenced by
another package. Since init functions do not have any inputs or outputs, they can
only work by side effect, interacting with package-level functions and variables.

The init function has another unique feature. Go allows you to declare multiple
init functions in a single package, or even in a single file in a package. There’s a

186 | Chapter 9: Modules, Packages, and Imports



documented order for running multiple init functions in a single package, but rather
than remembering it, it’s better to simply avoid them.

Some packages, like database drivers, use init functions to register the database
driver. However, you don’t use any of the identifiers in the package. As mentioned
earlier, Go doesn’t allow you to have unused imports. To work around this, Go allows
blank imports, where the name assigned to an import is the underscore (_). Just as an
underscore allows you to skip an unused return value from a function, a blank import
triggers the init function in a package but doesn’t give you access to any of the
exported identifiers in the package:

import (
    "database/sql"

    _ "github.com/lib/pq"
)

This pattern is considered obsolete because it’s unclear that a registration operation is
being performed. Go’s compatibility guarantee for its standard library means that we
are stuck using it to register database drivers and image formats, but if you have a
registry pattern in your own code, register your plug-ins explicitly.

The primary use of init functions today is to initialize package-level variables that
can’t be configured in a single assignment. It’s a bad idea to have mutable state at the
top level of a package, since it makes it harder to understand how data flows through
your application. That means that any package-level variables configured via init
should be effectively immutable. While Go doesn’t provide a way to enforce that their
value does not change, you should make sure that your code does not change them. If
you have package-level variables that need to be modified while your program is run‐
ning, see if you can refactor your code to put that state into a struct that’s initialized
and returned by a function in the package.

There are a couple of additional caveats on the use of init. You should only declare a
single init function per package, even though Go allows you to define multiple. If
your init function loads files or accesses the network, document this behavior, so
that security-conscious users of your code aren’t surprised by unexpected I/O.

Circular Dependencies
Two of the goals of Go are a fast compiler and easy to understand source code. To
support this, Go does not allow you to have a circular dependency between packages.
This means that if package A imports package B, directly or indirectly, package B can‐
not import package A, directly or indirectly. Let’s look at a quick example to explain
the concept. You can download the code from GitHub. Our project has two sub-
directories, pet and person. In pet.go in the pet package, we import github.com/
learning-go-book/circular_dependency_example/person:

Building Packages | 187

https://oreil.ly/CXsyd


var owners = map[string]person.Person{
    "Bob":     {"Bob", 30, "Fluffy"},
    "Julia": {"Julia", 40, "Rex"},
}

While in person.go in the person package, we import github.com/learning-go-
book/circular_dependency_example/pet:

var pets = map[string]pet.Pet{
    "Fluffy": {"Fluffy", "Cat", "Bob"},
    "Rex":    {"Rex", "Dog", "Julia"},
}

If you try to build this project, you’ll get an error:

$ go build
package github.com/learning-go-book/circular_dependency_example
    imports github.com/learning-go-book/circular_dependency_example/person
    imports github.com/learning-go-book/circular_dependency_example/pet
    imports github.com/learning-go-book/circular_dependency_example/person:
        import cycle not allowed

If you find yourself with a circular dependency, you have a few options. In some
cases, this is caused by splitting packages up too finely. If two packages depend on
each other, there’s a good chance they should be merged into a single package. We can
merge our person and pet packages into a single package and that solves our
problem.

If you have a good reason to keep your packages separated, it may be possible to
move just the items that cause the circular dependency to one of the two packages or
to a new package.

Gracefully Renaming and Reorganizing Your API
After using a module for a while, you might realize that its API is not ideal. You might
want to rename some of the exported identifiers or move them to another package
within your module. To avoid a backward-breaking change, don’t remove the original
identifiers; provide an alternate name instead.

With a function or method, this is easy. You declare a function or method that calls
the original. For a constant, simply declare a new constant with the same type and
value, but a different name.

When you want to rename or move an exported type, you have to use an alias. Quite
simply, an alias is a new name for a type. We saw in Chapter 7 how to use the type
keyword to declare a new type based on an existing one. We also use the type key‐
word to declare an alias. Let’s say we have a type called Foo:

188 | Chapter 9: Modules, Packages, and Imports



type Foo struct {
    x int
    S string
}

func (f Foo) Hello() string {
    return "hello"
}

func (f Foo) goodbye() string {
    return "goodbye"
}

If we want to allow users to access Foo by the name Bar, all we need to do is:

type Bar = Foo

To create an alias, we use the type keyword, the name of the alias, an equals sign, and
the name of the original type. The alias has the same fields and methods as the origi‐
nal type.

The alias can even be assigned to a variable of the original type without a type
conversion:

func MakeBar() Bar {
    bar := Bar{
        a: 20,
        B: "Hello",
    }
    var f Foo = bar
    fmt.Println(f.Hello())
    return bar
}

One important point to remember: an alias is just another name for a type. If you
want to add new methods or change the fields in an aliased struct, you must add
them to the original type.

You can alias a type that’s defined in the same package as the original type or in a
different package. You can even alias a type from another module. There is one draw‐
back to an alias in another package: you cannot use an alias to refer to the unexported
methods and fields of the original type. This limitation makes sense, as aliases exist to
allow a gradual change to a package’s API, and the API only consists of the exported
parts of the package. To work around this limitation, call code in the type’s original
package to manipulate unexported fields and methods.

There are two kinds of exported identifiers that can’t have alternate names. The first is
a package-level variable. The second is a field in a struct. Once you choose a name for
an exported struct field, there’s no way to create an alternate name.

Building Packages | 189



Working with Modules
We’ve seen how to work with packages within a single module, and now it’s time to
see how to integrate with other modules and the packages within them. After that,
we’ll learn about publishing and versioning our own modules and Go’s centralized
services: pkg.go.dev, the module proxy, and the sum database.

Importing Third-Party Code
So far, we’ve imported packages from the standard library like fmt, errors, os, and
math. Go uses the same import system to integrate packages from third parties.
Unlike many other compiled languages, Go compiles all code for your application
into a single binary, whether it was code you wrote or code from third parties. Just as
we saw when we imported a package from within our own project, when you import
a third-party package, you specify the location in the source code repository where
the package is located.

Let’s look at an example. We mentioned back in Chapter 2 that you should never use
floating point numbers when you need an exact representation of a decimal number.
If you do need an exact representation, one good library is the decimal module from
ShopSpring. We are also going to look at a simple formatting library that I’ve written
for this book. We’ll use both of these modules in a small program that accurately cal‐
culates the price of an item with the tax included and prints the output in a neat for‐
mat. The following code is in main.go:

package main

import (
    "fmt"
    "log"
    "os"

    "github.com/learning-go-book/formatter"
    "github.com/shopspring/decimal"
)

func main() {
    if len(os.Args) < 3 {
        fmt.Println("Need two parameters: amount and percent")
        os.Exit(1)
    }
    amount, err := decimal.NewFromString(os.Args[1])
    if err != nil {
        log.Fatal(err)
    }
    percent, err := decimal.NewFromString(os.Args[2])
    if err != nil {
        log.Fatal(err)

190 | Chapter 9: Modules, Packages, and Imports

https://github.com/shopspring/decimal
https://github.com/learning-go-book/money


    }
    percent = percent.Div(decimal.NewFromInt(100))
    total := amount.Add(amount.Mul(percent)).Round(2)
    fmt.Println(formatter.Space(80, os.Args[1], os.Args[2],
                                total.StringFixed(2)))
}

The two imports github.com/learning-go-book/formatter and github.com/shop
spring/decimal specify third-party imports. Note that they include the location of
the package in the repository. Once imported, we access the exported items in these
packages just like any other imported package.

Before we build our application, look at the go.mod file. Its contents should be:

module github.com/learning-go-book/money

go 1.15

Do a build and we’ll see what happens:

$ go build
go: finding module for package github.com/shopspring/decimal
go: finding module for package github.com/learning-go-book/formatter
go: found github.com/learning-go-book/formatter in
    github.com/learning-go-book/formatter v0.0.0-20200921021027-5abc380940ae
go: found github.com/shopspring/decimal in github.com/shopspring/decimal v1.2.0

Because the location of the package is in the source code, go build is able to get the
package’s module and download it. If you look in the go.mod file now, you’ll see:

module github.com/learning-go-book/money

go 1.15

require (
    github.com/learning-go-book/formatter v0.0.0-20200921021027-5abc380940ae
    github.com/shopspring/decimal v1.2.0
)

The require section of the go.mod file lists the modules that you’ve imported into
your module. After the module name is a version number. In the case of the
formatter module, it doesn’t have a version tag, so Go makes up a pseudo-version.

Meanwhile, a go.sum file has been created with the contents:

github.com/google/go-cmp v0.5.2/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22db...
github.com/learning-go-book/formatter v0.0.0-20200921021027-5abc38094...
github.com/learning-go-book/formatter v0.0.0-20200921021027-5abc38094...
github.com/shopspring/decimal v1.2.0 h1:abSATXmQEYyShuxI4/vyW3tV1MrKA...
github.com/shopspring/decimal v1.2.0/go.mod h1:DKyhrW/HYNuLGql+MJL6WC...
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5...

Working with Modules | 191



Whenever you run any go command that requires dependencies (such as go run, go
build, go test, or even go list), any imports that aren’t already in go.mod are
downloaded to a cache. The go.mod file is automatically updated to include the mod‐
ule path that contains the package and the version of the module. The go.sum file is
updated with two entries: one with the module, its version, and a hash of the module,
the other with the hash of the go.mod file for the module. We’ll see what these hashes
are used for in “Module Proxy Servers” on page 200.

Let’s validate that our code works by passing it some arguments:

$ ./money 99.99 7.25
99.99           7.25                                                 107.24

Our sample program was checked in without go.sum and with an
incomplete go.mod. This was done so you could see what happens
when these files are populated. When committing your own
projects to source control, always include up-to-date go.mod and
go.sum files. Doing so specifies exactly what versions of your
dependencies are being used.

Working with Versions
Let’s see how Go’s module system uses versions. I’ve written a simple module that
we’re going to use in another tax collection program. In main.go, we have the follow‐
ing third-party imports:

"github.com/learning-go-book/simpletax"
"github.com/shopspring/decimal"

Like before, our sample program wasn’t checked in with go.mod and go.sum updated,
so we could see what happens. When we build our program, we see the following:

$ go build
go: finding module for package github.com/learning-go-book/simpletax
go: finding module for package github.com/shopspring/decimal
go: downloading github.com/learning-go-book/simpletax v1.1.0
go: found github.com/learning-go-book/simpletax in
    github.com/learning-go-book/simpletax v1.1.0
go: found github.com/shopspring/decimal in github.com/shopspring/decimal v1.2.0

The go.mod file has been updated to:

module region_tax

go 1.15

require (
    github.com/learning-go-book/simpletax v1.1.0
    github.com/shopspring/decimal v1.2.0
)

192 | Chapter 9: Modules, Packages, and Imports

https://github.com/learning-go-book/simpletax
https://oreil.ly/gjxYL


We also have a go.sum with hashes for our dependencies. Let’s run our code and see if
it’s working:

$ ./region_tax 99.99 12345
unknown zip: 12345

That looks like a wrong answer. There might be a bug in this latest version of the
library. By default, Go picks the latest version of a dependency when you add it to
your project. However, one of the things that makes versioning useful is that you can
specify an earlier version of a module. First we can see what versions of the module
are available with the go list command:

$ go list -m -versions github.com/learning-go-book/simpletax
github.com/learning-go-book/simpletax v1.0.0 v1.1.0

By default, the go list command lists the packages that are used in your project. The
-m flag changes the output to list the modules instead, and the -versions flag changes
go list to report on the available versions for the specified module. In this case, we
see that there are two versions, v1.0.0 and v1.1.0. Let’s downgrade to version v1.0.0
and see if that fixes our problem. We do that with the go get command:

$ go get github.com/learning-go-book/simpletax@v1.0.0

The go get command lets us work with modules, updating the versions of our
dependencies.

Now if we look at go.mod, we’ll see the version has been changed:

module region_tax

go 1.15

require (
    github.com/learning-go-book/simpletax v1.0.0
    github.com/shopspring/decimal v1.2.0
)

We also see in go.sum that it contains both versions of simpletax:

github.com/learning-go-book/simpletax v1.0.0 h1:iH+7ADkdyrSqrMR2GzuWS...
github.com/learning-go-book/simpletax v1.0.0/go.mod h1:/YqHwHy95m0M4Q...
github.com/learning-go-book/simpletax v1.1.0 h1:Z/6s1ydS/vjblI6PFuDEn...
github.com/learning-go-book/simpletax v1.1.0/go.mod h1:/YqHwHy95m0M4Q...

This is fine; if you change a module’s version, or even remove a module from your
project, there still might be an entry for it in go.sum. This doesn’t cause any problems.

Working with Modules | 193



When we build and run our code again, the bug is fixed:

$ go build
$ ./region_tax 99.99 12345
107.99

You might see dependencies labeled // indirect in your go.mod
file. These are dependencies that aren’t declared in your project
directly. There are a few reasons why they are added to your go.mod
file. One reason is that your project depends on an older module
that doesn’t have a go.mod file or the go.mod file has an error and is
missing some of its dependencies. When building with modules, all
dependencies must be listed in a go.mod file. Since the dependency
declarations have to go somewhere, your go.mod is modified.
An indirect declaration might also be present if a direct depend‐
ency properly specifies the indirect dependency, but it specifies an
older version than what’s installed in your project. This happens
when you explicitly update an indirect dependency with go get or
downgrade a dependency’s version.

Semantic Versioning
Software has had version numbers from time immemorial, but there has been little
consistency in what version numbers mean. The version numbers attached to Go
modules follow the rules of semantic versioning, also known as SemVer. By requiring
semantic versioning for modules, Go makes its module management code simpler
while ensuring that users of a module understand what a new release promises.

If you aren’t familiar with SemVer, check out the full specification. The very short
explanation is that semantic versioning divides a version number into three parts: the
major version, the minor version, and the patch version, which are written as
major.minor.patch and preceded by a v. The patch version number is incremented
when fixing a bug, the minor version number is incremented (and the patch version
is set back to 0) when a new, backward-compatible feature is added, and the major
version number is incremented (and minor and patch are set back to 0) when making
a change that breaks backward compatibility.

Minimum Version Selection
At some point, your project will depend on two or more modules that all depend on
the same module. As often happens, these modules declare that they depend on dif‐
ferent minor or patch versions of that module. How does Go resolve this?

194 | Chapter 9: Modules, Packages, and Imports

https://semver.org


The module system uses the principle of minimum version selection. This means that
you will always get the lowest version of a dependency that is declared to work in all
of the go.mod files across all of your dependencies. Let’s say that your module directly
depends on modules A, B, and C. All three of these modules depend on module D.
The go.mod file for module A declares that it depends on v1.1.0, module B declares
that it depends on v1.2.0, and module C declares that it depends on v1.2.3. Go will
import module D only once, and it will choose version v1.2.3, as that is the most
recent specified version.

However, as sometimes happens, you might find that while module A works with ver‐
sion v1.1.0 of module D, it does not work with version v1.2.3. What do you do then?
Go’s answer is that you need to contact the module authors to fix their incompatibili‐
ties. The import compatibility rule says that all minor and patch versions of a module
must be backward compatible. If they aren’t, it’s a bug. In our example, either module
D needs to be fixed because it broke backward compatibility, or module A needs to be
fixed because it made a faulty assumption about the behavior of module D.

This isn’t the most satisfying answer, but it’s the most honest. Some build systems, like
npm, will include multiple versions of the same package. This can introduce its own
set of bugs, especially when there is package-level state. It also increases the size of
your application. In the end, some things are better solved by community than code.

Updating to Compatible Versions
What about the case where you explicitly want to upgrade a dependency? Let’s
assume that after we wrote our initial program, there are three more versions of
simpletax. The first fixes problems in the initial v1.1.0 release. Since it’s a bug patch
release with no new functionality, it would be released as v1.1.1. The second keeps the
current functionality, but also adds a new function. It would get the version number
v1.2.0. Finally, the third fixes a bug that was found in version v1.2.0. It has the version
number v1.2.1.

To upgrade to the bug patch release for the current minor version, use the command
go get -u=patch github.com/learning-go-book/simpletax. Since we had down‐
graded to v1.0.0, we would remain on that version, since there is no patch version
with the same minor version.

If we upgraded to version v1.1.0 using go get github.com/learning-go-book/
simpletax@v1.1.0 and then ran go get -u=patch github.com/learning-go-book/
simpletax, we would be upgraded to version v1.1.1.

Finally, use the command go get -u github.com/learning-go-book/simpletax to
get the most recent version of simpletax. That upgrades us to version v1.2.1.

Working with Modules | 195



Updating to Incompatible Versions
Let’s go back to our program. We’re expanding to Canada, and luckily, there’s a ver‐
sion of the simpletax module that handles both the US and Canada. However, this
version has a slightly different API than the previous one, so its version is v2.0.0.

To handle incompatibility, Go modules follow the semantic import versioning rule.
There are two parts to this rule:

• The major version of the module must be incremented.
• For all major versions besides 0 and 1, the path to the module must end in vN,

where N is the major version.

The path changes because an import path uniquely identifies a package and, by defi‐
nition, incompatible versions of a package are not the same package. Using different
paths means that you can import two incompatible versions of a package into differ‐
ent parts of your program, allowing you to upgrade gracefully.

Let’s see how this changes our program. First, we are going to change our import of
simpletax to:

"github.com/learning-go-book/simpletax/v2"

This changes our import to refer to the v2 module.

Next, we’re going to change the code in main to the following:

func main() {
    amount, err := decimal.NewFromString(os.Args[1])
    if err != nil {
        log.Fatal(err)
    }
    zip := os.Args[2]
    country := os.Args[3]
    percent, err := simpletax.ForCountryPostalCode(country, zip)
    if err != nil {
        log.Fatal(err)
    }
    total := amount.Add(amount.Mul(percent)).Round(2)
    fmt.Println(total)
}

We are now reading a third parameter from the command line, which is the country
code, and we call a different function in the simpletax package. When we call go
build, our dependency is automatically updated:

$ go build
go: finding module for package github.com/learning-go-book/simpletax/v2
go: downloading github.com/learning-go-book/simpletax/v2 v2.0.0

196 | Chapter 9: Modules, Packages, and Imports



go: found github.com/learning-go-book/simpletax/v2 in
    github.com/learning-go-book/simpletax/v2 v2.0.0

We can run the program and see our new output:

$ ./region_tax 99.99 M4B1B4 CA
112.99
$ ./region_tax 99.99 12345 US
107.99

We can look at the go.mod file and we’ll see that the new version of simpletax is
included:

module region_tax

go 1.15

require (
    github.com/learning-go-book/simpletax v1.0.0 // indirect
    github.com/learning-go-book/simpletax/v2 v2.0.0
    github.com/shopspring/decimal v1.2.0
)

And go.sum has been updated as well:

github.com/learning-go-book/simpletax v1.0.0 h1:iH+7ADkdyrSqrMR2GzuWS...
github.com/learning-go-book/simpletax v1.0.0/go.mod h1:/YqHwHy95m0M4Q...
github.com/learning-go-book/simpletax v1.1.0 h1:Z/6s1ydS/vjblI6PFuDEn...
github.com/learning-go-book/simpletax v1.1.0/go.mod h1:/YqHwHy95m0M4Q...
github.com/learning-go-book/simpletax/v2 v2.0.0 h1:cZURCo1tEqdw/cJygg...
github.com/learning-go-book/simpletax/v2 v2.0.0/go.mod h1:DVMa7zPtIFG...
github.com/shopspring/decimal v1.2.0 h1:abSATXmQEYyShuxI4/vyW3tV1MrKA...
github.com/shopspring/decimal v1.2.0/go.mod h1:DKyhrW/HYNuLGql+MJL6WC...

The old versions of simpletax are still referenced, even though they are no longer
used. While this doesn’t cause any problems, Go includes a command to remove
unused versions:

go mod tidy

After running this command, you’ll see that the only version referenced in go.mod
and go.sum is v2.0.0.

Vendoring
To ensure that a module always builds with identical dependencies, some organiza‐
tions like to keep copies of their dependencies inside their module. This is known as
vendoring. It’s enabled by running the command go mod vendor. This creates a direc‐
tory called vendor at the top level of your module that contains all of your module’s
dependencies.

Working with Modules | 197



If new dependencies are added to go.mod or versions of existing dependencies are
upgraded with go get, you need to run go mod vendor again to update the vendor
directory. If you forget to do this, go build, go run, and go test will refuse to run
and display an error message.

Whether or not you want to vendor your dependencies is up to your organization.
Older Go dependency management systems required it, but with the advent of Go
modules and proxy servers (see “Module Proxy Servers” on page 200 for details), the
practice is falling out of favor. The advantage of vendoring is that you know exactly
what third-party code is going to be used by your project. The downside is that it dra‐
matically increases the size of your project in version control.

pkg.go.dev
While there isn’t a single centralized repository of Go modules, there is a single ser‐
vice that gathers together documentation on Go modules. The Go team has created a
site called pkg.go.dev that automatically indexes open source Go projects. For each
module, the package index publishes the godocs, the license used, the README, the
module’s dependencies, and what open source projects depends on the module. You
can see the info that pkg.go.dev has on our simpletax module in Figure 9-2.

Figure 9-2. Use pkg.go.dev to find and learn about third-party modules

Additional Information
We’ve covered the most important parts of working with Go modules here, but you
can learn more at the Go wiki page on Modules.

198 | Chapter 9: Modules, Packages, and Imports

https://pkg.go.dev
https://oreil.ly/LfIUi


Publishing Your Module
Making your module available to other people is as simple as putting it in a version
control system. This is true whether you are releasing your project as open source on
a public version control system like GitHub or a private one that’s hosted within your
organization. Since Go programs build from source code and use a repository path to
identify themselves, there’s no need to explicitly upload your module to a central
library repository, like you do for Maven Central or npm. Make sure you check in
both your go.mod file and your go.sum file.

When releasing an open source module, you should include a file named LICENSE in
the root of your repository that specifies the open source license under which you are
releasing your code. It’s FOSS has a good resource for learning more about the vari‐
ous kinds of open source licenses.

Roughly speaking, you can divide open source licenses into two categories: permis‐
sive (which allows users of your code to keep their code private) and nonpermissive
(which requires users of your code to make their code open source). While the license
you choose is up to you, the Go community favors permissive licenses, such as BSD,
MIT, and Apache. Since Go compiles third-party code directly into every application,
the use of a nonpermissive license like the GPL would require people who use your
code to release their code as open source as well. For many organizations, this is not
acceptable.

One final note: do not write your own license. Few people will trust that it has been
properly reviewed by a lawyer, and they can’t tell what claims you are making on their
project.

Versioning Your Module
Whether your module is public or private, you must properly version your module so
that it works correctly with Go’s module system. As long as you are adding function‐
ality or patching bugs, the process is simple. Store your changes in your source code
repository, then apply a tag that follows the semantic versioning rules we discussed in
“Semantic Versioning” on page 194.

If you reach a point where you need to break backward compatibility, the process is
more complicated. As we saw when we imported version 2 of the simpletax module,
a backward-breaking change requires a different import path. There are a few steps to
take.

First you need to choose a way to store your new version. Go supports two ways for
creating the different import paths:

Publishing Your Module | 199

https://oreil.ly/KVlrd


• Create a subdirectory within your module named vN, where N is the major ver‐
sion of your module. For example, if you are creating version 2 of your module,
call this directory v2. Copy your code into this subdirectory, including the
README and LICENSE files.

• Create a branch in your version control system. You can either put the old code
on the branch or the new code. Name the branch vN if you are putting the new
code on the branch, or vN-1 if you are putting the old code there. For example, if
you are creating version 2 of your module and want to put version 1 code on the
branch, name the branch v1.

After you decide how to store your new code, you need to change the import path in
the code in your subdirectory or branch. The module path in your go.mod file must
end with /vN, and all of the imports within your module must use /vN as well. Going
through all of your code can be tedious, but Marwan Sulaiman has created a tool that
automates the work. Once the paths are fixed, go ahead and implement your changes.

Technically, you could just change go.mod and your import state‐
ments, tag your main branch with the latest version, and not bother
with a subdirectory or versioned branch. However, this is not a
good practice, as it will break Go code built with older versions of
the language or third-party dependency managers.

When you are ready to publish your new code, place a tag on your repository that
looks like vN.0.0. If you are using the subdirectory system or keeping the latest code
on your main branch, tag the main branch. If you are placing your new code on a
different branch, tag that branch instead.

You can find more details on updating your code to an incompatible version in the
post Go Modules: v2 and Beyond on the Go Blog.

Module Proxy Servers
Rather than rely on a single, central repository for libraries, Go uses a hybrid model.
Every Go module is stored in a source code repository, like GitHub or GitLab. But by
default, go get doesn’t fetch code directly from source code repositories. Instead, it
sends requests to a proxy server run by Google. This server keeps copies of every ver‐
sion of virtually all public Go modules. If a module or a version of a module isn’t
present on the proxy server, it downloads the module from the module’s repository,
stores a copy, and returns the module.

In addition to the proxy server, Google also maintains a sum database. It stores infor‐
mation on every version of every module. This includes the entries that appear in a
go.sum file for the module at that version and a signed, encoded tree description that

200 | Chapter 9: Modules, Packages, and Imports

https://oreil.ly/BeOAr
https://oreil.ly/BeOAr
https://oreil.ly/E-3Qo
https://proxy.golang.org


contains the record. Just as the proxy server protects you from a module or a version
of a module being removed from the internet, the sum database protects you against
modifications to a version of a module. This could be malicious (someone has
hijacked a module and slipped in malicious code), or it could be inadvertent (a mod‐
ule maintainer fixes a bug or adds a new feature and reuses an existing version tag).
In either case, you don’t want to use a module version that has changed because you
won’t be building the same binary and don’t know what the effects are on your
application.

Every time you download a module via go build, go test, or go get, the Go tools
calculate a hash for the module and contact the sum database to compare the calcula‐
ted hash to the hash stored for that module’s version. If they don’t match, the module
isn’t installed.

Specifying a Proxy Server
Some people object to sending requests for third-party libraries to Google. There are
a few options:

• If you don’t mind a public proxy server, but don’t want to use Google’s, you can
switch to GoCenter (which is run by JFrog) by setting the GOPROXY environment
variable to https://gocenter.io,direct.

• You can disable proxying entirely by setting the GOPROXY environment variable to
direct. You’ll download modules directly from their repositories, but if you
depend on a version that’s removed from the repository, you won’t be able to
access it.

• You can run your own proxy server. Both Artifactory and Sonatype have Go
proxy server support built into their enterprise repository products. The Athens
Project provides an open source proxy server. Install one of these products on
your network and then point GOPROXY to the URL.

Private Repositories
Most organizations keep their code in private repositories. If you want to use a pri‐
vate module in another Go project, you can’t request it from Google’s proxy server.
Go will fall back to checking the private repository directly, but you might not want
to leak the names of private servers and repositories to external services.

If you are using your own proxy server, or if you have disabled proxying, this isn’t an
issue. Running a private proxy server has some additional benefits. First, it speeds up
downloading of third-party modules, as they are cached in your company’s network.
If accessing your private repositories requires authentication, using a private proxy
server means that you don’t have to worry about exposing authentication information

Module Proxy Servers | 201

https://docs.gomods.io
https://docs.gomods.io


in your CI/CD pipeline. The private proxy server is configured to authenticate to
your private repositories (see the authentication configuration documentation for
Athens), while the calls to the private proxy server are unauthenticated.

If you are using a public proxy server, you can set the GOPRIVATE environment vari‐
able to a comma-separated list of your private repositories. For example, if you set
GOPRIVATE to:

GOPRIVATE=*.example.com,company.com/repo

Any module stored in a repository that’s located at any subdomain of example.com or
at a URL that starts with company.com/repo will be downloaded directly.

Wrapping Up
In this chapter, we’ve learned how to organize code and interact with the ecosystem of
Go source code. We’ve seen how modules work, how to organize your code into pack‐
ages, how to use third-party modules, and how to release modules of your own. In
the next chapter, we’re going to explore one of the signature features in Go:
concurrency.

202 | Chapter 9: Modules, Packages, and Imports

https://oreil.ly/Nl4hv


CHAPTER 10

Concurrency in Go

Concurrency is the computer science term for breaking up a single process into inde‐
pendent components and specifying how these components safely share data. Most
languages provide concurrency via a library that uses operating system–level threads
that share data by attempting to acquire locks. Go is different. Its main concurrency
model, arguably Go’s most famous feature, is based on CSP (Communicating Sequen‐
tial Processes). It’s a style for concurrency that was described in 1978 in a paper by
Tony Hoare, the man who invented the Quicksort algorithm. The patterns imple‐
mented with CSP are just as powerful as the standard ones, but are far easier to
understand.

In this chapter, we are going to go through a quick review of the features that are the
backbone of concurrency in Go: goroutines, channels, and the select keyword. Then
we are going to look at some common Go concurrency patterns, and we will then
learn about the situations where lower-level techniques are a better approach.

When to Use Concurrency
Let’s start with a word of caution. Be sure that your program benefits from concur‐
rency. When new Go developers start experimenting with concurrency, they tend to
go through a series of stages:

1. This is amazing; I’m going to put everything in goroutines!
2. My program isn’t any faster. I’m adding buffers to my channels.
3. My channels are blocking and I’m getting deadlocks. I’m going to use buffered

channels with really big buffers.
4. My channels are still blocking. I’m going to use mutexes.

203

https://oreil.ly/x1IVG
https://oreil.ly/x1IVG


5. Forget it, I’m giving up on concurrency.

People are attracted to concurrency because they believe concurrent programs run
faster. Unfortunately, that’s not always the case. More concurrency doesn’t automati‐
cally make things faster, and it can make code harder to understand. The key is
understanding that concurrency is not parallelism. Concurrency is a tool to better
structure the problem you are trying to solve. Whether or not concurrent code runs
in parallel (at the same time) depends on the hardware and if the algorithm allows it.
In 1967, Gene Amdahl, one of the pioneers of computer science, derived Amdahl’s
Law. It is a formula for figuring out how much parallel processing can improve per‐
formance, given how much of the work must be performed sequentially. If you want
to dive into the details on Amdahl’s Law, you can learn more in The Art of Concur‐
rency by Clay Breshears (O’Reilly). For our purposes, all you need to understand is
that more concurrency does not mean more speed.

Broadly speaking, all programs follow the same three-step process: they take data,
transform it, and then output the result. Whether or not you should use concurrency
in your program depends on how data flows through the steps in your program.
There are times when two steps can be concurrent because the data from one is not
required for the other to proceed, and there are other times when two steps must
happen in series because one depends on the other’s output. Use concurrency when
you want to combine data from multiple operations that can operate independently.

Another important thing to note is that concurrency isn’t worth using if the process
that’s running concurrently doesn’t take a lot of time. Concurrency isn’t free; many
common in-memory algorithms are so fast that the overhead of passing values via
concurrency overwhelms any potential time savings you’d gain by running concur‐
rent code in parallel. This is why concurrent operations are often used for I/O; read‐
ing or writing to a disk or network is thousands of times slower than all but the most
complicated in-memory processes. If you are not sure if concurrency will help, first
write your code serially, and then write a benchmark to compare performance with a
concurrent implementation. (See “Benchmarks” on page 283 for information on how
to benchmark your code.)

Let’s consider an example. Say you are writing a web service that calls three other web
services. We send data to two of those services, and then take the results of those two
calls and send them to the third, returning the result. The entire process must take
less than 50 milliseconds, or an error should be returned. This is a good use of con‐
currency, because there are parts of the code that need to perform I/O that can run
without interacting with each other, there’s a part where we combine the results, and
there’s a limit on how long our code needs to run. At the end of this chapter, we’ll see
how to implement this code.

204 | Chapter 10: Concurrency in Go

https://oreil.ly/HaZQ8
https://oreil.ly/HaZQ8


Goroutines
The goroutine is the core concept in Go’s concurrency model. To understand gorou‐
tines, let’s define a couple of terms. The first is process. A process is an instance of a
program that’s being run by a computer’s operating system. The operating system
associates some resources, such as memory, with the process and makes sure that
other processes can’t access them. A process is composed of one or more threads. A
thread is a unit of execution that is given some time to run by the operating system.
Threads within a process share access to resources. A CPU can execute instructions
from one or more threads at the same time, depending on the number of cores. One
of the jobs of an operating system is to schedule threads on the CPU to make sure
that every process (and every thread within a process) gets a chance to run.

Goroutines are lightweight processes managed by the Go runtime. When a Go pro‐
gram starts, the Go runtime creates a number of threads and launches a single
goroutine to run your program. All of the goroutines created by your program,
including the initial one, are assigned to these threads automatically by the Go run‐
time scheduler, just as the operating system schedules threads across CPU cores. This
might seem like extra work, since the underlying operating system already includes a
scheduler that manages threads and processes, but it has several benefits:

• Goroutine creation is faster than thread creation, because you aren’t creating an
operating system–level resource.

• Goroutine initial stack sizes are smaller than thread stack sizes and can grow as
needed. This makes goroutines more memory efficient.

• Switching between goroutines is faster than switching between threads because it
happens entirely within the process, avoiding operating system calls that are (rel‐
atively) slow.

• The scheduler is able to optimize its decisions because it is part of the Go process.
The scheduler works with the network poller, detecting when a goroutine can be
unscheduled because it is blocking on I/O. It also integrates with the garbage col‐
lector, making sure that work is properly balanced across all of the operating sys‐
tem threads assigned to your Go process.

These advantages allow Go programs to spawn hundreds, thousands, even tens of
thousands of simultaneous goroutines. If you try to launch thousands of threads in a
language with native threading, your program will slow to a crawl.

If you are interested in learning more about how the scheduler
does its work, listen to the talk Kavya Joshi gave at GopherCon
2018 called The Scheduler Saga.

Goroutines | 205

https://oreil.ly/879mk


A goroutine is launched by placing the go keyword before a function invocation. Just
like any other function, you can pass it parameters to initialize its state. However, any
values returned by the function are ignored.

Any function can be launched as a goroutine. This is different from JavaScript, where
a function only runs asynchronously if the author of the function declared it with the
async keyword. However, it is customary in Go to launch goroutines with a closure
that wraps business logic. The closure takes care of the concurrent bookkeeping. For
example, the closure reads values out of channels and passes them to the business
logic, which is completely unaware that it is running in a goroutine. The result of the
function is then written back to a different channel. (We’ll do a brief overview of
channels in the next section.) This separation of responsibility makes your code mod‐
ular, testable, and keeps concurrency out of your APIs:

func process(val int) int {
    // do something with val
}

func runThingConcurrently(in <-chan int, out chan<- int) {
    go func() {
        for val := range in {
            result := process(val)
            out <- result
        }
    }()
}

Channels
Goroutines communicate using channels. Like slices and maps, channels are a built-in
type created using the make function:

ch := make(chan int)

Like maps, channels are reference types. When you pass a channel to a function, you
are really passing a pointer to the channel. Also like maps and slices, the zero value
for a channel is nil.

Reading, Writing, and Buffering
Use the <- operator to interact with a channel. You read from a channel by placing
the <- operator to the left of the channel variable, and you write to a channel by plac‐
ing it to the right:

a := <-ch // reads a value from ch and assigns it to a
ch <- b   // write the value in b to ch

206 | Chapter 10: Concurrency in Go



Each value written to a channel can only be read once. If multiple goroutines are
reading from the same channel, a value written to the channel will only be read by
one of them.

It is rare for a goroutine to read and write to the same channel. When assigning a
channel to a variable or field, or passing it to a function, use an arrow before the chan
keyword (ch <-chan int) to indicate that the goroutine only reads from the channel.
Use an arrow after the chan keyword (ch chan<- int) to indicate that the goroutine
only writes to the channel. Doing so allows the Go compiler to ensure that a channel
is only read from or written by a function.

By default channels are unbuffered. Every write to an open, unbuffered channel
causes the writing goroutine to pause until another goroutine reads from the same
channel. Likewise, a read from an open, unbuffered channel causes the reading
goroutine to pause until another goroutine writes to the same channel. This means
you cannot write to or read from an unbuffered channel without at least two concur‐
rently running goroutines.

Go also has buffered channels. These channels buffer a limited number of writes
without blocking. If the buffer fills before there are any reads from the channel, a sub‐
sequent write to the channel pauses the writing goroutine until the channel is read.
Just as writing to a channel with a full buffer blocks, reading from a channel with an
empty buffer also blocks.

A buffered channel is created by specifying the capacity of the buffer when creating
the channel:

ch := make(chan int, 10)

The built-in functions len and cap return information about a buffered channel. Use
len to find out how many values are currently in the buffer and use cap to find out
the maximum buffer size. The capacity of the buffer cannot be changed.

Passing an unbuffered channel to both len and cap returns 0. This
makes sense because, by definition, an unbuffered channel doesn’t
have a buffer to store values.

Most of the time, you should use unbuffered channels. In “When to Use Buffered and
Unbuffered Channels” on page 216, we’ll talk about the situations where buffered
channels are useful.

Channels | 207



for-range and Channels
You can also read from a channel using a for-range loop:

for v := range ch {
    fmt.Println(v)
}

Unlike other for-range loops, there is only a single variable declared for the channel,
which is the value. The loop continues until the channel is closed, or until a break or
return statement is reached.

Closing a Channel
When you are done writing to a channel, you close it using the built-in close
function:

close(ch)

Once a channel is closed, any attempts to write to the channel or close the channel
again will panic. Interestingly, attempting to read from a closed channel always suc‐
ceeds. If the channel is buffered and there are values that haven’t been read yet, they
will be returned in order. If the channel is unbuffered or the buffered channel has no
more values, the zero value for the channel’s type is returned.

This leads to a question that might sound familiar from our experience with maps:
when we read from a channel, how do we tell the difference between a zero value that
was written and a zero value that was returned because the channel is closed? Since
Go tries to be a consistent language, we have a familiar answer: we use the comma ok
idiom to detect whether a channel has been closed or not:

v, ok := <-ch

If ok is set to true, then the channel is open. If it is set to false, the channel is closed.

Any time you are reading from a channel that might be closed, use
the comma ok idiom to ensure that the channel is still open.

The responsibility for closing a channel lies with the goroutine that writes to the
channel. Be aware that closing a channel is only required if there is a goroutine wait‐
ing for the channel to close (such as one using a for-range loop to read from the
channel). Since a channel is just another variable, Go’s runtime can detect channels
that are no longer used and garbage collect them.

208 | Chapter 10: Concurrency in Go



Channels are one of the two things that set apart Go’s concurrency model. They guide
you into thinking about your code as a series of stages and making data dependencies
clear, which makes it easier to reason about concurrency. Other languages rely on
global shared state to communicate between threads. This mutable shared state
makes it hard to understand how data flows through a program, which in turn makes
it difficult to understand whether two threads are actually independent.

How Channels Behave
Channels have many different states, each with a different behavior when reading,
writing, or closing. Use Table 10-1 to keep them straight.

Table 10-1. How channels behave

Unbuffered, open Unbuffered, closed Buffered, open Buffered, closed Nil
Read Pause until

something is written
Return zero value (use
comma ok to see if
closed)

Pause if buffer is
empty

Return a remaining value in
the buffer. If the buffer is
empty, return zero value (use
comma ok to see if closed)

Hang
forever

Write Pause until
something is read

PANIC Pause if buffer is full PANIC Hang
forever

Close Works PANIC Works, remaining
values still there

PANIC PANIC

You must avoid situations that cause Go programs to panic. As mentioned earlier, the
standard pattern is to make the writing goroutine responsible for closing the channel
when there’s nothing left to write. When multiple goroutines are writing to the same
channel, this becomes more complicated, as calling close twice on the same channel
causes a panic. Furthermore, if you close a channel in one goroutine, a write to the
channel in another goroutine triggers a panic as well. The way to address this is to use
a sync.WaitGroup. We’ll see an example in “Using WaitGroups” on page 220.

A nil channel can be dangerous as well, but there are cases where it is useful. We’ll
learn more about them in “Turning Off a case in a select” on page 219.

select
The select statement is the other thing that sets apart Go’s concurrency model. It is
the control structure for concurrency in Go, and it elegantly solves a common prob‐
lem: if you can perform two concurrent operations, which one do you do first? You
can’t favor one operation over others, or you’ll never process some cases. This is
called starvation.

The select keyword allows a goroutine to read from or write to one of a set of multi‐
ple channels. It looks a great deal like a blank switch statement:

select | 209



select {
case v := <-ch:
    fmt.Println(v)
case v := <-ch2:
    fmt.Println(v)
case ch3 <- x:
    fmt.Println("wrote", x)
case <-ch4:
    fmt.Println("got value on ch4, but ignored it")
}

Each case in a select is a read or a write to a channel. If a read or write is possible
for a case, it is executed along with the body of the case. Like a switch, each case in
a select creates its own block.

What happens if multiple cases have channels that can be read or written? The
select algorithm is simple: it picks randomly from any of its cases that can go for‐
ward; order is unimportant. This is very different from a switch statement, which
always chooses the first case that resolves to true. It also cleanly resolves the starva‐
tion problem, as no case is favored over another and all are checked at the same time.

Another advantage of select choosing at random is that it prevents one of the most
common causes of deadlocks: acquiring locks in an inconsistent order. If you have
two goroutines that both access the same two channels, they must be accessed in the
same order in both goroutines, or they will deadlock. This means that neither one can
proceed because they are waiting on each other. If every goroutine in your Go appli‐
cation is deadlocked, the Go runtime kills your program (see Example 10-1).

Example 10-1. Deadlocking goroutines

func main() {
    ch1 := make(chan int)
    ch2 := make(chan int)
    go func() {
        v := 1
        ch1 <- v
        v2 := <-ch2
        fmt.Println(v, v2)
    }()
    v := 2
    ch2 <- v
    v2 := <-ch1
    fmt.Println(v, v2)
}

If you run this program on The Go Playground, you’ll see the following error:

fatal error: all goroutines are asleep - deadlock!

210 | Chapter 10: Concurrency in Go

https://oreil.ly/trOam


Remember that our main is running on a goroutine that is launched at startup by the
Go runtime. The goroutine that we launch cannot proceed until ch1 is read, and the
main goroutine cannot proceed until ch2 is read.

If we wrap the channel accesses in the main goroutine in a select, we avoid deadlock
(see Example 10-2).

Example 10-2. Using select to avoid deadlocks

func main() {
    ch1 := make(chan int)
    ch2 := make(chan int)
    go func() {
        v := 1
        ch1 <- v
        v2 := <-ch2
        fmt.Println(v, v2)
    }()
    v := 2
    var v2 int
    select {
    case ch2 <- v:
    case v2 = <-ch1:
    }
    fmt.Println(v, v2)
}

If you run this program on The Go Playground you’ll get the output:

2 1

Because a select checks if any of its cases can proceed, the deadlock is avoided. The
goroutine that we launched wrote the value 1 into ch1, so the read from ch1 into v2 in
the main goroutine is able to succeed.

Since select is responsible for communicating over a number of channels, it is often
embedded within a for loop:

for {
    select {
    case <-done:
        return
    case v := <-ch:
        fmt.Println(v)
    }
}

This is so common that the combination is often referred to as a for-select loop.
When using a for-select loop, you must include a way to exit the loop. We’ll see one
way to do this in “The Done Channel Pattern” on page 215.

select | 211

https://oreil.ly/SdQX5


Just like switch statements, a select statement can have a default clause. Also just
like switch, default is selected when there are no cases with channels that can be
read or written. If you want to implement a nonblocking read or write on a channel,
use a select with a default. The following code does not wait if there’s no value to
read in ch; it immediately executes the body of the default:

select {
case v := <-ch:
    fmt.Println("read from ch:", v)
default:
    fmt.Println("no value written to ch")
}

We’ll take a look at a use for default in “Backpressure” on page 217.

Having a default case inside a for-select loop is almost always
the wrong thing to do. It will be triggered every time through the
loop when there’s nothing to read or write for any of the cases. This
makes your for loop run constantly, which uses a great deal of
CPU.

Concurrency Practices and Patterns
Now that we’ve covered the basic tools that Go provides for concurrency, let’s take a
look at some concurrency best practices and patterns.

Keep Your APIs Concurrency-Free
Concurrency is an implementation detail, and good API design should hide imple‐
mentation details as much as possible. This allows you to change how your code
works without changing how your code is invoked.

Practically, this means that you should never expose channels or mutexes in your
API’s types, functions, and methods (we’ll talk about mutexes in “When to Use
Mutexes Instead of Channels” on page 227). If you expose a channel, you put the
responsibility of channel management on the users of your API. This means that the
users now have to worry about concerns like whether or not a channel is buffered or
closed or nil. They can also trigger deadlocks by accessing channels or mutexes in an
unexpected order.

This doesn’t meant that you shouldn’t ever have channels as func‐
tion parameters or struct fields. It means that they shouldn’t be
exported.

212 | Chapter 10: Concurrency in Go



There are some exceptions to this rule. If your API is a library with a concurrency
helper function (like time.After, which we’ll see in “How to Time Out Code” on
page 219), channels are going to be part of its API.

Goroutines, for Loops, and Varying Variables
Most of the time, the closure that you use to launch a goroutine has no parameters.
Instead, it captures values from the environment where it was declared. There is one
common situation where this doesn’t work: when trying to capture the index or value
of a for loop. This code contains a subtle bug:

func main() {
    a := []int{2, 4, 6, 8, 10}
    ch := make(chan int, len(a))
    for _, v := range a {
        go func() {
            ch <- v * 2
        }()
    }
    for i := 0; i < len(a); i++ {
        fmt.Println(<-ch)
    }
}

We launch one goroutine for each value in a. It looks like we pass a different value in
to each goroutine, but running the code shows something different:

20
20
20
20
20

The reason why every goroutine wrote 20 to ch is that the closure for every goroutine
captured the same variable. The index and value variables in a for loop are reused on
each iteration. The last value assigned to v was 10. When the goroutines run, that’s
the value that they see. This problem isn’t unique to for loops; any time a goroutine
depends on a variable whose value might change, you must pass the value into the
goroutine. There are two ways to do this. The first is to shadow the value within the
loop:

for _, v := range a {
    v := v
    go func() {
        ch <- v * 2
    }()
}

If you want to avoid shadowing and make the data flow more obvious, you can also
pass the value as a parameter to the goroutine:

Concurrency Practices and Patterns | 213



for _, v := range a {
    go func(val int) {
        ch <- val * 2
    }(v)
}

Any time your goroutine uses a variable whose value might change,
pass the current value of the variable into the goroutine.

Always Clean Up Your Goroutines
Whenever you launch a goroutine function, you must make sure that it will eventu‐
ally exit. Unlike variables, the Go runtime can’t detect that a goroutine will never be
used again. If a goroutine doesn’t exit, the scheduler will still periodically give it time
to do nothing, which slows down your program. This is called a goroutine leak.

It may not be obvious that a goroutine isn’t guaranteed to exit. For example, say you
used a goroutine as a generator:

func countTo(max int) <-chan int {
    ch := make(chan int)
    go func() {
        for i := 0; i < max; i++ {
            ch <- i
        }
        close(ch)
    }()
    return ch
}

func main() {
    for i := range countTo(10) {
        fmt.Println(i)
    }
}

This is just a short example; don’t use a goroutine to generate a list
of numbers. It’s too simple of an operation, which violates one of
our “when to use concurrency” guidelines.

In the common case, where you use all of the values, the goroutine exits. However, if
we exit the loop early, the goroutine blocks forever, waiting for a value to be read
from the channel:

214 | Chapter 10: Concurrency in Go



func main() {
    for i := range countTo(10) {
        if i > 5 {
            break
        }
        fmt.Println(i)
    }
}

The Done Channel Pattern
The done channel pattern provides a way to signal a goroutine that it’s time to stop
processing. It uses a channel to signal that it’s time to exit. Let’s look at an example
where we pass the same data to multiple functions, but only want the result from the
fastest function:

func searchData(s string, searchers []func(string) []string) []string {
    done := make(chan struct{})
    result := make(chan []string)
    for _, searcher := range searchers {
        go func(searcher func(string) []string) {
            select {
            case result <- searcher(s):
            case <-done:
            }
        }(searcher)
    }
    r := <-result
    close(done)
    return r
}

In our function, we declare a channel named done that contains data of type
struct{}. We use an empty struct for the type because the value is unimportant; we
never write to this channel, only close it. We launch a goroutine for each searcher
passed in. The select statements in the worker goroutines wait for either a write on
the result channel (when the searcher function returns) or a read on the done
channel. Remember that a read on an open channel pauses until there is data avail‐
able and that a read on a closed channel always returns the zero value for the channel.
This means that the case that reads from done will stay paused until done is closed. In
searchData, we read the first value written to result, and then we close done. This
signals to the goroutines that they should exit, preventing them from leaking.

Sometimes, you want to stop goroutines based on something from an earlier function
in the call stack. In “Cancellation” on page 258, we’ll see how to use the context to tell
one or more goroutines that it is time to shut down.

Concurrency Practices and Patterns | 215



Using a Cancel Function to Terminate a Goroutine
We can also use the done channel pattern to implement a pattern that we first saw in
Chapter 5: return a cancellation function alongside the channel. Let’s go back to our
previous countTo example to see how this works. The function must be called after
the for loop:

func countTo(max int) (<-chan int, func()) {
    ch := make(chan int)
    done := make(chan struct{})
    cancel := func() {
        close(done)
    }
    go func() {
        for i := 0; i < max; i++ {
            select {
            case <-done:
                return
            case ch<-i:

            }
        }
        close(ch)
    }()
    return ch, cancel
}

func main() {
    ch, cancel := countTo(10)
    for i := range ch {
        if i > 5 {
            break
        }
        fmt.Println(i)
    }
    cancel()
}

The countTo function creates two channels, one that returns data and another for sig‐
naling done. Rather than return the done channel directly, we create a closure that
closes the done channel and return the closure instead. Cancelling with a closure
allows us to perform additional clean-up work, if needed.

When to Use Buffered and Unbuffered Channels
One of the most complicated techniques to master in Go concurrency is deciding
when to use a buffered channel. By default, channels are unbuffered, and they are
easy to understand: one goroutine writes and waits for another goroutine to pick up
its work, like a baton in a relay race. Buffered channels are much more complicated.
You have to pick a size, since buffered channels never have unlimited buffers. Proper

216 | Chapter 10: Concurrency in Go



use of a buffered channel means that you must handle the case where the buffer is full
and your writing goroutine blocks waiting for a reading goroutine. So what is the
proper use of a buffered channel?

The case for buffered channels is subtle. To sum it up in a single sentence:

Buffered channels are useful when you know how many goroutines you have
launched, want to limit the number of goroutines you will launch, or want to limit the
amount of work that is queued up.

Buffered channels work great when you want to either gather data back from a set of
goroutines that you have launched or when you want to limit concurrent usage. They
are also helpful for managing the amount of work a system has queued up, preventing
your services from falling behind and becoming overwhelmed. Here are a couple of
examples to show how they can be used.

In our first example, we are processing the first 10 results on a channel. To do this, we
launch 10 goroutines, each of which writes its results to a buffered channel:

func processChannel(ch chan int) []int {
    const conc = 10
    results := make(chan int, conc)
    for i := 0; i < conc; i++ {
        go func() {
            v := <- ch
            results <- process(v)
        }()
    }
    var out []int
    for i := 0; i < conc; i++ {
        out = append(out, <-results)
    }
    return out
}

We know exactly how many goroutines we have launched, and we want each gorout‐
ine to exit as soon as it finishes its work. This means we can create a buffered channel
with one space for each launched goroutine, and have each goroutine write data to
this goroutine without blocking. We can then loop over the buffered channel, reading
out the values as they are written. When all of the values have been read, we return
the results, knowing that we aren’t leaking any goroutines.

Backpressure
Another technique that can be implemented with a buffered channel is backpressure.
It is counterintuitive, but systems perform better overall when their components limit
the amount of work they are willing to perform. We can use a buffered channel and a
select statement to limit the number of simultaneous requests in a system:

Concurrency Practices and Patterns | 217



type PressureGauge struct {
    ch chan struct{}
}

func New(limit int) *PressureGauge {
    ch := make(chan struct{}, limit)
    for i := 0; i < limit; i++ {
        ch <- struct{}{}
    }
    return &PressureGauge{
        ch: ch,
    }
}

func (pg *PressureGauge) Process(f func()) error {
    select {
    case <-pg.ch:
        f()
        pg.ch <- struct{}{}
        return nil
    default:
        return errors.New("no more capacity")
    }
}

In this code, we create a struct that contains a buffered channel with a number of
“tokens” and a function to run. Every time a goroutine wants to use the function, it
calls Process. The select tries to read a token from the channel. If it can, the func‐
tion runs, and the token is returned to the buffered channel. If it can’t read a token,
the default case runs, and an error is returned instead. Here’s a quick example that
uses this code with the built-in HTTP server (we’ll learn more about working with
HTTP in “The Server” on page 249):

func doThingThatShouldBeLimited() string {
    time.Sleep(2 * time.Second)
    return "done"
}

func main() {
    pg := New(10)
    http.HandleFunc("/request", func(w http.ResponseWriter, r *http.Request) {
        err := pg.Process(func() {
            w.Write([]byte(doThingThatShouldBeLimited()))
        })
        if err != nil {
            w.WriteHeader(http.StatusTooManyRequests)
            w.Write([]byte("Too many requests"))
        }
    })
    http.ListenAndServe(":8080", nil)
}

218 | Chapter 10: Concurrency in Go



Turning Off a case in a select
When you need to combine data from multiple concurrent sources, the select key‐
word is great. However, you need to properly handle closed channels. If one of the
cases in a select is reading a closed channel, it will always be successful, returning
the zero value. Every time that case is selected, you need to check to make sure that
the value is valid and skip the case. If reads are spaced out, your program is going to
waste a lot of time reading junk values.

When that happens, we rely on something that looks like an error: reading a nil
channel. As we saw earlier, reading from or writing to a nil channel causes your code
to hang forever. While that is bad if it is triggered by a bug, you can use a nil channel
to disable a case in a select. When you detect that a channel has been closed, set the
channel’s variable to nil. The associated case will no longer run, because the read
from the nil channel never returns a value:

// in and in2 are channels, done is a done channel.
for {
    select {
    case v, ok := <-in:
        if !ok {
            in = nil // the case will never succeed again!
            continue
        }
        // process the v that was read from in
    case v, ok := <-in2:
        if !ok {
            in2 = nil // the case will never succeed again!
            continue
        }
        // process the v that was read from in2
    case <-done:
        return
    }
}

How to Time Out Code
Most interactive programs have to return a response within a certain amount of time.
One of the things that we can do with concurrency in Go is manage how much time a
request (or a part of a request) has to run. Other languages introduce additional
features on top of promises or futures to add this functionality, but Go’s timeout
idiom shows how you build complicated features from existing parts. Let’s take a
look:

func timeLimit() (int, error) {
    var result int
    var err error
    done := make(chan struct{})

Concurrency Practices and Patterns | 219



    go func() {
        result, err = doSomeWork()
        close(done)
    }()
    select {
    case <-done:
        return result, err
    case <-time.After(2 * time.Second):
        return 0, errors.New("work timed out")
    }
}

Any time you need to limit how long an operation takes in Go, you’ll see a variation
on this pattern. We have a select choosing between two cases. The first case takes
advantage of the done channel pattern we saw earlier. We use the goroutine closure to
assign values to result and err and to close the done channel. If the done channel
closes first, the read from done succeeds and the values are returned.

The second channel is returned by the After function in the time package. It has a
value written to it after the specified time.Duration has passed. (We’ll talk more
about the time package in “time” on page 238.) When this value is read before
doSomeWork finishes, timeLimit returns the timeout error.

If we exit timeLimit before the goroutine finishes processing, the
goroutine continues to run. We just won’t do anything with the
result that it (eventually) returns. If you want to stop work in a
goroutine when you are no longer waiting for it to complete, use
context cancellation, which we’ll discuss in “Cancellation” on page
258.

Using WaitGroups
Sometimes one goroutine needs to wait for multiple goroutines to complete their
work. If you are waiting for a single goroutine, you can use the done channel pattern
that we saw earlier. But if you are waiting on several goroutines, you need to use a
WaitGroup, which is found in the sync package in the standard library. Here is a sim‐
ple example, which you can run on The Go Playground:

func main() {
    var wg sync.WaitGroup
    wg.Add(3)
    go func() {
        defer wg.Done()
        doThing1()
    }()
    go func() {
        defer wg.Done()
        doThing2()

220 | Chapter 10: Concurrency in Go

https://oreil.ly/hg7IF


    }()
    go func() {
        defer wg.Done()
        doThing3()
    }()
    wg.Wait()
}

A sync.WaitGroup doesn’t need to be initialized, just declared, as its zero value is use‐
ful. There are three methods on sync.WaitGroup: Add, which increments the counter
of goroutines to wait for; Done, which decrements the counter and is called by a
goroutine when it is finished; and Wait, which pauses its goroutine until the counter
hits zero. Add is usually called once, with the number of goroutines that will be
launched. Done is called within the goroutine. To ensure that it is called, even if the
goroutine panics, we use a defer.

You’ll notice that we don’t explicitly pass the sync.WaitGroup. There are two reasons.
The first is that you must ensure that every place that uses a sync.WaitGroup is using
the same instance. If you pass the sync.WaitGroup to the goroutine function and
don’t use a pointer, then the function has a copy and the call to Done won’t decrement
the original sync.WaitGroup. By using a closure to capture the sync.WaitGroup, we
are assured that every goroutine is referring to the same instance.

The second reason is design. Remember, you should keep concurrency out of your
API. As we saw with channels earlier, the usual pattern is to launch a goroutine with a
closure that wraps the business logic. The closure manages issues around concur‐
rency and the function provides the algorithm.

Let’s take a look at a more realistic example. As we mentioned earlier, when you have
multiple goroutines writing to the same channel, you need to make sure that the
channel being written to is only closed once. A sync.WaitGroup is perfect for this.
Let’s see how it works in a function that processes the values in a channel concur‐
rently, gathers the results into a slice, and returns the slice:

func processAndGather(in <-chan int, processor func(int) int, num int) []int {
    out := make(chan int, num)
    var wg sync.WaitGroup
    wg.Add(num)
    for i := 0; i < num; i++ {
        go func() {
            defer wg.Done()
            for v := range in {
                out <- processor(v)
            }
        }()
    }
    go func() {
        wg.Wait()

Concurrency Practices and Patterns | 221



        close(out)
    }()
    var result []int
    for v := range out {
        result = append(result, v)
    }
    return result
}

In our example, we launch a monitoring goroutine that waits until all of the process‐
ing goroutines exit. When they do, the monitoring goroutine calls close on the out‐
put channel. The for-range channel loop exits when out is closed and the buffer is
empty. Finally, the function returns the processed values.

While WaitGroups are handy, they shouldn’t be your first choice when coordinating
goroutines. Use them only when you have something to clean up (like closing a chan‐
nel they all write to) after all of your worker goroutines exit.

golang.org/x and ErrGroup
The Go authors maintain a set of utilities that supplements the standard library. Col‐
lectively known as the golang.org/x packages, they include a type called ErrGroup
that builds on top of WaitGroup to create a set of goroutines that stop processing
when one of them returns an error. Read the ErrGroup documentation to learn more.

Running Code Exactly Once
As we covered in “The init Function: Avoid if Possible” on page 186, init should be
reserved for initialization of effectively immutable package-level state. However,
sometimes you want to lazy load, or call some initialization code exactly once after
program launch time. This is usually because the initialization is relatively slow and
may not even be needed every time your program runs. The sync package includes a
handy type called Once that enables this functionality. Let’s take a quick look at how it
works:

type SlowComplicatedParser interface {
    Parse(string) string
}

var parser SlowComplicatedParser
var once sync.Once

func Parse(dataToParse string) string {
    once.Do(func() {
        parser = initParser()
    })
    return parser.Parse(dataToParse)

222 | Chapter 10: Concurrency in Go

https://oreil.ly/_EVsK


}

func initParser() SlowComplicatedParser {
    // do all sorts of setup and loading here
}

We have declared two package-level variables, parser, which is of type Slow
ComplicatedParser, and once, which is of type sync.Once. Like sync.WaitGroup, we
do not have to configure an instance of sync.Once (this is called making the zero
value useful). Also like sync.WaitGroup, we must make sure not to make a copy of an
instance of sync.Once, because each copy has its own state to indicate whether or not
it has already been used. Declaring a sync.Once instance inside a function is usually
the wrong thing to do, as a new instance will be created on every function call and
there will be no memory of previous invocations.

In our example, we want to make sure that parser is only initialized once, so we set
the value of parser from within a closure that’s passed to the Do method on once. If
Parse is called more than once, once.Do will not execute the closure again.

Putting Our Concurrent Tools Together
Let’s go back to the example from the first section in the chapter. We have a function
that calls three web services. We send data to two of those services, and then take the
results of those two calls and send them to the third, returning the result. The entire
process must take less than 50 milliseconds, or an error is returned.

We’ll start with the function we invoke:

func GatherAndProcess(ctx context.Context, data Input) (COut, error) {
    ctx, cancel := context.WithTimeout(ctx, 50*time.Millisecond)
    defer cancel()
    p := processor{
        outA: make(chan AOut, 1),
        outB: make(chan BOut, 1),
        inC:  make(chan CIn, 1),
        outC: make(chan COut, 1),
        errs: make(chan error, 2),
    }
    p.launch(ctx, data)
    inputC, err := p.waitForAB(ctx)
    if err != nil {
        return COut{}, err
    }
    p.inC <- inputC
    out, err := p.waitForC(ctx)
    return out, err
}

Concurrency Practices and Patterns | 223



The first thing we do is set up a context that times out in 50 milliseconds. When
there’s a context available, use its timer support rather than calling time.After. One
of the advantages of using the context’s timer is that it allows us to respect timeouts
that are set by the functions that called this function. We talk about the context in
Chapter 12 and cover using timeouts in detail in “Timers” on page 261. For now, all
you need to know is that reaching the timeout cancels the context. The Done method
on the context returns a channel that returns a value when the context is canceled,
either by timing out or by calling the context’s cancel method explicitly.

After we create the context, we use a defer to make sure the context’s cancel func‐
tion is called. As we’ll discuss in “Cancellation” on page 258, you must call this func‐
tion or resources leak.

We then populate a processor instance with a series of channels that we’ll use to
communicate with our goroutines. Every channel is buffered, so that the goroutines
that write to them can exit after writing without waiting for a read to happen. (The
errs channel has a buffer size of two, because it could potentially have two errors
written to it.)

The processor struct looks like this:

type processor struct {
    outA chan AOut
    outB chan BOut
    outC chan COut
    inC  chan CIn
    errs chan error
}

Next, we call the launch method on processor to start three goroutines: one to call
getResultA, one to call getResultB, and one to call getResultC:

func (p *processor) launch(ctx context.Context, data Input) {
    go func() {
        aOut, err := getResultA(ctx, data.A)
        if err != nil {
            p.errs <- err
            return
        }
        p.outA <- aOut
    }()
    go func() {
        bOut, err := getResultB(ctx, data.B)
        if err != nil {
            p.errs <- err
            return
        }
        p.outB <- bOut
    }()
    go func() {

224 | Chapter 10: Concurrency in Go



        select {
        case <-ctx.Done():
            return
        case inputC := <-p.inC:
            cOut, err := getResultC(ctx, inputC)
            if err != nil {
                p.errs <- err
                return
            }
            p.outC <- cOut
        }
    }()
}

The goroutines for getResultA and getResultB are very similar. They call their
respective methods. If an error is returned, they write the error to the p.errs chan‐
nel. If a valid value is returned, they write the value to their channels (p.outA for
getResultA and p.outB for getResultB).

Since the call to getResultC only happens if the calls to getResultA and getResultB
succeed and happen within 50 milliseconds, the third goroutine is slightly more com‐
plicated. It contains a select with two cases. The first is triggered if the context is
canceled. The second is triggered if the data for the call to getResultC is available. If
the data is available, the function is called, and the logic is similar to the logic for our
first two goroutines.

After the goroutines are launched, we call the waitForAB method on processor:

func (p *processor) waitForAB(ctx context.Context) (CIn, error) {
    var inputC CIn
    count := 0
    for count < 2 {
        select {
        case a := <-p.outA:
            inputC.A = a
            count++
        case b := <-p.outB:
            inputC.B = b
            count++
        case err := <-p.errs:
            return CIn{}, err
        case <-ctx.Done():
            return CIn{}, ctx.Err()
        }
    }
    return inputC, nil
}

This uses a for-select loop to populate inputC, an instance of CIn, the input param‐
eter for getResultC. There are four cases. The first two read from the channels

Concurrency Practices and Patterns | 225



written to by our first two goroutines and populate the fields in inputC. If both of
these cases execute, we exit the for-select loop and return the value of inputC and a
nil error.

The next two cases handle error conditions. If an error was written to the p.errs
channel, we return the error. If the context has been canceled, we return an error to
indicate the request is canceled.

Back in GatherAndProcess, we perform a standard nil check on the error. If all is
well, we write the inputC value to the p.inC channel and then call the waitForC
method on processor:

func (p *processor) waitForC(ctx context.Context) (COut, error) {
    select {
    case out := <-p.outC:
        return out, nil
    case err := <-p.errs:
        return COut{}, err
    case <-ctx.Done():
        return COut{}, ctx.Err()
    }
}

This method consists of a single select. If getResultC completed successfully, we
read its output from the p.outC channel and return it. If getResultC returned an
error, we read the error from the p.errs channel and return it. Finally, if the context
has been canceled, we return an error to indicate that. After waitForC completes,
GatherAndProcess returns the result to its caller.

If you trust the author of getResultC to do the right thing, this code can be simpli‐
fied. Since the context is passed into getResultC, the function can be written to
respect the timeout and return an error if it was triggered. In that case, we can call
getResultC directly in GatherAndProcess. This eliminates the inC and outC channels
from process, a goroutine from launch, and the entire waitForC method. The gen‐
eral principle is to use as little concurrency as your program needs to be correct.

By structuring our code with goroutines, channels, and select statements, we sepa‐
rate the individual steps, allow independent parts to run and complete in any order,
and cleanly exchange data between the dependent parts. In addition, we make sure
that no part of the program hangs, and we properly handle timeouts set both within
this function and from earlier functions in the call history. If you are not convinced
that this is a better method for implementing concurrency, try to implement this in
another language. You might be surprised at how difficult it is.

226 | Chapter 10: Concurrency in Go



When to Use Mutexes Instead of Channels
If you’ve had to coordinate access to data across threads in other programming lan‐
guages, you have probably used a mutex. This is short for mutual exclusion, and the
job of a mutex is to limit the concurrent execution of some code or access to a shared
piece of data. This protected part is called the critical section.

There are good reasons why Go’s creators designed channels and select to manage
concurrency. The main problem with mutexes is that they obscure the flow of data
through a program. When a value is passed from goroutine to goroutine over a series
of channels, the data flow is clear. Access to the value is localized to a single goroutine
at a time. When a mutex is used to protect a value, there is nothing to indicate which
goroutine currently has ownership of the value, because access to the value is shared
by all of the concurrent processes. That makes it hard to understand the order of pro‐
cessing. There is a saying in the Go community to describe this philosophy: “Share
memory by communicating; do not communicate by sharing memory.”

That said, sometimes it is clearer to use a mutex, and the Go standard library includes
mutex implementations for these situations. The most common case is when your
goroutines read or write a shared value, but don’t process the value. Let’s use an in-
memory scoreboard for a multiplayer game as an example. We’ll first see how we
would implement this using channels. Here’s a function that we can launch as a
goroutine to manage the scoreboard:

func scoreboardManager(in <-chan func(map[string]int), done <-chan struct{}) {
    scoreboard := map[string]int{}
    for {
        select {
        case <-done:
            return
        case f := <-in:
            f(scoreboard)
        }
    }
}

This function declares a map and then listens on one channel for a function that
reads or modifies the map and on a second channel to know when to shut down. Let’s
create a type with a method to write a value to the map:

type ChannelScoreboardManager chan func(map[string]int)

func NewChannelScoreboardManager() (ChannelScoreboardManager, func()) {
    ch := make(ChannelScoreboardManager)
    done := make(chan struct{})
    go scoreboardManager(ch, done)
    return ch, func() {
        close(done)
    }

When to Use Mutexes Instead of Channels | 227



}

func (csm ChannelScoreboardManager) Update(name string, val int) {
    csm <- func(m map[string]int) {
        m[name] = val
    }
}

The update method is very straightforward: just pass a function that puts a value into
the map. But how about reading from the scoreboard? We need to return a value
back. That means using the done pattern to wait for the function passed to the
ScoreboardManager to finish running:

func (csm ChannelScoreboardManager) Read(name string) (int, bool) {
    var out int
    var ok bool
    done := make(chan struct{})
    csm <- func(m map[string]int) {
        out, ok = m[name]
        close(done)
    }
    <-done
    return out, ok
}

While this code works, it’s cumbersome and only allows a single reader at a time. A
better approach is to use a mutex. There are two mutex implementations in the stan‐
dard library, both in the sync package. The first is called Mutex and has two methods,
Lock and Unlock. Calling Lock causes the current goroutine to pause as long as
another goroutine is currently in the critical section. When the critical section is clear,
the lock is acquired by the current goroutine and the code in the critical section is
executed. A call to the Unlock method on the Mutex marks the end of the critical
section.

The second mutex implementation is called RWMutex and it allows you to have both
reader locks and writer locks. While only one writer can be in the critical section at a
time, reader locks are shared; multiple readers can be in the critical section at once.
The writer lock is managed with the Lock and Unlock methods, while the reader lock
is managed with RLock and RUnlock methods.

Any time you acquire a mutex lock, you must make sure that you release the lock. Use
a defer statement to call Unlock immediately after calling Lock or RLock:

type MutexScoreboardManager struct {
    l          sync.RWMutex
    scoreboard map[string]int
}

func NewMutexScoreboardManager() *MutexScoreboardManager {
    return &MutexScoreboardManager{

228 | Chapter 10: Concurrency in Go



        scoreboard: map[string]int{},
    }
}

func (msm *MutexScoreboardManager) Update(name string, val int) {
    msm.l.Lock()
    defer msm.l.Unlock()
    msm.scoreboard[name] = val
}

func (msm *MutexScoreboardManager) Read(name string) (int, bool) {
    msm.l.RLock()
    defer msm.l.RUnlock()
    val, ok := msm.scoreboard[name]
    return val, ok
}

Now that we’ve seen an implementation using mutexes, carefully consider your
options before using one. Katherine Cox-Buday’s excellent book Concurrency in Go
(O’Reilly) includes a decision tree to help you decide whether to use channels or
mutexes:

• If you are coordinating goroutines or tracking a value as it is transformed by a
series of goroutines, use channels.

• If you are sharing access to a field in a struct, use mutexes.
• If you discover a critical performance issue when using channels (see “Bench‐

marks” on page 283 to learn how to do this), and you cannot find any other way
to fix the issue, modify your code to use a mutex.

Since our scoreboard is a field in a struct and there’s no transfer of the scoreboard,
using a mutex makes sense. This is a good use for a mutex only because the data is
stored in-memory. When data is stored in external services, like an HTTP server or a
database, don’t use a mutex to guard access to the system.

Mutexes require you to do more bookkeeping. For example, you must correctly pair
locks and unlocks or your programs will likely deadlock. Our example both acquires
and releases the locks within the same method. Another issue is that mutexes in Go
aren’t reentrant. If a goroutine tries to acquire the same lock twice, it deadlocks, wait‐
ing for itself to release the lock. This is different from languages like Java, where locks
are reentrant.

Nonreentrant locks make it tricky to acquire a lock in a function that calls itself recur‐
sively. You must release the lock before the recursive function call. In general, be
careful when holding a lock while making a function call, because you don’t know
what locks are going to be acquired in those calls. If your function calls another func‐
tion that tries to acquire the same mutex lock, the goroutine deadlocks.

When to Use Mutexes Instead of Channels | 229

https://oreil.ly/G7bpu


Like sync.WaitGroup and sync.Once, mutexs must never be copied. If they are
passed to a function or accessed as a field on a struct, it must be via a pointer. If a
mutex is copied, its lock won’t be shared.

Never try to access a variable from multiple goroutines unless you
acquire a mutex for that variable first. It can cause odd errors that
are hard to trace. See “Finding Concurrency Problems with the
Race Checker” on page 295 to learn how to detect these problems.

sync.Map—This Is Not the Map You Are Looking For
When looking through the sync package, you’ll find a type called Map. It provides a
concurrency-safe version of Go’s built-in map. Due to trade-offs in its implementation,
sync.Map is only appropriate in very specific situations:

• When you have a shared map where key/value pairs are inserted once and read
many times

• When goroutines share the map, but don’t access each other’s keys and values

Furthermore, because of the current lack of generics in Go, sync.Map uses inter
face{} as the type for its keys and values; the compiler cannot help you ensure that
the right data types are used.

Given these limitations, in the rare situations where you need to share a map across
multiple goroutines, use a built-in map protected by a sync.RWMutex.

Atomics—You Probably Don’t Need These
In addition to mutexes, Go provides another way to keep data consistent across mul‐
tiple threads. The sync/atomic package provides access to the atomic variable opera‐
tions built into modern CPUs to add, swap, load, store, or compare and swap (CAS) a
value that fits into a single register.

If you need to squeeze out every last bit of performance and are an expert on writing
concurrent code, you’ll be glad that Go includes atomic support. For everyone else,
use goroutines and mutexes to manage your concurrency needs.

Where to Learn More About Concurrency
We’ve covered a few simple concurrency patterns here, but there are many more. In
fact, you could write an entire book on how to properly implement various concur‐
rency patterns in Go, and, luckily, Katherine Cox-Buday has. I’ve already mentioned

230 | Chapter 10: Concurrency in Go



her book, Concurrency in Go, when discussing how to decide between mutexes or
channels, but it’s an excellent resource on all things involving Go and concurrency.
Check out her book if you want to learn more.

Wrapping Up
In this chapter, we’ve looked at concurrency and learned why Go’s approach is simpler
than more traditional concurrency mechanisms. In doing so, we’ve also clarified
when you should use concurrency and learned a few concurrency rules and patterns.
In the next chapter, we’re going to take a quick look at Go’s standard library, which
embraces a “batteries included” ethos for modern computing.

Wrapping Up | 231





CHAPTER 11

The Standard Library

One of the best parts of developing with Go is being able to take advantage of its stan‐
dard library. Like Python, it has a “batteries included” philosophy, providing many of
the tools that you need to build an application. Since Go is a relatively new language,
it ships with a library that is focused on problems faced in modern programming
environments.

We can’t cover all of the standard library packages, and luckily, we don’t have to, as
there are many excellent sources of information on the standard library, starting with
the documentation. Instead, we’ll focus on several of the most important packages
and how their design and use demonstrate the principles of idiomatic Go. Some
packages (errors, sync, context, testing, reflect, and unsafe) are covered in their
own chapters. In this chapter, we’ll look at Go’s built-in support for I/O, time, JSON,
and HTTP.

io and Friends
For a program to be useful, it needs to read in and write out data. The heart of Go’s
input/output philosophy can be found in the io package. In particular, two interfaces
defined in this package are probably the second and third most-used interfaces in Go:
io.Reader and io.Writer.

What’s number one? That’d be error, which we already looked at in
Chapter 8.

Both io.Reader and io.Writer define a single method:

233

https://golang.org/pkg


type Reader interface {
    Read(p []byte) (n int, err error)
}

type Writer interface {
    Write(p []byte) (n int, err error)
}

The Write method on the io.Writer interface takes in a slice of bytes, which are
written to the interface implementation. It returns the number of bytes written and
an error if something went wrong. The Read method on io.Reader is more interest‐
ing. Rather than return data through a return parameter, a slice input parameter is
passed into the implementation and modified. Up to len(p) bytes will be written into
the slice. The method returns the number of bytes written. This might seem a little
strange. You might expect this:

type NotHowReaderIsDefined interface {
    Read() (p []byte, err error)
}

There’s a very good reason why io.Reader is defined the way it is. Let’s write a func‐
tion that’s representative of how to work with an io.Reader to understand:

func countLetters(r io.Reader) (map[string]int, error) {
    buf := make([]byte, 2048)
    out := map[string]int{}
    for {
        n, err := r.Read(buf)
        for _, b := range buf[:n] {
            if (b >= 'A' && b <= 'Z') || (b >= 'a' && b <= 'z') {
                out[string(b)]++
            }
        }
        if err == io.EOF {
            return out, nil
        }
        if err != nil {
            return nil, err
        }
    }
}

There are three things to note. First, we create our buffer once and reuse it on every
call to r.Read. This allows us to use a single memory allocation to read from a poten‐
tially large data source. If the Read method were written to return a []byte, it would
require a new allocation on every single call. Each allocation would end up on the
heap, which would make quite a lot of work for the garbage collector.

If we want to reduce the allocations further, we could create a pool of buffers when
the program launches. We would then take a buffer out of the pool when the function

234 | Chapter 11: The Standard Library



starts, and return it when it ends. By passing in a slice to io.Reader, memory alloca‐
tion is under the control of the developer.

Second, we use the n value returned from r.Read to know how many bytes were writ‐
ten to the buffer and iterate over a subslice of our buf slice, processing the data that
was read.

Finally, we know that we’re done reading from r when the error returned from
r.Read is io.EOF. This error is a bit odd, in that it isn’t really an error. It indicates that
there’s nothing left to read from the io.Reader. When io.EOF is returned, we are fin‐
ished processing and return our result.

There is one unusual thing about the Read method in io.Reader. In most cases when
a function or method has an error return value, we check the error before we try to
process the nonerror return values. We do the opposite for Read because there might
have been bytes returned before an error was triggered by the end of the data stream
or by an unexpected condition.

If you get to the end of an io.Reader unexpectedly, a different sen‐
tinel error is returned (io.ErrUnexpectedEOF). Note that it starts
with the string Err to indicate that it is an unexpected state.

Because io.Reader and io.Writer are such simple interfaces, they can be imple‐
mented many different ways. We can create an io.Reader from a string using the
strings.NewReader function:

s := "The quick brown fox jumped over the lazy dog"
sr := strings.NewReader(s)
counts, err := countLetters(sr)
if err != nil {
    return err
}
fmt.Println(counts)

As we discussed in “Interfaces Are Type-Safe Duck Typing” on page 142, implemen‐
tations of io.Reader and io.Writer are often chained together in a decorator pat‐
tern. Because countLetters depends on an io.Reader, we can use the exact same
countLetters function to count English letters in a gzip-compressed file. First we
write a function that, when given a filename, returns a *gzip.Reader:

func buildGZipReader(fileName string) (*gzip.Reader, func(), error) {
    r, err := os.Open(fileName)
    if err != nil {
        return nil, nil, err
    }
    gr, err := gzip.NewReader(r)

io and Friends | 235



    if err != nil {
        return nil, nil, err
    }
    return gr, func() {
        gr.Close()
        r.Close()
    }, nil
}

This function demonstrates the way to properly wrap types that implement
io.Reader. We create an *os.File (which meets the io.Reader interface), and after
making sure it’s valid, we pass it to the gzip.NewReader function, which returns a
*gzip.Reader instance. If it is valid, we return the *gzip.Reader and a closer closure
that properly cleans up our resources when it is invoked.

Since *gzip.Reader implements io.Reader, we can use it with countLetters just
like we used the *strings.Reader previously:

r, closer, err := buildGZipReader("my_data.txt.gz")
if err != nil {
    return err
}
defer closer()
counts, err := countLetters(r)
if err != nil {
    return err
}
fmt.Println(counts)

Because we have standard interfaces for reading and writing, there’s a standard func‐
tion in the io package for copying from an io.Reader to an io.Writer, io.Copy.
There are other standard functions for adding new functionality to existing
io.Reader and io.Writer instances. These include:

io.MultiReader

This returns an io.Reader that reads from multiple io.Reader instances, one
after another.

io.LimitReader

This returns an io.Reader that only reads up to a specified number of bytes from
the supplied io.Reader.

io.MultiWriter

This returns an io.Writer that writes to multiple io.Writer instances at the
same time.

Other packages in the standard library provide their own types and functions to work
with io.Reader and io.Writer. We’ve seen a few of them already, but there are many

236 | Chapter 11: The Standard Library



more. These cover compression algorithms, archives, cryptography, buffers, byte sli‐
ces, and strings.

There are other one-method interfaces defined in io, such as io.Closer and
io.Seeker:

type Closer interface {
        Close() error
}

type Seeker interface {
        Seek(offset int64, whence int) (int64, error)
}

The io.Closer interface is implemented by types like os.File that need to do
cleanup when reading or writing is complete. Usually, Close is called via a defer:

f, err := os.Open(fileName)
if err != nil {
    return nil, err
}
defer f.Close()
// use f

If you are opening the resource in a loop, do not use defer, as it
will not run until the function exits. Instead, you should call Close
before the end of the loop iteration. If there are errors that can lead
to an exit, you must call Close there, too.

The io.Seeker interface is used for random access to a resource. The valid values for
whence are the constants io.SeekStart, io.SeekCurrent, and io.SeekEnd. This
should have been made more clear by using a custom type, but in a surprising design
oversight, whence is of type int.

The io package defines interfaces that combine these four interfaces in various ways.
They include io.ReadCloser, io.ReadSeeker, io.ReadWriteCloser, io.ReadWrite
Seeker, io.ReadWriter, io.WriteCloser, and io.WriteSeeker. Use these interfaces
to specify what your functions expect to do with the data. For example, rather than
just using an os.File as a parameter, use the interfaces to specify exactly what your
function will do with the parameter. Not only does it make your functions more gen‐
eral purpose, it also makes your intent clearer. Furthermore, make your code compat‐
ible with these interfaces if you are writing your own data sources and sinks. In
general, strive to create interfaces as simple and decoupled as the interfaces defined in
io. They demonstrate the power of simple abstractions.

The ioutil package provides some simple utilities for things like reading entire
io.Reader implementations into byte slices at once, reading and writing files, and

io and Friends | 237



working with temporary files. The ioutil.ReadAll, ioutil.ReadFile, and
ioutil.WriteFile functions are fine for small data sources, but it’s better to use the
Reader, Writer, and Scanner in the bufio package to work with larger data sources.

One of the more clever functions in ioutil demonstrates a pattern for adding a
method to a Go type. If you have a type that implements io.Reader but not
io.Closer (such as strings.Reader) and need to pass it to a function that expects an
io.ReadCloser, pass your io.Reader into ioutil.NopCloser and get back a type that
implements io.ReadCloser. If you look at the implementation, it’s very simple:

type nopCloser struct {
    io.Reader
}

func (nopCloser) Close() error { return nil }

func NopCloser(r io.Reader) io.ReadCloser {
    return nopCloser{r}
}

Any time you need to add additional methods to a type so that it can meet an inter‐
face, use this embedded type pattern.

The ioutil.NopCloser function violates the general rule of not
returning an interface from a function, but it’s a simple adapter for
an interface that is guaranteed to stay the same because it is part of
the standard library.

time
Like most languages, Go’s standard library includes time support, which is found,
unsurprisingly, in the time package. There are two main types used to represent time,
time.Duration and time.Time.

A period of time is represented with a time.Duration, a type based on an int64. The
smallest amount of time that Go can represent is one nanosecond, but the time pack‐
age defines constants of type time.Duration to represent a nanosecond, microsec‐
ond, millisecond, second, minute, and hour. For example, you represent a duration of
2 hours and 30 minutes with:

d := 2 * time.Hour + 30 * time.Minute // d is of type time.Duration

These constants make the use of a time.Duration both readable and type-safe. They
demonstrate a good use of a typed constant.

238 | Chapter 11: The Standard Library



Go defines a sensible string format, a series of numbers, that can be parsed into a
time.Duration with the time.ParseDuration function. As described in the standard
library documentation:

A duration string is a possibly signed sequence of decimal numbers, each with optional
fraction and a unit suffix, such as “300ms”, “-1.5h” or “2h45m”. Valid time units are
“ns”, “us” (or “µs”), “ms”, “s”, “m”, “h”.

—Go Standard Library Documentation

There are several methods defined on time.Duration. It meets the fmt.Stringer
interface and returns a formatted duration string via the String method. It also has
methods to get the value as a number of hours, minutes, seconds, milliseconds,
microseconds, or nanoseconds. The Truncate and Round methods truncate or round
a time.Duration to the units of the specified time.Duration.

An moment of time is represented with the time.Time type, complete with a time
zone. You acquire a reference to the current time with the function time.Now. This
returns a time.Time instance set to the current local time.

The fact that a time.Time instance contains a time zone means that
you should not use == to check if two time.Time instances refer to
the same moment in time. Instead, use the Equal method, which
corrects for time zone.

The time.Parse function converts from a string to a time.Time, while the Format
method converts a time.Time to a string. While Go usually adopts ideas that
worked well in the past, it uses its own date and time formatting language. It relies on
the idea of formatting the date and time January 2, 2006 at 3:04:05PM MST (Moun‐
tain Standard Time) to specify your format.

Why that date? Because each part of it represents one of the num‐
bers from 1 to 7 in sequence, that is, 01/02 03:04:05PM ’06 -0700
(MST is 7 hours before UTC).

For example, the following code:

t, err := time.Parse("2006-02-01 15:04:05 -0700", "2016-13-03 00:00:00 +0000")
if err != nil {
    return err
}
fmt.Println(t.Format("January 2, 2006 at 3:04:05PM MST"))

time | 239

https://oreil.ly/wmZdy
https://oreil.ly/yfm_V


prints out:

March 13, 2016 at 12:00:00AM UTC

While the date and time used for formatting is intended to be a clever mnemonic, I
find it hard to remember and have to look it up each time I want to use it. Luckily, the
most commonly used date and time formats have been given their own constants in
the time package.

Just as there are methods on time.Duration to extract portions of it, there are meth‐
ods defined on time.Time to do the same, including Day, Month, Year, Hour, Minute,
Second, Weekday, Clock (which returns the time portion of a time.Time as separate
hour, minute, and second int values), and Date (which returns the year, month, and
day as separate int values). You can compare one time.Time instance against another
with the After, Before, and Equal methods.

The Sub method returns a time.Duration that represents the elapsed time between
two time.Time instances, while the Add method returns a time.Time that is
time.Duration later, and the AddDate method returns a new time.Time instance
that’s incremented by the specified number of years, months, and days. As with
time.Duration, there are Truncate and Round methods defined as well. All of these
methods are defined on a value receiver, so they do not modify the time.Time
instance.

Monotonic Time
Most operating systems keep track of two different sorts of time: the wall clock, which
corresponds to the current time, and the monotonic clock which simply counts up
from the time the computer was booted. The reason for tracking two different clocks
is that the wall clock doesn’t uniformly increase. Daylight Saving Time, leap seconds,
and NTP (Network Time Protocol) updates can make the wall clock move unexpect‐
edly forward or backward. This can cause problems when setting a timer or finding
the amount of time that’s elapsed.

To address this potential problem, Go uses monotonic time to track elapsed time
whenever a timer is set or a time.Time instance is created with time.Now. This sup‐
port is invisible; timers use it automatically. The Sub method uses the montonic clock
to calculate the time.Duration if both of the time.Time instances have it set. If they
don’t (because one or both of the instances was not created with time.Now), the Sub
method uses the time specified in the instances to calculate the time.Duration
instead.

240 | Chapter 11: The Standard Library



If you want to understand the sorts of problems that can occur
when not handling monotonic time correctly, take a look at the
Cloudflare blog post that detailed a bug caused by the lack of mon‐
otonic time support in an earlier version of Go.

Timers and Timeouts
As we covered in “How to Time Out Code” on page 219, the time package includes
functions that return channels that output values after a specified time. The
time.After function returns a channel that outputs once, while the channel returned
by time.Tick returns a new value every time the specified time.Duration elapses.
These are used with Go’s concurrency support to enable timeouts or recurring tasks.
You can also trigger a single function to run after a specified time.Duration with the
time.AfterFunc function. Don’t use time.Tick outside of trivial programs, because
the underlying time.Ticker cannot be shut down (and therefore cannot be garbage
collected). Use the time.NewTicker function instead, which returns a *time.Ticker
that has the channel to listen to, as well as methods to reset and stop the ticker.

encoding/json
REST APIs have enshrined JSON as the standard way to communicate between serv‐
ices, and Go’s standard library includes support for converting Go data types to and
from JSON. The word marshaling means converting from a Go data type to an encod‐
ing, and unmarshaling means converting to a Go data type.

Use Struct Tags to Add Metadata
Let’s say that we are building an order management system and have to read and
write the following JSON:

{
    "id":"12345",
    "date_ordered":"2020-05-01T13:01:02Z",
    "customer_id":"3",
    "items":[{"id":"xyz123","name":"Thing 1"},{"id":"abc789","name":"Thing 2"}]
}

We define types to map this data:

type Order struct {
    ID            string        `json:"id"`
    DateOrdered time.Time `json:"date_ordered"`
    CustomerID    string        `json:"customer_id"`
    Items         []Item        `json:"items"`
}

type Item struct {

encoding/json | 241

https://oreil.ly/IxS2D


    ID   string `json:"id"`
    Name string `json:"name"`
}

We specify the rules for processing our JSON with struct tags, strings that are written
after the fields in a struct. Even though struct tags are strings marked with backticks,
they cannot extend past a single line. Struct tags are composed of one or more tag/
value pairs, written as tagName:"tagValue" and separated by spaces. Because they are
just strings, the compiler cannot validate that they are formatted correctly, but go vet
does. Also, note that all of these fields are exported. Like any other package, the code
in the encoding/json package cannot access an unexported field on a struct in
another package.

For JSON processing, we use the tag name json to specify the name of the JSON field
that should be associated with the struct field. If no json tag is provided, the default
behavior is to assume that the name of the JSON object field matches the name of the
Go struct field. Despite this default behavior, it’s best to use the struct tag to specify
the name of the field explicitly, even if \the field names are identical.

When unmarshaling from JSON into a struct field with no json
tag, the name match is case-insensitive. When marshaling a struct
field with no json tag back to JSON , the JSON field will always
have an uppercase first letter, because the field is exported.

If a field should be ignored when marshaling or unmarshaling, use a dash (-) for the
name. If the field should be left out of the output when it is empty, add ,omitempty
after the name.

Unfortunately, the definition of “empty” doesn’t exactly align with
the zero value, as you might expect. The zero value of a struct
doesn’t count as empty, but a zero-length slice or map does.

Struct tags allow you to use metadata to control how your program behaves. Other
languages, most notably Java, encourage developers to place annotations on various
program elements to describe how they should be processed, without explicitly speci‐
fying what is going to do the processing. While declarative programming allows for
more concise programs, automatic processing of metadata makes it difficult to
understand how a program behaves. Anyone who has worked on a large Java project
with annotations has had a moment of panic when something goes wrong and they
don’t understand which code is processing a particular annotation and what changes
it made. Go favors explicit code over short code. Struct tags are never evaluated auto‐
matically; they are processed when a struct instance is passed into a function.

242 | Chapter 11: The Standard Library



Unmarshaling and Marshaling
The Unmarshal function in the encoding/json package is used to convert a slice of
bytes into a struct. If we have a string named data, this is the code to convert data to
a struct of type Order:

var o Order
err := json.Unmarshal([]byte(data), &o)
if err != nil {
    return err
}

The json.Unmarshal function populates data into an input parameter, just like the
implementations of the io.Reader interface. There are two reasons for this. First, just
like io.Reader implementations, this allows for efficient reuse of the same struct over
and over, giving you control over memory usage. Second, there’s simply no other way
to do it. Because Go doesn’t currently have generics, there’s no way to specify what
type should be instantiated to store the bytes being read. Even when Go adopts gener‐
ics, the memory usage advantages will remain.

We use the Marshal function in the encoding/json package to write an Order
instance back as JSON, stored in a slice of bytes:

out, err := json.Marshal(o)

This leads to the question: how are you able to evaluate struct tags? You might also be
wondering how json.Marshal and json.Unmarshal are able to read and write a
struct of any type. After all, every other method that we’ve written has only worked
with types that were known when the program was compiled (even the types listed in
a type switch are enumerated ahead of time). The answer to both questions is reflec‐
tion. You can find out more about reflection in Chapter 14.

JSON, Readers, and Writers
The json.Marshal and json.Unmarshal functions work on slices of bytes. As we just
saw, most data sources and sinks in Go implement the io.Reader and io.Writer
interfaces. While you could use ioutil.ReadAll to copy the entire contents of an
io.Reader into a byte slice so it can be read by json.Unmarshal, this is inefficient.
Similarly, we could write to an in-memory byte slice buffer using json.Marshal and
then write that byte slice to the network or disk, but it’d be better if we could write to
an io.Writer directly.

The encoding/json package includes two types that allow us to handle these situa‐
tions. The json.Decoder and json.Encoder types read from and write to anything
that meets the io.Reader and io.Writer interfaces, respectively. Let’s take a quick
look at how they work.

encoding/json | 243



We’re going to start with our data in toFile, which implements a simple struct:

type Person struct {
    Name string `json:"name"`
    Age  int    `json:"age"`
}
toFile := Person {
    Name: "Fred",
    Age:  40,
}

The os.File type implements both the io.Reader and io.Writer interfaces, so we
can use it to demonstrate json.Decoder and json.Encoder. First, we write toFile to
a temp file by passing the temp file to json.NewEncoder, which returns a
json.Encoder for the temp file. We then pass toFile to the Encode method:

tmpFile, err := ioutil.TempFile(os.TempDir(), "sample-")
if err != nil {
    panic(err)
}
defer os.Remove(tmpFile.Name())
err = json.NewEncoder(tmpFile).Encode(toFile)
if err != nil {
    panic(err)
}
err = tmpFile.Close()
if err != nil {
    panic(err)
}

Once toFile is written, we can read the JSON back in by passing a reference to the
temp file to json.NewDecoder and then calling the Decode method on the returned
json.Decoder with a variable of type Person:

tmpFile2, err := os.Open(tmpFile.Name())
if err != nil {
    panic(err)
}
var fromFile Person
err = json.NewDecoder(tmpFile2).Decode(&fromFile)
if err != nil {
    panic(err)
}
err = tmpFile2.Close()
if err != nil {
    panic(err)
}
fmt.Printf("%+v\n", fromFile)

You can see a complete example on The Go Playground.

244 | Chapter 11: The Standard Library

https://oreil.ly/HU8Ie


Encoding and Decoding JSON Streams
What do you do when you have multiple JSON structs to read or write at once? Our
friends json.Decoder and json.Encoder can be used for these situations, too.

Assume you have the following data:

{"name": "Fred", "age": 40}
{"name": "Mary", "age": 21}
{"name": "Pat", "age": 30}

For the sake of our example, we’ll assume it’s stored in a string called data, but it
could be in a file or even an incoming HTTP request (we’ll see how HTTP servers
work in just a bit).

We’re going to store this data into our t variable, one JSON object at a time.

Just like before, we initialize our json.Decoder with the data source, but this time we
use the More method on json.Decoder as a for loop condition. This lets us read in
the data, one JSON object at a time:

dec := json.NewDecoder(strings.NewReader(data))
for dec.More() {
    err := dec.Decode(&t)
    if err != nil {
        panic(err)
    }
    // process t
}

Writing out multiple values with the json.Encoder works just like using it to write
out a single value. In this example, we are writing to a bytes.Buffer, but any type
that meets the io.Writer interface will work:

var b bytes.Buffer
enc := json.NewEncoder(&b)
for _, input := range allInputs {
    t := process(input)
    err = enc.Encode(t)
    if err != nil {
        panic(err)
    }
}
out := b.String()

You can run this example on The Go Playground.

Our example has multiple JSON objects in the data stream that aren’t wrapped in an
array, but you can also use the json.Decoder to read a single object from an array
without loading the entire array into memory at once. This can greatly increase per‐
formance and reduce memory usage. An example is in the Go documentation.

encoding/json | 245

https://oreil.ly/gOAnt
https://oreil.ly/_LTZQ


Custom JSON Parsing
While the default functionality is often sufficient, there are times you need to over‐
ride it. While time.Time supports JSON fields in RFC 339 format out of the box, you
might have to deal with other time formats. We can handle this by creating a new
type that implements two interfaces, json.Marshaler and json.Unmarshaler:

type RFC822ZTime struct {
    time.Time
}

func (rt RFC822ZTime) MarshalJSON() ([]byte, error) {
    out := rt.Time.Format(time.RFC822Z)
    return []byte(`"` + out + `"`), nil
}

func (rt *RFC822ZTime) UnmarshalJSON(b []byte) error {
    if string(b) == "null" {
        return nil
    }
    t, err := time.Parse(`"`+time.RFC822Z+`"`, string(b))
    if err != nil {
        return err
    }
    *rt = RFC822ZTime{t}
    return nil
}

We embedded a time.Time instance into a new struct called RFC822ZTime so that we
still have access to the other methods on time.Time. As we discussed in “Pointer
Receivers and Value Receivers” on page 131, the method that reads the time value is
declared on a value receiver, while the method that modifies the time value is
declared on a pointer receiver.

We then change the type of our DateOrdered field and can work with RFC 822 for‐
matted times instead:

type Order struct {
    ID          string      `json:"id"`
    DateOrdered RFC822ZTime `json:"date_ordered"`
    CustomerID  string      `json:"customer_id"`
    Items       []Item      `json:"items"`
}

You can run this code on The Go Playground.

There is a philosophical drawback to this approach: we have allowed the date format
of the JSON we are processing to change the types of the fields in our data structure.
This is a drawback to the encoding/json approach. You could have Order implement
json.Marshaler and json.Unmarshaler, but that requires you to write code to han‐

246 | Chapter 11: The Standard Library

https://oreil.ly/I_cSY


dle all of the fields, even the ones that don’t require custom support. The struct tag
format does not provide a way to specify a function to parse a particular field. That
leaves us with creating a custom type for the field.

To limit the amount of code that cares about what your JSON looks like, define two
different structs. Use one for converting to and from JSON and the other for data
processing. Read in JSON to your JSON-aware type, and then copy it to the other.
When you want to write out JSON, do the reverse. This does create some duplication,
but it keeps your business logic from depending on wire protocols.

You can pass a map[string]interface{} to json.Marshal and json.Unmarshal to
translate back and forth between JSON and Go, but save that for the exploratory
phase of your coding and replace it with a concrete type when you understand what
you are processing. Go uses types for a reason; they document the expected data and
the types of the expected data.

While JSON is probably the most commonly used encoder in the standard library, Go
ships with others, including XML and Base64. If you have a data format that you
want to encode and you can’t find support for it in the standard library or a third-
party module, you can write one yourself. We’ll learn how to implement our own
encoder in “Use Reflection to Write a Data Marshaler” on page 307.

The standard library includes encoding/gob, which is a Go-specific
binary representation that is a bit like serialization in Java. Just as
Java serialization is the wire protocol for Enterprise Java Beans and
Java RMI, the gob protocol is intended as the wire format for a Go-
specific RPC (remote procedure call) implementation in the
net/rpc package. Don’t use either encoding/gob or net/rpc. If you
want to do remote method invocation with Go, use a standard pro‐
tocol like GRPC so that you aren’t tied to a specific language. No
matter how much you love Go, if you want your services to be use‐
ful, make them callable by developers using other languages.

net/http
Every language ships with a standard library, but the expectations of what a standard
library should include have changed over time. As a language launched in the 2010s,
Go’s standard library includes something that other language distributions had
considered the responsibility of a third party: a production quality HTTP/2 client and
server.

The Client
The net/http package defines a Client type to make HTTP requests and receive
HTTP responses. A default client instance (cleverly named DefaultClient) is found

net/http | 247

https://grpc.io


in the net/http package, but you should avoid using it in production applications,
because it defaults to having no timeout. Instead, instantiate your own. You only need
to create a single http.Client for your entire program, as it properly handles multi‐
ple simultaneous requests across goroutines:

client := &http.Client{
    Timeout: 30 * time.Second,
}

When you want to make a request, you create a new *http.Request instance with the
http.NewRequestWithContext function, passing it a context, the method, and URL
that you are connecting to. If you are making a PUT, POST, or PATCH request, specify
the body of the request with the last parameter as an io.Reader. If there is no body,
use nil:

req, err := http.NewRequestWithContext(context.Background(),
    http.MethodGet, "https://jsonplaceholder.typicode.com/todos/1", nil)
if err != nil {
    panic(err)
}

We’ll talk about what a context is in Chapter 12.

Once you have an *http.Request instance, you can set any headers via the Headers
field of the instance. Call the Do method on the http.Client with your http.Request
and the result is returned in an http.Response:

req.Header.Add("X-My-Client", "Learning Go")
res, err := client.Do(req)
if err != nil {
    panic(err)
}

The response has several fields with information on the request. The numeric code of
the response status is in the StatusCode field, the text of the response code is in the
Status field, the response headers are in the Header field, and any returned content is
in a Body field of type io.ReadCloser. This allows us to use it with json.Decoder to
process REST API responses:

defer res.Body.Close()
if res.StatusCode != http.StatusOK {
    panic(fmt.Sprintf("unexpected status: got %v", res.Status))
}
fmt.Println(res.Header.Get("Content-Type"))
var data struct {

248 | Chapter 11: The Standard Library



    UserID    int    `json:"userId"`
    ID        int    `json:"id"`
    Title     string `json:"title"`
    Completed bool   `json:"completed"`
}
err = json.NewDecoder(res.Body).Decode(&data)
if err != nil {
    panic(err)
}
fmt.Printf("%+v\n", data)

There are functions in the net/http package to make GET, HEAD,
and POST calls. Avoid using these functions because they use the
default client, which means they don’t set a request timeout.

The Server
The HTTP Server is built around the concept of an http.Server and the
http.Handler interface. Just as the http.Client sends HTTP requests, the
http.Server is responsible for listening for HTTP requests. It is a performant
HTTP/2 server that supports TLS.

A request to a server is handled by an implementation of the http.Handler interface
that’s assigned to the Handler field. This interface defines a single method:

type Handler interface {
    ServeHTTP(http.ResponseWriter, *http.Request)
}

The *http.Request should look familiar, as it’s the exact same type that’s used to send
a request to an HTTP server. The http.ResponseWriter is an interface with three
methods:

type ResponseWriter interface {
        Header() http.Header
        Write([]byte) (int, error)
        WriteHeader(statusCode int)
}

These methods must be called in a specific order. First, call Header to get an instance
of http.Header and set any response headers you need. If you don’t need to set any
headers, you don’t need to call it. Next, call WriteHeader with the HTTP status code
for your response. (All the status codes are defined as constants in the net/http
package. This would have been a good place to define a custom type, but that was not
done; all status code constants are untyped integers.) If you are sending a response
that has a 200 status code, you can skip WriteHeader. Finally, call the Write method
to set the body for the response. Here’s what a trivial handler looks like:

net/http | 249



type HelloHandler struct{}

func (hh HelloHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("Hello!\n"))
}

You instantiate a new http.Server just like any other struct:

s := http.Server{
    Addr:         ":8080",
    ReadTimeout:  30 * time.Second,
    WriteTimeout: 90 * time.Second,
    IdleTimeout:  120 * time.Second,
    Handler:      HelloHandler{},
}
err := s.ListenAndServe()
if err != nil {
    if err != http.ErrServerClosed {
        panic(err)
    }
}

The Addr field specifies the host and port the server listens on. If you don’t specify
them, your server defaults to listening on all hosts on the standard HTTP port, 80.
You specify timeouts for the server’s reads, writes, and idles using time.Duration val‐
ues. Be sure to set these to properly handle malicious or broken HTTP clients, as the
default behavior is to not time out at all. Finally, you specify the http.Handler for
your server with the Handler field.

A server that only handles a single request isn’t terribly useful, so the Go standard
library includes a request router, *http.ServeMux. You create an instance with the
http.NewServeMux function. It meets the http.Handler interface, so it can be
assigned to the Handler field in http.Server. It also includes two methods that allow
it to dispatch requests. The first method is simply called Handle and takes in two
parameters, a path and an http.Handler. If the path matches, the http.Handler is
invoked.

While you could create implementations of http.Handler, the more common pattern
is to use the HandleFunc method on *http.ServeMux:

mux.HandleFunc("/hello", func(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("Hello!\n"))
})

This method takes in a function or closure and converts it to a http.HandlerFunc.
We already explored the http.HandlerFunc type in “Function Types Are a Bridge to
Interfaces” on page 154. For simple handlers, a closure is sufficient. For more compli‐
cated handlers that depend on other business logic, use a method on a struct, as

250 | Chapter 11: The Standard Library



demonstrated in “Implicit Interfaces Make Dependency Injection Easier” on page
155.

There are package-level functions, http.Handle, http.HandleFunc,
http.ListenAndServe, and http.ListenAndServeTLS that work
with a package-level instance of the *http.ServeMux called
http.DefaultServeMux. Don’t use them outside of trivial test
programs. The http.Server instance is created in the
http.ListenAndServe and http.ListenAndServeTLS functions,
so you are unable to configure server properties like timeouts. Fur‐
thermore, third-party libraries could have registered their own
handlers with the http.DefaultServeMux and there’s no way to
know without scanning through all of your dependencies (both
direct and indirect). Keep your application under control by avoid‐
ing shared state.

Because an *http.ServeMux dispatches requests to http.Handler instances, and
since the *http.ServeMux implements http.Handler, you can create an
*http.ServeMux instance with multiple related requests and register it with a parent
*http.ServeMux:

person := http.NewServeMux()
person.HandleFunc("/greet", func(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("greetings!\n"))
})
dog := http.NewServeMux()
dog.HandleFunc("/greet", func(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("good puppy!\n"))
})
mux := http.NewServeMux()
mux.Handle("/person/", http.StripPrefix("/person", person))
mux.Handle("/dog/", http.StripPrefix("/dog", dog))

In this example, a request for /person/greet is handled by handlers attached to
person, while /dog/greet is handled by handlers attached to dog. When we register
person and dog with mux, we use the http.StripPrefix helper function to remove
the part of the path that’s already been processed by mux.

Middleware
One of the most common requirements of an HTTP server is to perform a set of
actions across multiple handlers, such as checking if a user is logged in, timing a
request, or checking a request header. Go handles these cross-cutting concerns with
the middleware pattern. Rather than using a special type, the middleware pattern uses
a function that takes in an http.Handler instance and returns an http.Handler.
Usually, the returned http.Handler is a closure that is converted to an

net/http | 251



http.HandlerFunc. Here are two middleware generators, one that provides timing of
requests and another that uses perhaps the worst access controls imaginable:

func RequestTimer(h http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        start := time.Now()
        h.ServeHTTP(w, r)
        end := time.Now()
        log.Printf("request time for %s: %v", r.URL.Path, end.Sub(start))
    })
}

var securityMsg = []byte("You didn't give the secret password\n")

func TerribleSecurityProvider(password string) func(http.Handler) http.Handler {
    return func(h http.Handler) http.Handler {
        return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
            if r.Header.Get("X-Secret-Password") != password {
                w.WriteHeader(http.StatusUnauthorized)
                w.Write(securityMsg)
                return
            }
            h.ServeHTTP(w, r)
        })
    }
}

These two middleware implementations demonstrate what middleware does. First,
we do setup operations or checks. If the checks don’t pass, we write the output in the
middleware (usually with an error code) and return. If all is well, we call the handler’s
ServeHTTP method. When that returns, we run cleanup operations.

The TerribleSecurityProvider shows how to create configurable middleware. You
pass in the configuration information (in this case, the password), and the function
returns middleware that uses that configuration information. It is a bit of a mind
bender, as it returns a closure that returns a closure.

You might be wondering how to pass values through the layers of
middleware. This is done via the context, which we’ll look at in
Chapter 12.

We add middleware to our request handlers by chaining them:

terribleSecurity := TerribleSecurityProvider("GOPHER")

mux.Handle("/hello", terribleSecurity(RequestTimer(
    http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

252 | Chapter 11: The Standard Library



        w.Write([]byte("Hello!\n"))
    }))))

We get back our middleware from the TerribleSecurityProvider and then wrap
our handler in a series of function calls. This calls the terribleSecurity closure first,
then calls the RequestTimer, which then calls our actual request handler.

Because the *http.ServeMux implements the http.Handler interface, you can apply
a set of middleware to all of the handlers registered with a single request router:

terribleSecurity := TerribleSecurityProvider("GOPHER")
wrappedMux := terribleSecurity(RequestTimer(mux))
s := http.Server{
    Addr:    ":8080",
    Handler: wrappedMux,
}

Use idiomatic third-party modules to enhance the server
Just because the server is production quality doesn’t mean that you shouldn’t use
third-party modules to improve its functionality. If you don’t like the function chains
for middleware, you can use a third-party module called alice, which allows you to
use the following syntax:

helloHandler := func(w http.ResponseWriter, r *http.Request) {
    w.Write([]byte("Hello!\n"))
}
chain := alice.New(terribleSecurity, RequestTimer).ThenFunc(helloHandler)
mux.Handle("/hello", chain)

The biggest weakness in the HTTP support in the standard library is the built-in
*http.ServeMux request router. It doesn’t allow you to specify handlers based on an
HTTP verb or header, and it doesn’t provide support for variables in the URL path.
Nesting *http.ServeMux instances is also a bit clunky. There are many, many projects
to replace it, but two of the most popular ones are gorilla mux and chi. Both are con‐
sidered idiomatic because they work with http.Handler and http.HandlerFunc
instances, demonstrating the Go philosophy of using composable libraries that fit
together with the standard library. They also work with idiomatic middleware, and
both projects provide optional middleware implementations of common concerns.

Wrapping Up
In this chapter, we looked at some of the most commonly used packages in the stan‐
dard library and demonstrated how they embody best practices that should be emula‐
ted in your code. We’ve also seen other sound software engineering principles: how
some decisions might have been made differently given experience, and how to
respect backward compatibility so you can build applications on a solid foundation.

Wrapping Up | 253

https://oreil.ly/_cS1w
https://oreil.ly/CrQ4i
https://oreil.ly/twYcG


In our next chapter, we’re going to look at the context, a package and pattern for pass‐
ing state and timers through Go code.

254 | Chapter 11: The Standard Library



CHAPTER 12

The Context

Servers need a way to handle metadata on individual requests. This metadata falls
into two general categories: metadata that is required to correctly process the request,
and metadata on when to stop processing the request. For example, an HTTP server
might want to use a tracking ID to identify a chain of requests through a set of micro‐
services. It also might want to set a timer that ends requests to other microservices if
they take too long. Many languages use threadlocal variables to store this kind of
information, associating data to a specific operating system thread of execution. This
does’t work in Go because goroutines don’t have unique identities that can be used to
look up values. More importantly, threadlocals feel like magic; values go in one place
and pop up somewhere else.

Go solves the request metadata problem with a construct called the context. Let’s see
how to use it correctly.

What Is the Context?
Rather than add a new feature to the language, a context is simply an instance that
meets the Context interface defined in the context package. As you know, idiomatic
Go encourages explicit data passing via function parameters. The same is true for the
context. It is just another parameter to your function. Just like Go has a convention
that the last return value from a function is an error, there is another Go convention
that the context is explicitly passed through your program as the first parameter of a
function. The usual name for the context parameter is ctx:

func logic(ctx context.Context, info string) (string, error) {
    // do some interesting stuff here
    return "", nil
}

255



In addition to defining the Context interface, the context package also contains sev‐
eral factory functions for creating and wrapping contexts. When you don’t have an
existing context, such as at the entry point to a command-line program, create an
empty initial context with the function context.Background. This returns a variable
of type context.Context. (Yes, this is an exception to the usual pattern of returning a
concrete type from a function call.)

An empty context is a starting point; each time you add metadata to the context, you
do so by wrapping the existing context using one of the factory functions in the
context package:

ctx := context.Background()
result, err := logic(ctx, "a string")

There is another function, context.TODO, that also creates an
empty context.Context. It is intended for temporary use during
development. If you aren’t sure where the context is going to come
from or how it’s going to be used, use context.TODO to put a place‐
holder in your code. Production code shouldn’t include
context.TODO.

When writing an HTTP server, you use a slightly different pattern for acquiring and
passing the context through layers of middleware to the top-level http.Handler.
Unfortunately, context was added to the Go APIs long after the net/http package
was created. Due to the compatibility promise, there was no way to change the
http.Handler interface to add a context.Context parameter.

The compatibility promise does allow new methods to be added to existing types,
and that’s what the Go team did. There are two context-related methods on
http.Request:

• Context returns the context.Context associated with the request.
• WithContext takes in a context.Context and returns a new http.Request with

the old request’s state combined with the supplied context.Context.

Here’s the general pattern:

func Middleware(handler http.Handler) http.Handler {
    return http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
        ctx := req.Context()
        // wrap the context with stuff -- we'll see how soon!
        req = req.WithContext(ctx)
        handler.ServeHTTP(rw, req)
    })
}

256 | Chapter 12: The Context



The first thing we do in our middleware is extract the existing context from the
request using the Context method. After we put values into the context, we create a
new request based on the old request and the now-populated context using the
WithContext method. Finally, we call the handler and pass it our new request and
the existing http.ResponseWriter.

When you get to the handler, you extract the context from the request using the
Context method and call your business logic with the context as the first parameter,
just like we saw previously:

func handler(rw http.ResponseWriter, req *http.Request) {
    ctx := req.Context()
    err := req.ParseForm()
    if err != nil {
        rw.WriteHeader(http.StatusInternalServerError)
        rw.Write([]byte(err.Error()))
        return
    }
    data := req.FormValue("data")
    result, err := logic(ctx, data)
    if err != nil {
        rw.WriteHeader(http.StatusInternalServerError)
        rw.Write([]byte(err.Error()))
        return
    }
    rw.Write([]byte(result))
}

There’s one more situation where you use the WithContext method: when making an
HTTP call from your application to another HTTP service. Just like we did when
passing a context through middleware, you set the context on the outgoing request
using WithContext:

type ServiceCaller struct {
    client *http.Client
}

func (sc ServiceCaller) callAnotherService(ctx context.Context, data string)
                                          (string, error) {
    req, err := http.NewRequest(http.MethodGet,
                "http://example.com?data="+data, nil)
    if err != nil {
        return "", err
    }
    req = req.WithContext(ctx)
    resp, err := sc.client.Do(req)
    if err != nil {
        return "", err
    }
    defer resp.Body.Close()
    if resp.StatusCode != http.StatusOK {

What Is the Context? | 257



        return "", fmt.Errorf("Unexpected status code %d",
                              resp.StatusCode)
    }
    // do the rest of the stuff to process the response
    id, err := processResponse(resp.Body)
    return id, err
}

Now that we know how to acquire and pass a context, let’s start making them useful.
We’ll begin with cancellation.

Cancellation
Imagine that you have a request that spawns several goroutines, each one calling a
different HTTP service. If one service returns an error that prevents you from return‐
ing a valid result, there is no point in continuing to process the other goroutines. In
Go, this is called cancellation and the context provides the mechanism for
implementation.

To create a cancellable context, use the context.WithCancel function. It takes in a
context.Context as a parameter and returns a context.Context and a
context.CancelFunc. The returned context.Context is not the same context that
was passed into the function. Instead, it is a child context that wraps the passed-in
parent context.Context. A context.CancelFunc is a function that cancels the con‐
text, telling all of the code that’s listening for potential cancellation that it’s time to
stop processing.

We’ll see this wrapping pattern several times. A context is treated as
an immutable instance. Whenever we add information to a con‐
text, we do so by wrapping an existing parent context with a child
context. This allows us to use contexts to pass information into
deeper layers of the code. The context is never used to pass infor‐
mation out of deeper layers to higher layers.

Let’s take a look at how it works. Because this code sets up a server, you can’t run it on
The Go Playground, but you can download it. First we’ll set up two servers in a file
called servers.go:

func slowServer() *httptest.Server {
    s := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter,
         r *http.Request) {
        time.Sleep(2 * time.Second)
        w.Write([]byte("Slow response"))
    }))
    return s
}

258 | Chapter 12: The Context

https://oreil.ly/qQy5c


func fastServer() *httptest.Server {
    s := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter,
         r *http.Request) {
        if r.URL.Query().Get("error") == "true" {
            w.Write([]byte("error"))
            return
        }
        w.Write([]byte("ok"))
    }))
    return s
}

These functions launch servers when they are called. One server sleeps for two sec‐
onds and then returns the message Slow response. The other checks to see if there is
a query parameter error set to true. If there is, it returns the message error. Other‐
wise, it returns the message ok.

We are using the httptest.Server, which makes it easier to write
unit tests for code that talks to remote servers. It’s useful here since
both the client and the server are within the same program. We’ll
learn more about httptest.Server in “httptest” on page 291.

Next, we’re going to write the client portion of the code in a file called client.go:

var client = http.Client{}

func callBoth(ctx context.Context, errVal string, slowURL string,
              fastURL string) {
    ctx, cancel := context.WithCancel(ctx)
    defer cancel()
    var wg sync.WaitGroup
    wg.Add(2)
    go func() {
        defer wg.Done()
        err := callServer(ctx, "slow", slowURL)
        if err != nil {
            cancel()
        }
    }()
    go func() {
        defer wg.Done()
        err := callServer(ctx, "fast", fastURL+"?error="+errVal)
        if err != nil {
            cancel()
        }
    }()
    wg.Wait()
    fmt.Println("done with both")
}

Cancellation | 259



func callServer(ctx context.Context, label string, url string) error {
    req, err := http.NewRequestWithContext(ctx, http.MethodGet, url, nil)
    if err != nil {
        fmt.Println(label, "request err:", err)
        return err
    }
    resp, err := client.Do(req)
    if err != nil {
        fmt.Println(label, "response err:", err)
        return err
    }
    data, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(label, "read err:", err)
        return err
    }
    result := string(data)
    if result != "" {
        fmt.Println(label, "result:", result)
    }
    if result == "error" {
        fmt.Println("cancelling from", label)
        return errors.New("error happened")
    }
    return nil
}

All of the interesting stuff is in this file. First, our callBoth function creates a cancel‐
lable context and a cancellation function from the passed-in context. By convention,
this function variable is named cancel. It is important to remember that any time
you create a cancellable context, you must call the cancel function. It is fine to call it
more than once; every invocation after the first is ignored. We use a defer to make
sure that it is eventually called. Next, we set up two goroutines and pass the cancella‐
ble context, a label, and the URL to callServer, and wait for them both to complete.
If either call to callServer returns an error, we call the cancel function.

The callServer function is a simple client. We create our requests with the cancella‐
ble context and make a call. If an error happens, or if we get the string error
returned, we return the error.

Finally, we have the main function, which kicks off the program, in the file main.go:

func main() {
    ss := slowServer()
    defer ss.Close()
    fs := fastServer()
    defer fs.Close()

    ctx := context.Background()
    callBoth(ctx, os.Args[1], ss.URL, fs.URL)
}

260 | Chapter 12: The Context



In main, we start the servers, create a context, and then call the clients with the con‐
text, the first argument to our program, and the URLs for our servers.

Here’s what happens if you run without an error:

$ make run-ok
go build
./context_cancel false
fast result: ok
slow result: Slow response
done with both

And here’s what happens if an error is triggered:

$ make run-cancel
go build
./context_cancel true
fast result: error
cancelling from fast
slow response err: Get "http://127.0.0.1:38804": context canceled
done with both

Any time you create a context that has an associated cancel func‐
tion, you must call that cancel function when you are done process‐
ing, whether or not your processing ends in an error. If you do not,
your program will leak resources (memory and goroutines) and
eventually slow down or crash. There is no error if you call the can‐
cel function more than once; any invocation after the first does
nothing. The easiest way to make sure you call the cancel function
is to use defer to invoke it right after the cancel function is
returned.

While manual cancellation is useful, it’s not your only option. In the next section,
we’ll see how to automate cancellation with timeouts.

Timers
One of the most important jobs for a server is managing requests. A novice program‐
mer often thinks that a server should take as many requests as it possibly can and
work on them for as long as it can until it returns a result for each client.

The problem is that this approach does not scale. A server is a shared resource. Like
all shared resources, each user wants to get as much as they can out of it and isn’t
terribly concerned with the needs of other users. It’s the responsibility of the shared
resource to manage itself so that it provides a fair amount of time to all of its users.

There are generally four things that a server can do to manage its load:

Timers | 261



• Limit simultaneous requests
• Limit how many requests are queued waiting to run
• Limit how long a request can run
• Limit the resources a request can use (such as memory or disk space)

Go provides tools to handle the first three. We saw how to handle the first two when
learning about concurrency in Chapter 10. By limiting the number of goroutines, a
server manages simultaneous load. The size of the waiting queue is handled via buf‐
fered channels.

The context provides a way to control how long a request runs. When building an
application, you should have an idea of your performance envelope: how long you
have for your request to complete before the user has an unsatisfactory experience. If
you know the maximum amount of time that a request can run, you can enforce it
using the context.

If you want to limit the memory or disk space that a request uses,
you’ll have to write the code to manage that yourself. Discussion of
this topic is beyond the scope of this book.

You can use one of two different functions to create a time-limited context. The first
is context.WithTimeout. It takes two parameters, an existing context and
time.Duration that specifies the duration until the context automatically cancels. It
returns a context that automatically triggers a cancellation after the specified duration
as well as a cancellation function that is invoked to cancel the context immediately.

The second function is context.WithDeadline. This function takes in an existing
context and a time.Time that specifies the time when the context is automatically
canceled. Like context.WithTimeout, it returns a context that automatically triggers
a cancellation after the specified time has elapsed as well as a cancellation function.

If you pass a time in the past to context.WithDeadline, the con‐
text is created already canceled.

If you want to find out when a context will automatically cancel, use the Deadline
method on context.Context. It returns a time.Time that indicates the time and a
bool that indicates if there was a timeout set. This mirrors the comma ok idiom we
use when reading from maps or channels.

262 | Chapter 12: The Context



When you set a time limit for the overall duration of the request, you might want
to subdivide that time. And if you call another service from your service, you might
want to limit how long you allow the network call to run, reserving some time for
the rest of your processing or for other network calls. You control how long an indi‐
vidual call takes by creating a child context that wraps a parent context using
context.WithTimeout or context.WithDeadline.

Any timeout that you set on the child context is bounded by the timeout set on the
parent context; if a parent context times out in two seconds, you can declare that a
child context times out in three seconds, but when the parent context times out after
two seconds, so will the child.

We can see this with a simple program:

ctx := context.Background()
parent, cancel := context.WithTimeout(ctx, 2*time.Second)
defer cancel()
child, cancel2 := context.WithTimeout(parent, 3*time.Second)
defer cancel2()
start := time.Now()
<-child.Done()
end := time.Now()
fmt.Println(end.Sub(start))

In this sample, we specify a two-second timeout on the parent context and a three-
second timeout on the child context. We then wait for the child context to complete
by waiting on the channel returned from the Done method on the child context.Con
text. We’ll talk more about the Done method in the next section.

You can run this code on The Go Playground and you’ll see the following result:

2s

Handling Context Cancellation in Your Own Code
Most of the time, you don’t need to worry about timeouts or cancellation within your
own code; it simply doesn’t run for long enough. Whenever you call another HTTP
service or the database, you should pass along the context; those libraries properly
handle cancellation via the context.

If you do write code that should be interrupted by a context cancellation, you imple‐
ment the cancellation checks using the concurrency features that we looked at in
Chapter 10. The context.Context type has two methods that are used when manag‐
ing cancellation.

The Done method returns a channel of struct{}. (The reason this is the chosen
return type is that an empty struct uses no memory.) The channel is closed when the

Handling Context Cancellation in Your Own Code | 263

https://oreil.ly/FS8h2


context is canceled due to a timer or the cancel function being invoked. Remember, a
closed channel always immediately returns its zero value when you attempt to read it.

If you call Done on a context that isn’t cancellable, it returns nil. As
we covered in Chapter 10, a read from a nil channel never returns.
If this is not done inside a case in a select statement, your pro‐
gram will hang.

The Err method returns nil if the context is still active, or it returns one of two
sentinel errors if the context has been canceled: context.Canceled and
context.DeadlineExceeded. The first is returned after explicit cancellation, and the
second is returned when a timeout triggered cancellation.

Here’s the pattern for supporting context cancellation in your code:

func longRunningThingManager(ctx context.Context, data string) (string, error) {
    type wrapper struct {
        result string
        err    error
    }
    ch := make(chan wrapper, 1)
    go func() {
        // do the long running thing
        result, err := longRunningThing(ctx, data)
        ch <- wrapper{result, err}
    }()
    select {
    case data := <-ch:
        return data.result, data.err
    case <-ctx.Done():
        return "", ctx.Err()
    }
}

In our code, we need to put the data returned from our long-running function into a
struct, so we can pass it on a channel. We then create a channel of type wrapper with
buffer size 1. By buffering the channel, we allow the goroutine to exit, even if the buf‐
fered value is never read due to cancellation.

In the goroutine, we take the output from the long-running function and put it in the
buffered channel. We then have a select with two cases. In our first select case, we
read the data from the long-running function and return it. This is the case that’s trig‐
gered if the context isn’t canceled due to timeout or invocation of the cancel function.
The second select case is triggered if the context is canceled. We return the zero
value for the data and the error from the context to tell us why it was canceled.

This looks a lot like the pattern we saw in Chapter 11, when we learned how to use
time.After to set a time limit on the execution of code. In this case, the time limit

264 | Chapter 12: The Context



(or the cancellation condition) is specified via context factory methods, but the gen‐
eral implementation is the same.

Values
There is one more use for the context. It also provides a way to pass per-request meta‐
data through your program.

By default, you should prefer to pass data through explicit parameters. As has been
mentioned before, idiomatic Go favors the explicit over the implicit, and this includes
explicit data passing. If a function depends on some data, it should be clear where it
came from.

However, there are some cases where you cannot pass data explicitly. The most com‐
mon situation is an HTTP request handler and its associated middleware. As we have
seen, all HTTP request handlers have two parameters, one for the request and one for
the response. If you want to make a value available to your handler in middleware,
you need to store it in the context. Some possible situations include extracting a user
from a JWT (JSON Web Token) or creating a per-request GUID that is passed
through multiple layers of middleware and into your handler and business logic.

Just like there are factory methods in the context package to create timed and cancel‐
lable contexts, there is a factory method for putting values into the context,
context.WithValue. It takes in three values: a context to wrap, a key to look up the
value, and the value itself. It returns a child context that contains the key-value pair.
The type of the key and the value parameters are declared to be empty interfaces
(interface{}).

To check if a value is in a context or any of its parents, use the Value method on
context.Context. This method takes in a key and returns the value associated with
the key. Again, both the key parameter and the value result are declared to be of type
interface{}. If no value is found for the supplied key, nil is returned. Use the
comma ok idiom to type assert the returned value to the correct type.

If you are familiar with data structures, you might recognize that
searching for values stored in the context chain is a linear search.
This has no serious performance implications when there are only
a few values, but it would perform poorly if you stored dozens of
values in the context during a request. That said, if your program is
creating a context chain with dozens of values, your program prob‐
ably needs some refactoring.

While the value stored in the context can be of any type, there is an idiomatic pattern
that’s used to guarantee the key’s uniqueness. Like the key for a map, the key for

Values | 265



context value must be comparable. Create a new, unexported type for the key, based
on an int:

type userKey int

If you use a string or another public type for the type of the key, different packages
could create identical keys, resulting in collisions. This causes problems that are hard
to debug, such as one package writing data to the context that masks the data written
by another package or reading data from the context that was written by another
package.

After declaring your unexported key type, you then declare an unexported constant
of that type:

const key userKey = 1

With both the type and the constant of the key being unexported, no code from out‐
side of your package can put data into the context that would cause a collision. If your
package needs to put multiple values into the context, define a different key of the
same type for each value, using the iota pattern we looked at in “iota Is for Enumera‐
tions—Sometimes” on page 137. Since we only care about the constant’s value as a
way to differentiate between multiple keys, this is a perfect use for iota.

Next, build an API to place a value into the context and to read the value from the
context. Make these functions public only if code outside your package should be able
to read and write your context values. The name of the function that creates a context
with the value should start with ContextWith. The function that returns the value
from the context should have a name that ends with FromContext. Here are the
implementations of our functions to get and read the user from the context:

func ContextWithUser(ctx context.Context, user string) context.Context {
    return context.WithValue(ctx, key, user)
}

func UserFromContext(ctx context.Context) (string, bool) {
    user, ok := ctx.Value(key).(string)
    return user, ok
}

Now that we’ve written our user management code, let’s see how to use it. We’re going
to write middleware that extracts a user ID from a cookie:

// a real implementation would be signed to make sure
// the user didn't spoof their identity
func extractUser(req *http.Request) (string, error) {
    userCookie, err := req.Cookie("user")
    if err != nil {
        return "", err
    }
    return userCookie.Value, nil

266 | Chapter 12: The Context



}

func Middleware(h http.Handler) http.Handler {
    return http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
        user, err := extractUser(req)
        if err != nil {
            rw.WriteHeader(http.StatusUnauthorized)
            return
        }
        ctx := req.Context()
        ctx = ContextWithUser(ctx, user)
        req = req.WithContext(ctx)
        h.ServeHTTP(rw, req)
    })
}

In the middleware, we first get our user value. Next, we extract the context from the
request with the Context method and create a new context that contains the user with
our ContextWithUser function. Then we make a new request from the old request
and the new context using the WithContext method. Finally, we call the next function
in our handler chain with our new request and the supplied http.ResponseWriter.

In most cases, you want to extract the value from the context in your request handler
and pass it in to your business logic explicitly. Go functions have explicit parameters
and you shouldn’t use the context as a way to sneak values past the API:

func (c Controller) handleRequest(rw http.ResponseWriter, req *http.Request) {
    ctx := req.Context()
    user, ok := identity.UserFromContext(ctx)
    if !ok {
        rw.WriteHeader(http.StatusInternalServerError)
        return
    }
    data := req.URL.Query().Get("data")
    result, err := c.Logic.businessLogic(ctx, user, data)
    if err != nil {
        rw.WriteHeader(http.StatusInternalServerError)
        rw.Write([]byte(err.Error()))
        return
    }
    rw.Write([]byte(result))
}

Our handler gets the context using the Context method on the request, extracts the
user from the context using our UserFromContext function, and then calls the busi‐
ness logic.

There are some situations where it’s better to keep a value in the context. The tracking
GUID that was mentioned earlier is one. This information is meant for management
of your application; it is not part of your business state. Passing it explicitly through
your code adds additional parameters and prevents integration with third-party

Values | 267



libraries that do not know about your metainformation. By leaving a tracking GUID
in the context, it passes invisibly through business logic that doesn’t need to know
about tracking and is available when your program writes a log message or connects
to another server.

Here is a simple context-aware GUID implementation that tracks from service to ser‐
vice and creates logs with the GUID included:

package tracker

import (
    "context"
    "fmt"
    "net/http"
    "github.com/google/uuid"
)

type guidKey int

const key guidKey = 1

func contextWithGUID(ctx context.Context, guid string) context.Context {
    return context.WithValue(ctx, key, guid)
}

func guidFromContext(ctx context.Context) (string, bool) {
    g, ok := ctx.Value(key).(string)
    return g, ok
}

func Middleware(h http.Handler) http.Handler {
    return http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
        ctx := req.Context()
        if guid := req.Header.Get("X-GUID"); guid != "" {
            ctx = contextWithGUID(ctx, guid)
        } else {
            ctx = contextWithGUID(ctx, uuid.New().String())
        }
        req = req.WithContext(ctx)
        h.ServeHTTP(rw, req)
    })
}

type Logger struct{}

func (Logger) Log(ctx context.Context, message string) {
    if guid, ok := guidFromContext(ctx); ok {
        message = fmt.Sprintf("GUID: %s - %s", guid, message)
    }
    // do logging
    fmt.Println(message)
}

268 | Chapter 12: The Context



func Request(req *http.Request) *http.Request {
    ctx := req.Context()
    if guid, ok := guidFromContext(ctx); ok {
        req.Header.Add("X-GUID", guid)
    }
    return req
}

The Middleware function either extracts the GUID from the incoming request or
generates a new GUID. In both cases, it places the GUID into the context, creates a
new request with the updated context, and continues the call chain.

Next we see how this GUID is used. The Logger struct provides a generic logging
method that takes in a context and a string. If there’s a GUID in the context, it
appends it to the beginning of the log message and outputs it. The Request function
is used when this service makes a call to another service. It takes in an
*http.Request, adds a header with the GUID if it exists in the context, and returns
the *http.Request.

Once we have this package, we can use the dependency injection techniques that we
discussed in “Implicit Interfaces Make Dependency Injection Easier” on page 155 to
create business logic that is completely unaware of any tracking information. First, we
declare an interface to represent our logger, a function type to represent a request
decorator, and a business logic struct that depends on them:

type Logger interface {
    Log(context.Context, string)
}

type RequestDecorator func(*http.Request) *http.Request

type BusinessLogic struct {
    RequestDecorator RequestDecorator
    Logger                     Logger
    Remote                     string
}

Next, we implement our business logic:

func (bl BusinessLogic) businessLogic(
    ctx context.Context, user string, data string) (string, error) {
    bl.Logger.Log(ctx, "starting businessLogic for " + user + " with "+ data)
    req, err := http.NewRequestWithContext(ctx,
        http.MethodGet, bl.Remote+"?query="+data, nil)
    if err != nil {
        bl.Logger.Log(ctx, "error building remote request:" + err)
        return "", err
    }
    req = bl.RequestDecorator(req)
    resp, err := http.DefaultClient.Do(req)

Values | 269



    // processing continues
}

The GUID is passed through to the logger and the request decorator without the
business logic being aware of it, separating the data needed for program logic from
the data needed for program management. The only place that’s aware of the associa‐
tion is the code in main that wires up our dependencies:

bl := BusinessLogic{
    RequestDecorator: tracker.Request,
    Logger:           tracker.Logger{},
    Remote:           "http://www.example.com/query",
}

You can find the complete code for the user middleware and the GUID tracker on
GitHub.

Use the context to pass values through standard APIs. Copy values
from the context into explicit parameters when they are needed for
processing business logic. System maintenance information can be
accessed directly from the context.

Wrapping Up
In this chapter, we learned how to manage request metadata using the context. We
can now set timeouts, perform explicit cancellation, pass values through the context,
and know when we should do each of these things. In the next chapter, we’re going to
see Go’s built-in testing framework and learn how to use it to find bugs and diagnose
performance problems in your programs.

270 | Chapter 12: The Context

https://oreil.ly/oyhmP


CHAPTER 13

Writing Tests

Over the past two decades, the widespread adoption of automated testing has proba‐
bly done more to improve code quality than any other software engineering techni‐
que. As a language and ecosystem focused on improving software quality, it’s not
surprising that Go includes testing support as part of its standard library. Go makes it
so easy to test your code, there’s no excuse to not do it. In this chapter, we’ll see how
to test our Go code, group our tests into unit and integration tests, examine code cov‐
erage, write benchmarks, and learn how to check our code for concurrency issues
using the Go race checker. Along the way, we’ll discuss how to write code that is test‐
able and why this improves our code quality.

The Basics of Testing
Go’s testing support has two parts: libraries and tooling. The testing package in the
standard library provides the types and functions to write tests, while the go test
tool that’s bundled with Go runs your tests and generates reports. Unlike many other
languages, Go tests are placed in the same directory and the same package as the pro‐
duction code. Since tests are located in the same package, they are able to access and
test unexported functions and variables. We’ll see in a bit how to write tests that
ensure that we are only testing a public API.

Complete code samples for this chapter are found on GitHub.

Let’s write a simple function and then a test to make sure the function works. In the
file adder/adder.go, we have:

271

https://oreil.ly/txE4b


func addNumbers(x, y int) int {
    return x + x
}

The corresponding test is in adder/adder_test.go:

func Test_addNumbers(t *testing.T) {
    result := addNumbers(2,3)
    if result != 5 {
        t.Error("incorrect result: expected 5, got", result)
    }
}

Every test is written in a file whose name ends with _test.go. If you are writing tests
against foo.go, place your tests in a file named foo_test.go.

Test functions start with the word Test and take in a single parameter of type
*testing.T. By convention, this parameter is named t. Test functions do not return
any values. The name of the test (apart from starting with the word “Test”) is meant
to document what you are testing, so pick something that explains what you are test‐
ing. When writing unit tests for individual functions, the convention is to name the
unit test Test followed by the name of the function. When testing unexported func‐
tions, some people use an underscore between the word Test and the name of the
function.

Also note that we use standard Go code to call the code being tested and to validate if
the responses are as expected. When there’s an incorrect result, we report the error
with the t.Error method, which works like the fmt.Print function. We’ll see other
error-reporting methods in a bit.

We’ve just seen the library portion of Go’s test support. Now let’s take a look at the
tooling. Just as go build builds a binary and go run runs a file, the command go
test runs the tests in the current directory:

$ go test
--- FAIL: Test_addNumbers (0.00s)
    adder_test.go:8: incorrect result: expected 5, got 4
FAIL
exit status 1
FAIL    test_examples/adder     0.006s

It looks like we found a bug in our code. Taking a second look at addNumbers, we see
that we are adding x to x, not x to y. Let’s change the code and rerun our test to verify
that the bug is fixed:

$ go test
PASS
ok      test_examples/adder     0.006s

272 | Chapter 13: Writing Tests



The go test command allows you to specify which packages to test. Using ./… for
the package name specifies that you want to run tests in the current directory and all
of the subdirectories of the current directory. Include a -v flag to get verbose testing
output.

Reporting Test Failures
There are several methods on *testing.T for reporting test failures. We’ve already
seen Error, which builds a failure description string out of a comma-separated list of
values.

If you’d rather use a Printf-style formatting string to generate your message, use the
Errorf method instead:

t.Errorf("incorrect result: expected %d, got %s", 5, result)

While Error and Errorf mark a test as failed, the test function continues running. If
you think a test function should stop processing as soon as a failure is found, use the
Fatal and Fatalf methods. The Fatal method works like Error, and the Fatalf
method works like Errorf. The difference is that the test function exits immediately
after the test failure message is generated. Note that this doesn’t exit all tests; any
remaining test functions will execute after the current test function exits.

When should you use Fatal/Fatalf and when should you use Error/Errorf? If the
failure of a check in a test means that further checks in the same test function will
always fail or cause the test to panic, use Fatal or Fatalf. If you are testing several
independent items (such as validating fields in a struct), then use Error or Errorf so
you can report as many problems at once. This makes it easier to fix multiple prob‐
lems without rerunning your tests over and over.

Setting Up and Tearing Down
Sometimes you have some common state that you want to set up before any tests run
and remove when testing is complete. Use a TestMain function to manage this state
and run your tests:

var testTime time.Time

func TestMain(m *testing.M) {
    fmt.Println("Set up stuff for tests here")
    testTime = time.Now()
    exitVal := m.Run()
    fmt.Println("Clean up stuff after tests here")
    os.Exit(exitVal)
}

func TestFirst(t *testing.T) {
    fmt.Println("TestFirst uses stuff set up in TestMain", testTime)

The Basics of Testing | 273



}

func TestSecond(t *testing.T) {
    fmt.Println("TestSecond also uses stuff set up in TestMain", testTime)
}

Both TestFirst and TestSecond refer to the package-level variable testTime. We
declare a function called TestMain with a parameter of type *testing.M. Running go
test on a package with a TestMain function calls the function instead of invoking the
tests directly. Once the state is configured, call the Run method on *testing.M to run
the test functions. The Run method returns the exit code; 0 indicates that all tests
passed. Finally, you must call os.Exit with the exit code returned from Run.

Running go test on this produces the output:

$ go test
Set up stuff for tests here
TestFirst uses stuff set up in TestMain 2020-09-01 21:42:36.231508 -0400 EDT
    m=+0.000244286
TestSecond also uses stuff set up in TestMain 2020-09-01 21:42:36.231508 -0400
    EDT m=+0.000244286
PASS
Clean up stuff after tests here
ok      test_examples/testmain  0.006s

Be aware that TestMain is invoked once, not before and after each individual test.
Also be aware that you can have only one TestMain per package.

There are two common situations where TestMain is useful:

• When you need to set up data in an external repository, such as a database
• When the code being tested depends on package-level variables that need to be

initialized

As mentioned before (and will be mentioned again!) you should avoid package-level
variables in your programs. They make it hard to understand how data flows through
your program. If you are using TestMain for this reason, consider refactoring your
code.

The Cleanup method on *testing.T. is used to clean up temporary resources created
for a single test. This method has a single parameter, a function with no input param‐
eters or return values. The function runs when the test completes. For simple tests,
you can achieve the same result by using a defer statement, but Cleanup is useful
when tests rely on helper functions to set up sample data, like we see in Example 13-1.
It’s fine to call Cleanup multiple times. Just like defer, the functions are invoked in
last added, first called order.

274 | Chapter 13: Writing Tests



Example 13-1. Using t.Cleanup

// createFile is a helper function called from multiple tests
func createFile(t *testing.T) (string, error) {
    f, err := os.Create("tempFile")
    if err != nil {
        return "", err
    }
    // write some data to f
    t.Cleanup(func() {
        os.Remove(f.Name())
    })
    return f.Name(), nil
}

func TestFileProcessing(t *testing.T) {
    fName, err := createFile(t)
    if err != nil {
        t.Fatal(err)
    }
    // do testing, don't worry about cleanup
}

Storing Sample Test Data
As go test walks your source code tree, it uses the current package directory as the
current working directory. If you want to use sample data to test functions in a pack‐
age, create a subdirectory named testdata to hold your files. Go reserves this directory
name as a place to hold test files. When reading from testdata, always use a relative
file reference. Since go test changes the current working directory to the current
package, each package accesses its own testdata via a relative file path.

The text package demonstrates how to use testdata.

Caching Test Results
Just as we learned in Chapter 9 that Go caches compiled packages if they haven’t
changed, Go also caches test results when running tests across multiple packages if
they have passed and their code hasn’t changed. The tests are recompiled and rerun if
you change any file in the package or in the testdata directory. You can also force tests
to always run if you pass the flag -count=1 to go test.

The Basics of Testing | 275

https://oreil.ly/nHtrc


Testing Your Public API
The tests that we’ve written are in the same package as the production code. This
allows us to test both exported and unexported functions.

If you want to test just the public API of your package, Go has a convention for speci‐
fying this. You still keep your test source code in the same directory as the production
source code, but you use packagename_test for the package name. Let’s redo our ini‐
tial test case, using an exported function instead. If we have the following function in
the adder package:

func AddNumbers(x, y int) int {
    return x + y
}

then we can test it as public API using the following code in a file in the adder pack‐
age named adder_public_test.go:

package adder_test

import (
    "testing"
    "test_examples/adder"
)

func TestAddNumbers(t *testing.T) {
    result := adder.AddNumbers(2, 3)
    if result != 5 {
        t.Error("incorrect result: expected 5, got", result)
    }
}

Notice that the package name for our test file is adder_test. We have to import
test_examples/adder even though the files are in the same directory. To follow the
convention for naming tests, the test function name matches the name of the
AddNumbers function. Also note that we use adder.AddNumbers, since we are calling
an exported function in a different package.

Just as you can call exported functions from within a package, you can test your pub‐
lic API from a test that is in the same package as your source code. The advantage of
using the _test package suffix is that it lets you treat your package as a “black box”;
you are forced to interact with it only via its exported functions, methods, types, con‐
stants, and variables. Also be aware that you can have test source files with both pack‐
age names intermixed in the same source directory.

276 | Chapter 13: Writing Tests



Use go-cmp to Compare Test Results
It can be verbose to write a thorough comparison between two instances of a com‐
pound type. While you can use reflect.DeepEqual to compare structs, maps, and
slices, there’s a better way. Google released a third-party module called go-cmp that
does the comparison for you and returns a detailed description of what does not
match. Let’s see how it works by defining a simple struct and a factory function that
populates it:

type Person struct {
    Name      string
    Age       int
    DateAdded time.Time
}

func CreatePerson(name string, age int) Person {
    return Person{
        Name:      name,
        Age:       age,
        DateAdded: time.Now(),
    }
}

In our test file, we need to import github.com/google/go-cmp/cmp, and our test
function looks like this:

func TestCreatePerson(t *testing.T) {
    expected := Person{
        Name: "Dennis",
        Age:  37,
    }
    result := CreatePerson("Dennis", 37)
    if diff := cmp.Diff(expected, result); diff != "" {
        t.Error(diff)
    }
}

The cmp.Diff function takes in the expected output and the output that was returned
by the function that we’re testing. It returns a string that describes any mismatches
between the two inputs. If the inputs match, it returns an empty string. We assign the
output of the cmp.Diff function to a variable called diff and then check to see if
diff is an empty string. If it is not, an error occurred.

We’ll build and run our test and see the output that go-cmp generates when two
structs don’t match:

$ go test
--- FAIL: TestCreatePerson (0.00s)
    ch13_cmp_test.go:16:   ch13_cmp.Person{
              Name:      "Dennis",
              Age:       37,

The Basics of Testing | 277

https://github.com/google/go-cmp


        -     DateAdded: s"0001-01-01 00:00:00 +0000 UTC",
        +     DateAdded: s"2020-03-01 22:53:58.087229 -0500 EST m=+0.001242842",
          }

FAIL
FAIL    ch13_cmp    0.006s

The lines with a - and + indicate the fields whose values differ. Our test failed because
our dates didn’t match. This is a problem because we can’t control what date is
assigned by the CreatePerson function. We have to ignore the DateAdded field. You
do that by specifying a comparator function. Declare the function as a local variable
in your test:

comparer := cmp.Comparer(func(x, y Person) bool {
    return x.Name == y.Name && x.Age == y.Age
})

Pass a function to the cmp.Comparer function to create a customer comparator. The
function that’s passed in must have two parameters of the same type and return a
bool. It also must be symmetric (the order of the parameters doesn’t matter), deter‐
ministic (it always returns the same value for the same inputs), and pure (it must not
modify its parameters). In our implementation, we are comparing the Name and Age
fields and ignoring the DateAdded field.

Then change your call to cmp.Diff to include comparer:

if diff := cmp.Diff(expected, result, comparer); diff != "" {
    t.Error(diff)
}

This is only a quick preview of the most useful features in go-cmp. Check its docu‐
mentation to learn more about how to control what is compared and the output
format.

Table Tests
Most of the time, it takes more than a single test case to validate that a function is
working correctly. You could write multiple test functions to validate your function or
multiple tests within the same function, but you’ll find that a great deal of the testing
logic is repetitive. You set up supporting data and functions, specify inputs, check the
outputs, and compare to see if they match your expectations. Rather than writing this
over and over, you can take advantage of a pattern called table tests. Let’s take a look at
a sample. Assume we have the following function in the table package:

func DoMath(num1, num2 int, op string) (int, error) {
    switch op {
    case "+":
        return num1 + num2, nil
    case "-":

278 | Chapter 13: Writing Tests



        return num1 - num2, nil
    case "*":
        return num1 + num2, nil
    case "/":
        if num2 == 0 {
            return 0, errors.New("division by zero")
        }
        return num1 / num2, nil
    default:
        return 0, fmt.Errorf("unknown operator %s", op)
    }
}

To test this function, we need to check the different branches, trying out inputs that
return valid results, as well as inputs that trigger errors. We could write code like this,
but it’s very repetitive:

func TestDoMath(t *testing.T) {
    result, err := DoMath(2, 2, "+")
    if result != 4 {
        t.Error("Should have been 4, got", result)
    }
    if err != nil {
        t.Error("Should have been nil error, got", err)
    }
    result2, err2 := DoMath(2, 2, "-")
    if result2 != 0 {
        t.Error("Should have been 0, got", result2)
    }
    if err2 != nil {
        t.Error("Should have been nil error, got", err2)
    }
    // and so on...
}

Let’s replace this repetition with a table test. First, we declare a slice of anonymous
structs. The struct contains fields for the name of the test, the input parameters, and
the return values. Each entry in the slice represents another test:

data := []struct {
    name     string
    num1     int
    num2     int
    op       string
    expected int
    errMsg   string
}{
    {"addition", 2, 2, "+", 4, ""},
    {"subtraction", 2, 2, "-", 0, ""},
    {"multiplication", 2, 2, "*", 4, ""},
    {"division", 2, 2, "/", 1, ""},
    {"bad_division", 2, 0, "/", 0, `division by zero`},
}

Table Tests | 279



Next, we loop over each test case in data, invoking the Run method each time. This is
the line that does the magic. We pass two parameters to Run, a name for the subtest
and a function with a single parameter of type *testing.T. Inside the function, we
call DoMath using the fields of the current entry in data, using the same logic over and
over. When you run these tests, you’ll see that not only do they pass, but when you
use the -v flag, each subtest also now has a name:

for _, d := range data {
    t.Run(d.name, func(t *testing.T) {
        result, err := DoMath(d.num1, d.num2, d.op)
        if result != d.expected {
            t.Errorf("Expected %d, got %d", d.expected, result)
        }
        var errMsg string
        if err != nil {
            errMsg = err.Error()
        }
        if errMsg != d.errMsg {
            t.Errorf("Expected error message `%s`, got `%s`",
                d.errMsg, errMsg)
        }
    })
}

Comparing error messages can be fragile, because there may not be
any compatibility guarantees on the message text. The function
that we are testing uses errors.New and fmt.Errorf to make
errors, so the only option is to compare the messages. If an error
has a custom type, use errors.Is or errors.As to check that the
correct error is returned.

Now that we have a way to run lots of tests, let’s learn about code coverage to find out
what our tests are testing.

Checking Your Code Coverage
Code coverage is a very useful tool for knowing if you’ve missed any obvious cases.
However, reaching 100% code coverage doesn’t guarantee that there aren’t bugs in
your code for some inputs. First we’ll see how go test displays code coverage and
then we’ll look at the limitations of relying on code coverage alone.

Adding the -cover flag to the go test command calculates coverage information
and includes a summary in the test output. If you include a second flag
-coverprofile, you can save the coverage information to a file:

go test -v -cover -coverprofile=c.out

280 | Chapter 13: Writing Tests



If we run our table test with code coverage, the test output now includes a line that
indicates the amount of test code coverage, 87.5%. That’s good to know, but it’d be
more useful if we could see what we missed. The cover tool included with Go gener‐
ates an HTML representation of your source code with that information:

go tool cover -html=c.out

When you run it, your web browser should open and show you a page that looks like
Figure 13-1.

Figure 13-1. Initial code coverage

Every file that’s tested appears in the combo box in the upper left. The source code is
in one of three colors. Gray is used for lines of code that aren’t testable, green is used
for code that’s been covered by a test, and red is used for code that hasn’t been tested.
(The reliance on color is unfortunate for readers of the print edition and those who
have red-green color blindness. If you are unable to see the colors, the lighter gray is
the covered lines.) From looking at this, we can see that we didn’t write a test to cover
the default case, when a bad operator is passed to our function. Let’s add that case to
our slice of test cases:

Checking Your Code Coverage | 281



{"bad_op", 2, 2, "?", 0, `unknown operator ?`},

When we rerun go test -v -cover -coverprofile=c.out and go tool cover
-html=c.out, we see in Figure 13-2 that the final line is covered and we have 100%
test code coverage.

Figure 13-2. Final code coverage

Code coverage is a great thing, but it’s not enough. There’s actually a bug in our code,
even though we have 100% coverage. Have you noticed it? If not, let’s add another test
case and rerun our tests:

{"another_mult", 2, 3, "*", 6, ""},

You should see the error:

table_test.go:57: Expected 6, got 5

There’s a typo in our case for multiplication. It adds the numbers together instead of
multiplying them. (Beware the dangers of copy and paste coding!) Fix the code, rerun
go test -v -cover -coverprofile=c.out and go tool cover -html=c.out, and
you’ll see that tests pass again.

282 | Chapter 13: Writing Tests



Code coverage is necessary, but it’s not sufficient. You can have
100% code coverage and still have bugs in your code!

Benchmarks
Determining how fast (or slow) code runs is surprisingly difficult. Rather than trying
to figure it out yourself, you should use the benchmarking support that’s built into
Go’s testing framework. Let’s explore it with a function in the test_examples/bench
package:

func FileLen(f string, bufsize int) (int, error) {
    file, err := os.Open(f)
    if err != nil {
        return 0, err
    }
    defer file.Close()
    count := 0
    for {
        buf := make([]byte, bufsize)
        num, err := file.Read(buf)
        count += num
        if err != nil {
            break
        }
    }
    return count, nil
}

This function counts the number of characters in a file. It takes in two parameters,
the name of the file and the size of the buffer that we are using to read the file (we’ll
see the reason for the second parameter in a moment).

Before we see how fast it is, we should test our library to make sure that it works (it
does). Here’s a simple test:

func TestFileLen(t *testing.T) {
    result, err := FileLen("testdata/data.txt", 1)
    if err != nil {
        t.Fatal(err)
    }
    if result != 65204 { 2
        t.Error("Expected 65204, got", result)
    }
}

Now we can see how long it takes our file length function to run. Our goal is to find
out what size buffer we should use to read from the file.

Benchmarks | 283



Before you spend time going down an optimization rabbit hole, be
sure that you need to optimize. If your program is already fast
enough to meet your responsiveness requirements and is using an
acceptable amount of memory, then your time is better spent on
adding features and fixing bugs. Your business requirements deter‐
mine what “fast enough” and “acceptable amount of memory”
mean.

In Go, benchmarks are functions in your test files that start with the word Benchmark
and take in a single parameter of type *testing.B. This type includes all of the func‐
tionality of a *testing.T as well as additional support for benchmarking. Let’s start
by looking at a benchmark that uses a buffer size of 1 byte:

var blackhole int

func BenchmarkFileLen1(b *testing.B) {
    for i := 0; i < b.N; i++ {
        result, err := FileLen("testdata/data.txt", 1)
        if err != nil {
            b.Fatal(err)
        }
        blackhole = result
    }
}

The blackhole package-level variable is interesting. We write the results from
FileLen to this package-level variable to make sure that the compiler doesn’t get too
clever and decide to optimize away the call to FileLen, ruining our benchmark.

Every Go benchmark must have a loop that iterates from 0 to b.N. The testing frame‐
work calls our benchmark functions over and over with larger and larger values for N
until it is sure that the timing results are accurate. We’ll see this in the output in a
moment.

We run a benchmark by passing the -bench flag to go test. This flag expects a regu‐
lar expression to describe the name of the benchmarks to run. Use -bench=. to run
all benchmarks. A second flag, -benchmem, includes memory allocation information
in the benchmark output. All tests are run before the benchmarks, so you can only
benchmark code when tests pass.

Here’s the output for the benchmark on my computer:

BenchmarkFileLen1-12  25  47201025 ns/op  65342 B/op  65208 allocs/op

Running a benchmark with memory allocation information produces output with
five columns. Here’s what each one means:

284 | Chapter 13: Writing Tests



BenchmarkFileLen1-12
The name of the benchmark, a hyphen, and the value of GOMAXPROCS for the
benchmark.

25
The number of times that the test ran to produce a stable result.

47201025 ns/op
How long it took to run a single pass of this benchmark, in nanoseconds (there
are 1,000,000,000 nanoseconds in a second).

65342 B/op
The number of bytes allocated during a single pass of the benchmark.

65208 allocs/op
The number of times bytes had to be allocated from the heap during a single pass
of the benchmark. This will always be less than or equal to the number of bytes
allocated.

Now that we have results for a buffer of 1 byte, let’s see what the results look like
when we use buffers of different sizes:

func BenchmarkFileLen(b *testing.B) {
    for _, v := range []int{1, 10, 100, 1000, 10000, 100000} {
        b.Run(fmt.Sprintf("FileLen-%d", v), func(b *testing.B) {
            for i := 0; i < b.N; i++ {
                result, err := FileLen("testdata/data.txt", v)
                if err != nil {
                    b.Fatal(err)
                }
                blackhole = result
            }
        })
    }
}

Just like we launched table tests using t.Run, we’re using b.Run to launch benchmarks
that only vary based on input. Here are the results of this benchmark on my
computer:
BenchmarkFileLen/FileLen-1-12          25  47828842 ns/op   65342 B/op  65208 allocs/op
BenchmarkFileLen/FileLen-10-12        230   5136839 ns/op  104488 B/op   6525 allocs/op
BenchmarkFileLen/FileLen-100-12      2246    509619 ns/op   73384 B/op    657 allocs/op
BenchmarkFileLen/FileLen-1000-12    16491     71281 ns/op   68744 B/op     70 allocs/op
BenchmarkFileLen/FileLen-10000-12   42468     26600 ns/op   82056 B/op     11 allocs/op
BenchmarkFileLen/FileLen-100000-12  36700     30473 ns/op  213128 B/op      5 allocs/op

These results aren’t surprising; as we increase the size of the buffer, we make fewer
allocations and our code runs faster, until the buffer is bigger than the file. When the
buffer is bigger than the size of the file, there are extra allocations that slow down the

Benchmarks | 285



output. If we expect files of roughly this size, a buffer of 10,000 bytes would work
best.

But there’s a change we can make that improves the numbers more. We are reallocat‐
ing the buffer every time we get the next set of bytes from the file. That’s unnecessary.
If we move the byte slice allocation before the loop and rerun our benchmark, we see
an improvement:

BenchmarkFileLen/FileLen-1-12          25  46167597 ns/op     137 B/op  4 allocs/op
BenchmarkFileLen/FileLen-10-12        261   4592019 ns/op     152 B/op  4 allocs/op
BenchmarkFileLen/FileLen-100-12      2518    478838 ns/op     248 B/op  4 allocs/op
BenchmarkFileLen/FileLen-1000-12    20059     60150 ns/op    1160 B/op  4 allocs/op
BenchmarkFileLen/FileLen-10000-12   62992     19000 ns/op   10376 B/op  4 allocs/op
BenchmarkFileLen/FileLen-100000-12  51928     21275 ns/op  106632 B/op  4 allocs/op

The number of allocations are now consistent and small, just four allocations for
every buffer size. What is interesting is that we now can make trade-offs. If we are
tight on memory, we can use a smaller buffer size and save memory at the expense of
performance.

Profiling Your Go Code
If benchmarking reveals that you have a performance or memory problem, the next
step is figuring out exactly what the problem is. Go includes profiling tools that
gather CPU and memory usage data from a running program as well as tools that
help you visualize and interpret the generated data. You can even expose a web ser‐
vice endpoint to gather profiling information remotely from a running Go service.

Discussing the profiler is a topic that’s beyond the scope of this book. There are many
great resources available online with information on it. A good starting point is the
blog post Profiling Go programs with pprof by Julia Evans.

Stubs in Go
So far, we’ve written tests for functions that didn’t depend on other code. This is not
typical as most code is filled with dependencies. As we saw in Chapter 7, there are
two ways that Go allows us to abstract function calls: defining a function type and
defining an interface. These abstractions not only help us write modular production
code; they also help us write unit tests.

When your code depends on abstractions, it’s easier to write unit
tests!

286 | Chapter 13: Writing Tests

https://oreil.ly/HHe9c


Lets take a look at an example in the test_examples/solver package. We define a
type called Processor:

type Processor struct {
    Solver MathSolver
}

It has a field of type MathSolver:

type MathSolver interface {
    Resolve(ctx context.Context, expression string) (float64, error)
}

We’ll implement and test MathSolver in a bit.

Processor also has a method that reads an expression from an io.Reader and
returns the calculated value:

func (p Processor) ProcessExpression(ctx context.Context, r io.Reader)
                                    (float64, error) {
    curExpression, err := readToNewLine(r)
    if err != nil {
        return 0, err
    }
    if len(curExpression) == 0 {
        return 0, errors.New("no expression to read")
    }
    answer, err := p.Solver.Resolve(ctx, curExpression)
    return answer, err
}

Let’s write the code to test ProcessExpression. First, we need a simple implementa‐
tion of the Resolve method to write our test:

type MathSolverStub struct{}

func (ms MathSolverStub) Resolve(ctx context.Context, expr string)
                                (float64, error) {
    switch expr {
    case "2 + 2 * 10":
        return 22, nil
    case "( 2 + 2 ) * 10":
        return 40, nil
    case "( 2 + 2 * 10":
        return 0, errors.New("invalid expression: ( 2 + 2 * 10")
    }
    return 0, nil
}

Next, we write a unit test that uses this stub (production code should test the error
messages too, but for the sake of brevity, we’ll leave those out):

func TestProcessorProcessExpression(t *testing.T) {
    p := Processor{MathSolverStub{}}

Stubs in Go | 287



    in := strings.NewReader(`2 + 2 * 10
( 2 + 2 ) * 10
( 2 + 2 * 10`)
    data := []float64{22, 40, 0}
    hasErr := []bool{false, false, true}
    for i, d := range data {
        result, err := p.ProcessExpression(context.Background(), in)
        if err != nil && !hasErr[i] {
            t.Error(err)
        }
        if result != d {
            t.Errorf("Expected result %f, got %f", d, result)
        }
    }
}

We can then run our test and see that everything works.

While most Go interfaces only specify one or two methods, this isn’t always the case.
You sometimes find yourself with an interface that has many methods. Assume you
have an interface that looks like this:

type Entities interface {
    GetUser(id string) (User, error)
    GetPets(userID string) ([]Pet, error)
    GetChildren(userID string) ([]Person, error)
    GetFriends(userID string) ([]Person, error)
    SaveUser(user User) error
}

There are two patterns for testing code that depends on large interfaces. The first is to
embed the interface in a struct. Embedding an interface in a struct automatically
defines all of the interface’s methods on the struct. It doesn’t provide any implementa‐
tions of those methods, so you need to implement the methods that you care about
for the current test. Let’s assume that Logic is a struct that has a field of type
Entities:

type Logic struct {
    Entities Entities
}

Assume you want to test this method:

func (l Logic) GetPetNames(userId string) ([]string, error) {
    pets, err := l.Entities.GetPets(userId)
    if err != nil {
        return nil, err
    }
    out := make([]string, len(pets))
    for _, p := range pets {
        out = append(out, p.Name)
    }

288 | Chapter 13: Writing Tests



    return out, nil
}

This method uses only one of the methods declared on Entities, GetPets. Rather
than creating a stub that implements every single method on Entities just to test
GetPets, you can write a stub struct that only implements the method you need to
test this method:

type GetPetNamesStub struct {
    Entities
}

func (ps GetPetNamesStub) GetPets(userID string) ([]Pet, error) {
    switch userID {
    case "1":
        return []Pet{{Name: "Bubbles"}}, nil
    case "2":
        return []Pet{{Name: "Stampy"}, {Name: "Snowball II"}}, nil
    default:
        return nil, fmt.Errorf("invalid id: %s", userID)
    }
}

We then write our unit test, with our stub injected into Logic:

func TestLogicGetPetNames(t *testing.T) {
    data := []struct {
        name     string
        userID   string
        petNames []string
    }{
        {"case1", "1", []string{"Bubbles"}},
        {"case2", "2", []string{"Stampy", "Snowball II"}},
        {"case3", "3", nil},
    }
    l := Logic{GetPetNamesStub{}}
    for _, d := range data {
        t.Run(d.name, func(t *testing.T) {
            petNames, err := l.GetPetNames(d.userID)
            if err != nil {
                t.Error(err)
            }
            if diff := cmp.Diff(d.petNames, petNames); diff != "" {
                t.Error(diff)
            }
        })
    }
}

(By the way, the GetPetNames method has a bug. Did you see it? Even simple methods
can sometimes have bugs.)

Stubs in Go | 289



If you embed an interface in a stub struct, make sure you provide
an implementation for every method that’s called during your test!
If you call an unimplemented method, your tests will panic.

If you need to implement only one or two methods in an interface for a single test,
this technique works well. The drawback comes when you need to call the same
method in different tests with different inputs and outputs. When that happens, you
need to either include every possible result for every test within the same implemen‐
tation or reimplement the struct for each test. This quickly becomes difficult to
understand and maintain. A better solution is to create a stub struct that proxies
method calls to function fields. For each method defined on Entities, we define a
function field with a matching signature on our stub struct:

type EntitiesStub struct {
    getUser     func(id string) (User, error)
    getPets     func(userID string) ([]Pet, error)
    getChildren func(userID string) ([]Person, error)
    getFriends  func(userID string) ([]Person, error)
    saveUser    func(user User) error
}

We then make EntitiesStub meet the Entities interface by defining the methods.
In each method, we invoke the associated function field. For example:

func (es EntitiesStub) GetUser(id string) (User, error) {
    return es.getUser(id)
}

func (es EntitiesStub) GetPets(userID string) ([]Pet, error) {
    return es.getPets(userID)
}

Once you create this stub, you can supply different implementations of different
methods in different test cases via the fields in the data struct for a table test:

func TestLogicGetPetNames(t *testing.T) {
    data := []struct {
        name     string
        getPets  func(userID string) ([]Pet, error)
        userID   string
        petNames []string
        errMsg   string
    }{
        {"case1", func(userID string) ([]Pet, error) {
            return []Pet{{Name: "Bubbles"}}, nil
        }, "1", []string{"Bubbles"}, ""},
        {"case2", func(userID string) ([]Pet, error) {
            return nil, errors.New("invalid id: 3")
        }, "3", nil, "invalid id: 3"},

290 | Chapter 13: Writing Tests



    }
    l := Logic{}
    for _, d := range data {
        t.Run(d.name, func(t *testing.T) {
            l.Entities = EntitiesStub{getPets: d.getPets}
            petNames, err := l.GetPetNames(d.userID)
            if diff := cmp.Diff(petNames, d.petNames); diff != "" {
                t.Error(diff)
            }
            var errMsg string
            if err != nil {
                errMsg = err.Error()
            }
            if errMsg != d.errMsg {
                t.Errorf("Expected error `%s`, got `%s`", d.errMsg, errMsg)
            }
        })
    }
}

We add a field of function type to data’s anonymous struct. In each test case, we spec‐
ify a function that returns the data that GetPets would return. When you write your
test stubs this way, it’s clear what the stubs should return for each test case. As each
test runs, we instantiate a new EntitiesStub and assign the getPets function field in
our test data to the getPets function field in EntitiesStub.

Mocks and Stubs
The terms mock and stub are often used interchangeably, but they are actually two dif‐
ferent concepts. Martin Fowler, a respected voice on all things related to software
development, wrote a blog post on mocks that, among other things, covers the differ‐
ence between mocks and stubs. In short, a stub returns a canned value for a given
input, whereas a mock validates that a set of calls happen in the expected order with
the expected inputs.

We used stubs in our examples to return canned values to a given response. You can
write your own mocks by hand, or you can use a third-party library to generate them.
The two most popular options are the gomock library from Google and the testify
library from Stretchr, Inc.

httptest
It can be difficult to write tests for a function that calls an HTTP service. Tradition‐
ally, this became an integration test, requiring you to stand up a test instance of the
service that the function calls. The Go standard library includes the net/http/
httptest package to make it easier to stub HTTP services. Let’s go back to our

httptest | 291

https://oreil.ly/nDkF5
https://oreil.ly/_EjoS
https://oreil.ly/AfDGD


test_examples/solver package and provide an implementation of MathSolver that
calls an HTTP service to evaluate expressions:

type RemoteSolver struct {
    MathServerURL string
    Client        *http.Client
}

func (rs RemoteSolver) Resolve(ctx context.Context, expression string)
                              (float64, error) {
    req, err := http.NewRequestWithContext(ctx, http.MethodGet,
        rs.MathServerURL+"?expression="+url.QueryEscape(expression),
        nil)
    if err != nil {
        return 0, err
    }
    resp, err := rs.Client.Do(req)
    if err != nil {
        return 0, err
    }
    defer resp.Body.Close()
    contents, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        return 0, err
    }
    if resp.StatusCode != http.StatusOK {
        return 0, errors.New(string(contents))
    }
    result, err := strconv.ParseFloat(string(contents), 64)
    if err != nil {
        return 0, err
    }
    return result, nil
}

Now let’s see how to use the httptest library to test this code without standing up a
server. The code is in the TestRemoteSolver_Resolve in test_examples/solver/
remote_solver_test.go, but here are the highlights. First, we want to make sure that the
data that’s passed into the function arrives on the server. So in our test function, we
define a type called info to hold our input and output and a variable called io that is
assigned the current input and output:

type info struct {
    expression string
    code       int
    body       string
}
var io info

Next, we set up our fake remote server and use it to configure an instance of
RemoteSolver:

292 | Chapter 13: Writing Tests



server := httptest.NewServer(
    http.HandlerFunc(func(rw http.ResponseWriter, req *http.Request) {
        expression := req.URL.Query().Get("expression")
        if expression != io.expression {
            rw.WriteHeader(http.StatusBadRequest)
            fmt.Fprintf(rw, "expected expression '%s', got '%s'",
                io.expression, expression)
            return
        }
        rw.WriteHeader(io.code)
        rw.Write([]byte(io.body))
    }))
defer server.Close()
rs := RemoteSolver{
    MathServerURL: server.URL,
    Client:        server.Client(),
}

The httptest.NewServer function creates and starts an HTTP server on a random
unused port. You need to provide an http.Handler implementation to process the
request. Since this is a server, you must close it when the test completes. The server
instance has its URL specified in the URL field of the server instance and a preconfig‐
ured http.Client for communicating with the test server. We pass these into
RemoteSolver.

The rest of the function works like every other table test that we’ve seen:

    data := []struct {
        name   string
        io     info
        result float64
    }{
        {"case1", info{"2 + 2 * 10", http.StatusOK, "22"}, 22},
        // remaining cases
    }
    for _, d := range data {
        t.Run(d.name, func(t *testing.T) {
            io = d.io
            result, err := rs.Resolve(context.Background(), d.io.expression)
            if result != d.result {
                t.Errorf("io `%f`, got `%f`", d.result, result)
            }
            var errMsg string
            if err != nil {
                errMsg = err.Error()
            }
            if errMsg != d.errMsg {
                t.Errorf("io error `%s`, got `%s`", d.errMsg, errMsg)
            }
        })
    }

httptest | 293



The interesting thing to note is that the variable io has been captured by two different
closures: the one for the stub server and the one for running each test. We write to it
in one closure and read it in the other. This is a bad idea in production code, but it
works well in test code within a single function.

Integration Tests and Build Tags
Even though httptest provides a way to avoid testing against external services, you
should still write integration tests, automated tests that connect to other services.
These validate that your understanding of the service’s API is correct. The challenge is
figuring out how to group your automated tests; you only want to run integration
tests when the support environment is present. Also, integration tests tend to be
slower than unit tests, so they are usually run less frequently.

The Go compiler provides build tags to control when code is compiled. Build tags are
specified on the first line of a file with a magic comment that starts with // +build.
The original intent for build tags was to allow different code to be compiled on differ‐
ent platforms, but they are also useful for splitting tests into groups. Tests in files
without build tags run all the time. These are the unit tests that don’t have dependen‐
cies on external resources. Tests in files with a build tag are only run when the sup‐
porting resources are available.

Let’s try this out with our math solving project. Use Docker to download a server
implementation with docker pull jonbodner/math-server and then run the server
locally on port 8080 with docker run -p 8080:8080 jonbodner/math-server.

If you don’t have Docker installed or if you want to build the code
for yourself, you can find it on GitHub.

We  need  to  write  an  integration  test  to  make  sure  that  our  Resolve method
properly  communicates with the math server. The test_examples/solver/
remote_solver_integration_test.go file has a complete test in the TestRemo

teSolver_ResolveIntegration function. The test looks like every other table test
that we’ve written. The interesting thing is the first line of the file, separated from the
package declaration by a newline is:

// +build integration

To run our integration test alongside the other tests we’ve written, use:

$ go test -tags integration -v ./...

294 | Chapter 13: Writing Tests

https://oreil.ly/yjMzc


Using the -short Flag
Another option is to use go test with the -short flag. If you want to skip over tests
that take a long time, label your slow tests by placing the the following code at the
start of the test function:

    if testing.Short() {
        t.Skip("skipping test in short mode.")
    }

When you want to run only short tests, pass the -short flag to go test.

There are a few problems with the -short flag. If you use it, there are only two levels
of testing: short tests and all tests. By using build tags, you can group your integration
tests, specifying which service they need in order to run. Another argument against
using the -short flag to indicate integration tests is philosophical. Build tags indicate
a dependency, while the -short flag is only meant to indicate that you don’t want to
run tests that take a long time. Those are different concepts. Finally, I find the -short
flag unintuitive. You should run short tests all the time. It makes more sense to
require a flag to include long-running tests, not to exclude them.

Finding Concurrency Problems with the Race Checker
Even with Go’s built-in support for concurrency, bugs still happen. It’s easy to acci‐
dentally reference a variable from two different goroutines without acquiring a lock.
The computer science term for this is a data race. To help find these sorts of bugs, Go
includes a race checker. It isn’t guaranteed to find every single data race in your code,
but if it finds one, you should put proper locks around what it finds.

Let’s look at a simple example in test_examples/race/race.go:

func getCounter() int {
    var counter int
    var wg sync.WaitGroup
    wg.Add(5)
    for i := 0; i < 5; i++ {
        go func() {
            for i := 0; i < 1000; i++ {
                counter++
            }
            wg.Done()
        }()
    }
    wg.Wait()
    return counter
}

Finding Concurrency Problems with the Race Checker | 295



This code launches five goroutines, has each of them update a shared counter vari‐
able 1000 times, and then returns the result. You’d expect it to be 5000, so let’s verify
this with a unit test in test_examples/race/race_test.go:

func TestGetCounter(t *testing.T) {
    counter := getCounter()
    if counter != 5000 {
        t.Error("unexpected counter:", counter)
    }
}

If you run go test a few times, you’ll see that sometimes it passes, but most of the
time it fails with an error message like:

unexpected counter: 3673

The problem is that there’s a data race in the code. In a program this simple, the cause
is obvious: multiple goroutines are trying to update counter simultaneously and
some of their updates are lost. In more complicated programs, these sorts of races are
harder to see. Let’s see what the race checker does. Use the flag -race with go test to
enable it:

$ go test -race
==================
WARNING: DATA RACE
Read at 0x00c000128070 by goroutine 10:
  test_examples/race.getCounter.func1()
      test_examples/race/race.go:12 +0x45

Previous write at 0x00c000128070 by goroutine 8:
  test_examples/race.getCounter.func1()
      test_examples/race/race.go:12 +0x5b

The traces make it clear that the line counter++ is the source of our problems.

Some people try to fix race conditions by inserting “sleeps” into
their code, trying to space out access to the variable that’s being
accessed by multiple goroutines. This is a bad idea. Doing so might
eliminate the problem in some cases, but the code is still wrong and
it will fail in some situations.

You can also use the -race flag when you build your programs. This creates a binary
that includes the race checker and that reports any races it finds to the console. This
allows you to find data races in code that doesn’t have tests.

If the race checker is so useful, why isn’t it enabled all the time for testing and produc‐
tion? A binary with -race enabled runs approximately ten times slower than a nor‐
mal binary. That isn’t a problem for test suites that take a second to run, but for large
test suites that take several minutes, a 10x slowdown reduces productivity.

296 | Chapter 13: Writing Tests



Wrapping Up
In this chapter, we’ve learned how to write tests and improve code quality using Go’s
built-in support for testing, code coverage, benchmarking, and data race checking. In
the next chapter, we’re going to explore some Go features that allow you to break the
rules: the unsafe package, reflection, and cgo.

Wrapping Up | 297





CHAPTER 14

Here There Be Dragons: Reflect,
Unsafe, and Cgo

The edges of the known world are scary. Ancient maps would fill in the unexplored
areas with pictures of dragons and lions. In our previous sections, we have empha‐
sized that Go is a safe language, with typed variables to make clear what sort of data
you are using and garbage collection to manage memory. Even the pointers are tame;
you can’t abuse them in the way that C and C++ do.

All of those things are true, and for the vast majority of the Go code that you’ll write,
you can be assured that the Go runtime will protect you. But there are escape hatches.
Sometimes your Go programs need to venture out into less defined areas. In this
chapter, we’re going to look at how to handle situations that can’t be solved with nor‐
mal Go code. For example, when the type of the data can’t be determined at compile
time, you can use the reflection support in the reflect package to interact with and
even construct data. When you need to take advantage of the memory layout of data
types in Go, you can use the unsafe package. And if there is functionality that can
only be provided by libraries written in C, you can call into C code with cgo.

You might be wondering why these advanced concepts appear in a book targeted at
those new to Go. There are two reasons. First, developers searching for a solution to a
problem sometimes discover (and copy and paste) techniques they don’t fully under‐
stand. It’s best to know a bit about advanced techniques that can cause problems
before you add them to your codebase. Second, these tools are fun. Because they
allow you to do things that aren’t normally possible with Go, it feels a bit exciting to
play with them and see what you can do.

299



Reflection Lets Us Work with Types at Runtime
One of the things that people who use Go like about it is that it is a statically typed
language. Most of the time, declaring variables, types, and functions in Go is pretty
straightforward. When you need a type, a variable, or a function, you define it:

type Foo struct {
  A int
  B string
}

var x Foo

func DoSomething(f Foo) {
  fmt.Println(f.A, f.B)
}

We use types to represent the data structures we know we need when we write our
programs. Since types are a core part of Go, the compiler uses them to make sure that
our code is correct. But sometimes, relying on only compilation-time information is a
limitation. You might need to work with variables at runtime using information that
didn’t exist when the program was written. Maybe you’re trying to map data from a
file or network request into a variable, or you want to build a single function that
works with different types. In those situations, you need to use reflection. Reflection
allows us to examine types at runtime. It also provides the ability to examine, modify,
and create variables, functions, and structs at runtime.

This leads to the question of when we need this functionality. If you look at the Go
standard library, you can get an idea. Its uses fall into one of a few general categories:

• Reading and writing from a database. The database/sql package uses reflection
to send records to databases and read data back.

• Go’s built-in templating libraries, text/template and html/template, use reflec‐
tion to process the values that are passed to the templates.

• The fmt package uses reflection heavily, as all of those calls to fmt.Println and
friends rely on reflection to detect the type of the provided parameters.

• The errors package uses reflection to implement errors.Is and errors.As.
• The sort package uses reflection to implement functions that sort and evaluate

slices of any type: sort.Slice, sort.SliceStable, and sort.SliceIsSorted.
• The last main usage of reflection in the Go standard library is for marshaling and

unmarshaling data into JSON and XML, along with the other data formats
defined in the various encoding packages. Struct tags (which we will talk about

300 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



soon) are accessed via reflection, and the fields in structs are read and written
using reflection as well.

Most of these examples have one thing in common: they involve accessing and for‐
matting data that is being imported into or exported out of a Go program. You’ll
often see reflection used at the boundaries between your program and the outside
world.

Another use of the reflect package in the Go standard library:
testing. In “Slices” on page 37, we mentioned a function that you
can find in the reflect package called DeepEqual. It’s in the
reflect package because it takes advantage of reflection to do its
work. The reflect.DeepEqual function checks to see if two values
are “deeply equal” to each other. This is a more thorough compari‐
son than what you get if you use == to compare two things, and it’s
used in the standard library as a way to validate test results. It can
also compare things that can’t be compared using ==, like slices and
maps.
Most of the time, you don’t need DeepEqual, but if you ever wanted
to compare two maps to see if all of their keys and values are iden‐
tical or see if two slices were identical, DeepEqual is what you need.

Types, Kinds, and Values
Now that we know what reflection is and when you might need it, let’s understand
how it all works. The reflect package in the standard library is the home for the
types and functions that implement reflection in Go. Reflection is built around three
core concepts: types, kinds, and values.

First let’s look at types. A type in reflection is exactly what it sounds like. It defines the
properties of a variable, what it can hold, and how you can interact with it. With
reflection, you are able to query a type to find out about these properties using code.

Types and kinds

We get the reflection representation of the type of a variable with the TypeOf function
in the reflect package:

vType := reflect.TypeOf(v)

The reflect.TypeOf function returns a value of type reflect.Type, which repre‐
sents the type of the variable passed into the TypeOf function. The reflect.Type type
defines methods with information about a variable’s type. We can’t cover all of the
methods, but here are a few.

Reflection Lets Us Work with Types at Runtime | 301



The Name method returns, not surprisingly, the name of the type. Let’s see a quick
example:

var x int
xt := reflect.TypeOf(x)
fmt.Println(xt.Name())     // returns int
f := Foo{}
ft := reflect.TypeOf(f)
fmt.Println(ft.Name())     // returns Foo
xpt := reflect.TypeOf(&x)
fmt.Println(xpt.Name())    // returns an empty string

We start with a variable x of type int. We pass it to reflect.TypeOf and get back a
reflect.Type instance. For primitive types like int, Name() returns the name of the
type, in this case the string “int” for our int. For a struct, the name of the struct is
returned. Some types, like a slice or a pointer, don’t have names; in those cases, Name
returns an empty string.

The Kind method on reflect.Type returns a value of type reflect.Kind, which is a
constant that says what the type is made of—a slice, a map, a pointer, a struct, an
interface, a string, an array, a function, an int, or some other primitive type. The dif‐
ference between the kind and the type can be tricky to understand. Remember this
rule: if you define a struct named Foo, the kind is reflect.Struct and the type is
“Foo”.

The kind is very important. One thing to be aware of when using reflection is that
everything in the reflect package assumes that you know what you are doing. Some
of the methods defined on reflect.Type and other types in the reflect package
only make sense for certain kinds. For example, there’s a method on reflect.Type
called NumIn. If your reflect.Type instance represents a function, it returns the
number of input parameters for the function. If your reflect.Type instance isn’t a
function, calling NumIn will panic your program.

In general, if you call a method that doesn’t make sense for the kind
of the type, the method call panics. Always remember to use the
kind of the reflected type to know which methods will work and
which ones will panic.

Another important method on reflect.Type is Elem. Some types in Go have refer‐
ences to other types and Elem is how to find out what the contained type is. For
example, let’s use reflect.TypeOf on a pointer to an int:

302 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



var x int
xpt := reflect.TypeOf(&x)
fmt.Println(xpt.Name())        // returns an empty string
fmt.Println(xpt.Kind())        // returns reflect.Ptr
fmt.Println(xpt.Elem().Name()) // returns "int"
fmt.Println(xpt.Elem().Kind()) // returns reflect.Int

That gives us a reflect.Type instance with a blank name and a kind of reflect.Ptr,
or pointer. When the reflect.Type represents a pointer, Elem returns the
reflect.Type for the type the pointer points to. In this case, the Name method returns
“int” and Kind returns reflect.Int. The Elem method also works for slices, maps,
channels, and arrays.

There are methods on reflect.Type for reflecting on structs. Use the NumField
method to get the number of fields in the struct, and get the fields in a struct by index
with the Field method. That returns each field’s structure described in a
reflect.StructField, which has the name, order, type, and struct tags on a field.
Let’s look at a quick example, which you can run on The Go Playground:

type Foo struct {
    A int    `myTag:"value"`
    B string `myTag:"value2"`
}

var f Foo
ft := reflect.TypeOf(f)
for i := 0; i < ft.NumField(); i++ {
    curField := ft.Field(i)
    fmt.Println(curField.Name, curField.Type.Name(),
        curField.Tag.Get("myTag"))
}

We create an instance of type Foo and use reflect.TypeOf to get the reflect.Type
for f. Next we use the NumField method to set up a for loop to get the index of each
field in f. Then we use the Field method to get the reflect.StructField struct that
represents the field, and then we can use the fields on reflect.StructField to get
more information about the field. This code prints out:

A int value
B string value2

There are many more methods in reflect.Type, but they all follow the same pattern,
allowing us to access the information that describes the type of a variable. You can
look at the reflect.Type documentation in the standard library for more
information.

Reflection Lets Us Work with Types at Runtime | 303

https://oreil.ly/Ynv_4
https://oreil.ly/p4AZ6


Values
In addition to examining the types of variables, you can also use reflection to read a
variable’s value, set its value, or create a new value from scratch.

We use the reflect.ValueOf function to create a reflect.Value instance that repre‐
sents the value of a variable:

vValue := reflect.ValueOf(v)

Since every variable in Go has a type, reflect.Value has a method called Type that
returns the reflect.Type of the reflect.Value. There’s also a Kind method, just as
there is on reflect.Type.

Just as reflect.Type has methods for finding out information about the type of a
variable, reflect.Value has methods for finding out information about the value of
a variable. We’re not going to cover all of them, but let’s take a look at how we can use
a reflect.Value to get the value of the variable.

We’ll start by looking at how to read our values back out of a reflect.Value. The
Interface method returns the value of the variable as an empty interface. However,
the type information is lost; when you put the value returned by Interface into a
variable, you have to use a type assertion to get back to the right type:

s := []string{"a", "b", "c"}
sv := reflect.ValueOf(s)        // sv is of type reflect.Value
s2 := sv.Interface().([]string) // s2 is of type []string

While Interface can be called for reflect.Value instances that contain values of
any kind, there are special case methods that you can use if the kind of the variable is
one of the built-in, primitive types: Bool, Complex, Int, Uint, Float, and String.
There’s also a Bytes method that works if the type of the variable is a slice of bytes. If
you use a method that doesn’t match the type of the reflect.Value, your code will
panic.

We can use reflection to set the value of a variable as well, but it’s a three-step process.

First, you pass a pointer to the variable into reflect.ValueOf. This returns a
reflect.Value that represents the pointer:

i := 10
iv := reflect.ValueOf(&i)

Next, you need to get to the actual value to set it. You use the Elem method on
reflect.Value to get to the value pointed to by the pointer that was passed into
reflect.ValueOf. Just like Elem on reflect.Type returns the type that’s pointed to
by a containing type, Elem on reflect.Value returns the value that’s pointed to by a
pointer or the value that’s stored in an interface:

ivv := iv.Elem()

304 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



Finally, you get to the actual method that’s used to set the value. Just like there are
special-case methods for reading primitive types, there are special-case methods for
setting primitive types: SetBool, SetInt, SetFloat, SetString, and SetUint. In our
example, calling ivv.SetInt(20) changes the value of i. If we print out i now, we
will get 20:

ivv.SetInt(20)
fmt.Println(i) // prints 20

For all other types, you need to use the Set method, which takes a variable of type
reflect.Value. The value that you are setting it to doesn’t need to be a pointer,
because we are just reading this value, not changing it. And just like you can use
Interface() to read primitive types, you can use Set to write primitive types.

The reason you need to pass a pointer to reflect.ValueOf to change the value of the
input parameter is that it is just like any other function in Go. As we discussed in
“Pointers Indicate Mutable Parameters” on page 113, you use a parameter of a pointer
type to indicate that you want to modify the value of the parameter. When you mod‐
ify the value, you dereference the pointer, and then set the value. The following two
functions follow the same process:

func changeInt(i *int) {
    *i = 20
}

func changeIntReflect(i *int) {
    iv := reflect.ValueOf(i)
    iv.Elem().SetInt(20)
}

If you don’t pass a pointer to a variable to reflect.ValueOf, you
can still read the value of the variable using reflection. But if you
try to use any of the methods that can change the value of a vari‐
able, the method calls will (not surprisingly) panic.

Making New Values
Before we look at how to best use reflection, there’s one more thing to cover: how to
create a value. The reflect.New function is the reflection analog of the new function.
It takes in a reflect.Type and returns a reflect.Value that’s a pointer to a
reflect.Value of the specified type. Since it’s a pointer, you can modify it and then
assign the modified value to a variable using the Interface method.

Just as reflect.New creates a pointer to a scalar type, you can also use reflection to do
the same thing as the make keyword with the following functions:

Reflection Lets Us Work with Types at Runtime | 305



func MakeChan(typ Type, buffer int) Value

func MakeMap(typ Type) Value

func MakeMapWithSize(typ Type, n int) Value

func MakeSlice(typ Type, len, cap int) Value

Each of these functions takes in a reflect.Type that represents the compound type,
not the contained type.

You must always start from a value when constructing a reflect.Type. However,
there’s a trick that lets you create a variable to represent a reflect.Type if you don’t
have a value handy:

var stringType = reflect.TypeOf((*string)(nil)).Elem()

var stringSliceType = reflect.TypeOf([]string(nil))

The variable stringType contains a reflect.Type that represents a string, and the
variable stringSliceType contains a reflect.Type that represents a []string. That
first line can take a bit of effort to decode. What we are doing is converting nil to a
pointer to string, using reflect.TypeOf to make a reflect.Type of that pointer
type, and then calling Elem on that pointer’s reflect.Type to get the underlying type.
We have to put *string in parenthesis because of Go order of operations; without the
parenthesis, the compiler thinks that we are converting nil to string, which is illegal.

For the stringSliceType, it’s a bit simpler since nil is a valid value for a slice. All we
have to do is type conversion of nil to a []string and pass that to reflect.Type.

Now that we have these types, we can see how to use reflect.New and
reflect.MakeSlice:

ssv := reflect.MakeSlice(stringSliceType, 0, 10)

sv := reflect.New(stringType).Elem()
sv.SetString("hello")

ssv = reflect.Append(ssv, sv)
ss := ssv.Interface().([]string)
fmt.Println(ss) // prints [hello]

You can try out this code for yourself on The Go Playground.

Use Reflection to Check If an Interface’s Value Is nil
As we talked about in “Interfaces and nil” on page 147, if a nil variable of a concrete
type is assigned to a variable of an interface type, the variable of the interface type is
not nil. This is because there is a type associated with the interface variable. If you

306 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo

https://oreil.ly/ak2PG


want to check if the value associated with an interface is nil, you can do so with
reflection using two methods: IsValid and IsNil:

func hasNoValue(i interface{}) bool {
    iv := reflect.ValueOf(i)
    if !iv.IsValid() {
        return true
    }
    switch iv.Kind() {
    case reflect.Ptr, reflect.Slice, reflect.Map, reflect.Func,
         reflect.Interface:
        return iv.IsNil()
    default:
        return false
    }
}

The IsValid method returns true if reflect.Value holds anything other than a nil
interface. We need to check this first because calling any other method on
reflect.Value will (unsurprisingly) panic if IsValid is false. The IsNil method
returns true if the value of the reflect.Value is nil, but it can only be called if the
reflect.Kind is something that can be nil. If you call it on a type whose zero value
isn’t nil, it (you guessed it) panics.

You can see this function in use on The Go Playground.

Even though it is possible to detect an interface with a nil value, strive to write your
code so that it performs correctly even when the value associated with an interface is
nil. Reserve this code for situations where you have no other options.

Use Reflection to Write a Data Marshaler
As mentioned earlier, reflection is what the standard library uses to implement mar‐
shaling and unmarshaling. Let’s see how it’s done by building a data marshaler for
ourselves. Go provides the csv.NewReader and csv.NewWriter functions to read a
CSV file into a slice of slice of strings and to write a slice of slice of strings out to a
CSV file, but there’s no way to map that data to the fields in a struct. We’re going to
add that missing functionality.

The examples here have been cut down a bit to fit, reducing the
number of supported types. The complete code can be found on
The Go Playground.

Reflection Lets Us Work with Types at Runtime | 307

https://oreil.ly/D-HR9
https://oreil.ly/VDytK


We’ll start by defining our API. Like other marshalers, we’ll define a struct tag that
specifies the name of a field in the data to map it to a field in a struct:

type MyData struct {
    Name   string `csv:"name"`
    Age    int    `csv:"age"`
    HasPet bool   `csv:"has_pet"`
}

The public API consists of two functions:

// Unmarshal maps all of the rows of data in a slice of slice of strings
// into a slice of structs.
// The first row is assumed to be the header with the column names.
func Unmarshal(data [][]string, v interface{}) error

// Marshal maps all of the structs in a slice of structs to a slice of slice
// of strings.
// The first row written is the header with the column names.
func Marshal(v interface{}) ([][]string, error)

We’ll start with Marshal, writing the function and then looking at the two helper
functions it uses:

func Marshal(v interface{}) ([][]string, error) {
    sliceVal := reflect.ValueOf(v)
    if sliceVal.Kind() != reflect.Slice {
        return nil, errors.New("must be a slice of structs")
    }
    structType := sliceVal.Type().Elem()
    if structType.Kind() != reflect.Struct {
        return nil, errors.New("must be a slice of structs")
    }
    var out [][]string
    header := marshalHeader(structType)
    out = append(out, header)
    for i := 0; i < sliceVal.Len(); i++ {
        row, err := marshalOne(sliceVal.Index(i))
        if err != nil {
            return nil, err
        }
        out = append(out, row)
    }
    return out, nil
}

Since we can marshal a struct of any type, we need to use a parameter of type
interface{}. This isn’t a pointer to a slice of structs, because we are only reading
from our slice, not modifying it.

308 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



The first row of our CSV is going to be the header with the column names, so we get
those column names from the struct tags on fields in the struct’s type. We use the
Type method to get the reflect.Type of the slice from the reflect.Value, and then
call the Elem method to get the reflect.Type of the elements of the slice. We then
pass this to marshalHeader and append the response to our output.

Next, we iterate through each element in the struct slice using reflection, passing the
reflect.Value of each element to marshalOne, appending the result to our output.
When we finish iterating, we return our slice of slice of string.

Let’s look at the implementation of our first helper function, marshalHeader:

func marshalHeader(vt reflect.Type) []string {
    var row []string
    for i := 0; i < vt.NumField(); i++ {
        field := vt.Field(i)
        if curTag, ok := field.Tag.Lookup("csv"); ok {
            row = append(row, curTag)
        }
    }
    return row
}

This function simply loops over the fields of the reflect.Type, reads the csv tag on
each field, appends it into a string slice, and returns the slice.

The second helper function is marshalOne:

func marshalOne(vv reflect.Value) ([]string, error) {
    var row []string
    vt := vv.Type()
    for i := 0; i < vv.NumField(); i++ {
        fieldVal := vv.Field(i)
        if _, ok := vt.Field(i).Tag.Lookup("csv"); !ok {
            continue
        }
        switch fieldVal.Kind() {
        case reflect.Int:
            row = append(row, strconv.FormatInt(fieldVal.Int(), 10))
        case reflect.String:
            row = append(row, fieldVal.String())
        case reflect.Bool:
            row = append(row, strconv.FormatBool(fieldVal.Bool()))
        default:
            return nil, fmt.Errorf("cannot handle field of kind %v",
                                   fieldVal.Kind())
        }
    }
    return row, nil
}

Reflection Lets Us Work with Types at Runtime | 309



It takes in a reflect.Value and returns a string slice. We create the string slice,
and for each field in the struct, we switch on its reflect.Kind to determine how to
convert it to a string, and append it to the output.

Our simple marshaler is now complete. Let’s see what we have to do to unmarshal:

func Unmarshal(data [][]string, v interface{}) error {
    sliceValPtr := reflect.ValueOf(v)
    if sliceValPtr.Kind() != reflect.Ptr {
        return errors.New("must be a pointer to a slice of structs")
    }
    sliceVal := sliceValPtr.Elem()
    if sliceVal.Kind() != reflect.Slice {
        return errors.New("must be a pointer to a slice of structs")
    }
    structType := sliceVal.Type().Elem()
    if structType.Kind() != reflect.Struct {
        return errors.New("must be a pointer to a slice of structs")
    }

    // assume the first row is a header
    header := data[0]
    namePos := make(map[string]int, len(header))
    for k, v := range header {
        namePos[v] = k
    }

    for _, row := range data[1:] {
        newVal := reflect.New(structType).Elem()
        err := unmarshalOne(row, namePos, newVal)
        if err != nil {
            return err
        }
        sliceVal.Set(reflect.Append(sliceVal, newVal))
    }
    return nil
}

Since we are copying data into a slice of any kind of struct, we need to use a parame‐
ter of type interface{}. Furthermore, because we are modifying the value stored in
this parameter, we must pass in a pointer to a slice of structs. The Unmarshal function
converts that slice of structs pointer to a reflect.Value, then gets the underlying
slice, and then gets the type of the structs in the underlying slice.

As we said earlier, we’re assuming that the first row of data is a header with the names
of the columns. We use this information to build up a map, so we can associate the
csv struct tag value with the correct data element.

310 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



We then loop through all of the remaining string slices, creating a new
reflect.Value using the reflect.Type of the struct, call unmarshalOne to copy the
data in the current string slice into the struct, and then add the struct to our slice.
After iterating through all of the rows of data, we return.

All that remains is looking at the implementation of unmarshalOne:

func unmarshalOne(row []string, namePos map[string]int, vv reflect.Value) error {
    vt := vv.Type()
    for i := 0; i < vv.NumField(); i++ {
        typeField := vt.Field(i)
        pos, ok := namePos[typeField.Tag.Get("csv")]
        if !ok {
            continue
        }
        val := row[pos]
        field := vv.Field(i)
        switch field.Kind() {
        case reflect.Int:
            i, err := strconv.ParseInt(val, 10, 64)
            if err != nil {
                return err
            }
            field.SetInt(i)
        case reflect.String:
            field.SetString(val)
        case reflect.Bool:
            b, err := strconv.ParseBool(val)
            if err != nil {
                return err
            }
            field.SetBool(b)
        default:
            return fmt.Errorf("cannot handle field of kind %v",
                              field.Kind())
        }
    }
    return nil
}

This function iterates over each field in the newly created reflect.Value, uses the
csv struct tag on the current field to find its name, looks up the element in the data
slice using the namePos map, converts the value from a string to the correct type, and
sets the value on the current field. After all fields have been populated, the function
returns.

Now that we have written our marshaler and unmarshaler, we can integrate with the
existing CSV support in the Go standard library:

Reflection Lets Us Work with Types at Runtime | 311



data := `name,age,has_pet
Jon,"100",true
"Fred ""The Hammer"" Smith",42,false
Martha,37,"true"
`
r := csv.NewReader(strings.NewReader(data))
allData, err := r.ReadAll()
if err != nil {
    panic(err)
}
var entries []MyData
Unmarshal(allData, &entries)
fmt.Println(entries)

//now to turn entries into output
out, err := Marshal(entries)
if err != nil {
    panic(err)
}
sb := &strings.Builder{}
w := csv.NewWriter(sb)
w.WriteAll(out)
fmt.Println(sb)

Build Functions with Reflection to Automate Repetitive Tasks
Another thing that Go lets you do with reflection is create a function. We can use this
technique to wrap existing functions with common functionality without writing
repetitive code. For example, here’s a factory function that adds timing to any func‐
tion that’s passed into it:

func MakeTimedFunction(f interface{}) interface{} {
    ft := reflect.TypeOf(f)
    fv := reflect.ValueOf(f)
    wrapperF := reflect.MakeFunc(ft, func(in []reflect.Value) []reflect.Value {
        start := time.Now()
        out := fv.Call(in)
        end := time.Now()
        fmt.Println(end.Sub(start))
        return out
    })
    return wrapperF.Interface()
}

This function takes in any function, so the parameter is of type interface{}. It
then passes the reflect.Type that represents the function into reflect.MakeFunc,
along with a closure that captures the start time, calls the original function using
reflection, captures the end time, prints out the difference, and returns the value cal‐
culated by the original function. The value returned from reflect.MakeFunc is a

312 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



reflect.Value, and we call its Interface method to get the value to return. Here’s
how you use it:

func timeMe(a int) int {
    time.Sleep(time.Duration(a) * time.Second)
    result := a * 2
    return result
}

func main() {
    timed:= MakeTimedFunction(timeMe).(func(int) int)
    fmt.Println(timed(2))
}

You can run a more complete version of this program on The Go Playground.

While generating functions is clever, be careful when using this feature. Make sure
that it’s clear when you are using a generated function and what functionality it is
adding. Otherwise, you will be making it harder to understand the flow of data
through your program. Furthermore, as we’ll discuss in “Only Use Reflection If It’s
Worthwhile” on page 314, reflection makes your programs slower, so using it to
generate and invoke functions seriously impacts performance unless the code you are
generating is already performing a slow operation, like a network call. Remember,
reflection works best when it’s used to map data in and out of the edge of your
programs.

One project that follows these rules for generated functions is my SQL mapping
library Proteus. It creates a type-safe database API by generating a function from a
SQL query and a function field or variable. You can learn more about Proteus in my
GopherCon 2017 talk, “Runtime Generated, Typesafe, and Declarative: Pick Any
Three” and you can find the source code on GitHub.

You Can Build Structs with Reflection, but Don’t
There’s one more thing you can make with reflection and it’s weird. The
reflect.StructOf function takes in a slice of reflect.StructField and returns a
reflect.Type that represents a new struct type. These structs can only be assigned to
variables of type interface{}, and their fields can only be read and written using
reflection.

For the most part, this is a feature of academic interest only. If you want to see a demo
of how reflect.StructOf works, look at this memoizer function on The Go Play‐
ground. It uses dynamically generated structs as the keys to a map that caches the
output of a function.

Reflection Lets Us Work with Types at Runtime | 313

https://oreil.ly/NDfp1
https://oreil.ly/ZUE47
https://oreil.ly/ZUE47
https://oreil.ly/KtFyj
https://oreil.ly/fXDk2
https://oreil.ly/fXDk2


Reflection Can’t Make Methods
We’ve seen all the things that we can do with reflection, but there’s one thing we can’t
make. While we can use reflection to create new functions and new struct types,
there’s no way to use reflection to add methods to a type. This means you cannot use
reflection to create a new type that implements an interface.

Only Use Reflection If It’s Worthwhile
While reflection is essential when converting data at the boundaries of Go, be careful
using it in other situations. Reflection isn’t free. To demonstrate, let’s implement
Filter using reflection. It’s a common function in many languages, which takes in a
list of values, tests each item in the list, and returns a list that only contains the items
that passed the test. Go doesn’t let you write a single type-safe function that works on
slices of any type, but you can use reflection to write Filter:

func Filter(slice interface{}, filter interface{}) interface{} {
    sv := reflect.ValueOf(slice)
    fv := reflect.ValueOf(filter)

    sliceLen := sv.Len()
    out := reflect.MakeSlice(sv.Type(), 0, sliceLen)
    for i := 0; i < sliceLen; i++ {
        curVal := sv.Index(i)
        values := fv.Call([]reflect.Value{curVal})
        if values[0].Bool() {
            out = reflect.Append(out, curVal)
        }
    }
    return out.Interface()
}

You use it like this:

    names := []string{"Andrew", "Bob", "Clara", "Hortense"}
    longNames := Filter(names, func(s string) bool {
        return len(s) > 3
    }).([]string)
    fmt.Println(longNames)

    ages := []int{20, 50, 13}
    adults := Filter(ages, func(age int) bool {
        return age >= 18
    }).([]int)
    fmt.Println(adults)

This prints out:

[Andrew Clara Hortense]
[20 50]

314 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



Our reflection-using filter function isn’t difficult to understand, but it’s certainly
longer than a custom-written function. Let’s see how it performs on my i7-8700 with
32GB of RAM on Go 1.14 when filtering 1,000 element slices of strings and ints, com‐
pared to custom-written functions:

BenchmarkFilterReflectString-12    4822  229099 ns/op  87361 B/op  2219 allocs/op
BenchmarkFilterString-12         158197    7795 ns/op  16384 B/op     1 allocs/op
BenchmarkFilterReflectInt-12       4962  232885 ns/op  72256 B/op  2503 allocs/op
BenchmarkFilterInt-12            348441    3440 ns/op   8192 B/op     1 allocs/op

Sample code can be found on GitHub so you can run it yourself.

Using reflection is roughly 30 times slower than a custom function for string filtering
and nearly 70 times slower for ints. It uses significantly more memory and performs
thousands of allocations, which creates additional work for the garbage collector.
Depending on your needs, these might be acceptable trade-offs, but you should be
hesitant.

A more serious downside is that the compiler can’t stop you from passing in a wrong
type for either the slice or the filter parameter. You might not mind a few thou‐
sand nanoseconds of CPU time, but if someone passes in a function or slice of the
wrong type to Filter, your program will crash in production. The maintenance cost
might be too high to accept. Writing the same function for multiple types might be
repetitive, but saving a few lines of code isn’t worth the cost most of the time.

unsafe Is Unsafe
Just as the reflect package allows us to manipulate types and values, the unsafe
package allows us to manipulate memory. The unsafe package is very small and very
odd. It defines three functions and one type, none of which act like the types and
functions found in other packages.

The functions are Sizeof (which takes in a variable of any type and returns how
many bytes it uses), Offsetof (which takes in a field of a struct and returns the num‐
ber of bytes from the start of the struct to the start of the field), and Alignof (which
takes in a field or a variable and returns the byte alignment it requires). Unlike every
other non-built-in function in Go, these functions can have any value passed into
them, and the values returned are constants, so they can be used in constant
expressions.

The unsafe.Pointer type is a special type that exists for a single purpose: a pointer of
any type can be converted to or from unsafe.Pointer. In addition to pointers,
unsafe.Pointer can also be converted to or from a special integer type, called
uintptr. Like any other integer type, you can do math with it. This allows you to
walk into an instance of a type, extracting individual bytes. You can also perform

unsafe Is Unsafe | 315

https://oreil.ly/Mj3SR


1 Costa, Diego Elias Damasceno, Suhaib Mujahid, Rabe Abdalkareem and Emad Shihab. “Breaking Type-Safety
in Go: An Empirical Study on the Usage of the unsafe Package.” ArXiv abs/2006.09973 (2020).

pointer arithmetic, just like you can with pointers in C and C++. This byte manipula‐
tion changes the value of the variable.

There are two common patterns in unsafe code. The first is a conversion between
two types of variables that are normally not convertible. This is performed using a
series of type conversions with unsafe.Pointer in the middle. The second is reading
or modifying the bytes in a variable by converting a variable to an unsafe.Pointer,
converting the unsafe.Pointer to a uintptr, and then copying or manipulating the
underlying bytes. Let’s take a look at when you should do this and when you
shouldn’t.

Use unsafe to Convert External Binary Data
Given Go’s focus on memory safety, you might wonder why unsafe even exists. Just
as we used reflect to translate text data between the outside world and Go code, we
use unsafe to translate binary data. There are two main reasons for using unsafe. A
2020 paper by Costa, Mujahid, Abdalkareem, and Shihab called “Breaking Type-
Safety in Go: An Empirical Study on the Usage of the unsafe Package”1 surveyed
2,438 popular Go open source projects and found:

• “24% of the studied Go projects use unsafe at least once in their code-base.”
• “The majority of unsafe usages were motivated by integration with operating

systems and C code (45.7%).”
• “Developers also frequently use unsafe to write more efficient Go code (23.6%).”

The plurality of the uses of unsafe are for system interoperability. The Go standard
library uses unsafe to read data from and write data to the operating system. You can
see examples in the syscall package in the standard library or in the higher-level sys
package. You can learn more about how to use unsafe to communicate with the oper‐
ating system in a great blog post written by Matt Layher.

The second reason that people use unsafe is for performance, especially when read‐
ing data from a network. If you want to map the data into or out of a Go data struc‐
ture, unsafe.Pointer gives you a very fast way to do so. Let’s explore this with a
contrived example. Let’s imagine that we have a wire protocol with the following
structure:

316 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo

https://oreil.ly/N_6JX
https://oreil.ly/N_6JX
https://oreil.ly/ueHY3
https://oreil.ly/ueHY3
https://oreil.ly/VtE1t


• Value: 4 bytes, representing an unsigned, big-endian 32-bit int
• Label: 10 bytes, ASCII name for the value
• Active: 1 byte, boolean flag to indicate if the field is active
• Padding: 1 byte, because we want everything to fit into 16 bytes

Data sent over a network is usually sent in big-endian (most signif‐
icant bytes first) format, often called network byte order. Since most
CPUs in use today are little-endian (or bi-endian running in little-
endian mode), you need to be careful when reading or writing data
to a network.

We can define a data structure that matches this:

type Data struct {
    Value  uint32   // 4 bytes
    Label  [10]byte // 10 bytes
    Active bool     // 1 byte
    // Go padded this with 1 byte to make it align
}

Let’s say we just read the following bytes off the network:

[0 132 95 237 80 104 111 110 101 0 0 0 0 0 1 0]

We’re going to read these bytes into an array of length 16 and then convert that array
into the struct described previously.

Why are we using an array instead of a slice? Remember, arrays,
like structs, are value types; the bytes are allocated directly. We’ll
look at how to use slices with unsafe in the next section.

With safe Go code, we could map it like this:

func DataFromBytes(b [16]byte) Data {
    d := Data{}
    d.Value = binary.BigEndian.Uint32(b[:4])
    copy(d.Label[:], b[4:14])
    d.Active = b[14] != 0
    return d
}

unsafe Is Unsafe | 317



Or, we could use unsafe.Pointer instead:

func DataFromBytesUnsafe(b [16]byte) Data {
    data := *(*Data)(unsafe.Pointer(&b))
    if isLE {
        data.Value = bits.ReverseBytes32(data.Value)
    }
    return data
}

The first line is a little confusing, but we can take it apart and understand what’s
going on. First, we take a pointer to our byte array and convert it to an
unsafe.Pointer. Then we convert the unsafe.Pointer to a (*Data) (we have to put
(*Data) in parentheses because of Go’s order of operations). We want to return the
struct, not a pointer to it, so we dereference the pointer. Next, we check our flag to see
if we are on a little-endian platform. If so, we reverse the bytes in the Value field.
Finally, we return the value.

How do we know if we are on a little-endian platform? Here’s the code we’re using:

var isLE bool

func init() {
    var x uint16 = 0xFF00
    xb := *(*[2]byte)(unsafe.Pointer(&x))
    isLE = (xb[0] == 0x00)
}

As we discussed in “The init Function: Avoid if Possible” on page 186, you should
avoid using init functions, except when initializing a package-level value whose
value is effectively immutable. Since the endianness of your processor isn’t going to
change while your program is running, this is a good use case.

On a little-endian platform, the bytes that represent x will be stored as [00 FF]. On a
big-endian platform, x is stored in memory as [FF 00]. We use unsafe.Pointer to
convert a number to an array of bytes, and we check what the first byte is to deter‐
mine the value of isLE.

Likewise, if we wanted to write our Data back to the network, we could use safe Go:

func BytesFromData(d Data) [16]byte {
    out := [16]byte{}
    binary.BigEndian.PutUint32(out[:4], d.Value)
    copy(out[4:14], d.Label[:])
    if d.Active {
        out[14] = 1
    }
    return out
}

318 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



Or we could use unsafe:

func BytesFromDataUnsafe(d Data) [16]byte {
    if isLE {
        d.Value = bits.ReverseBytes32(d.Value)
    }
    b := *(*[16]byte)(unsafe.Pointer(&d))
    return b
}

Is this worth it? On an Intel i7-8700 computer (which is little-endian), using
unsafe.Pointer is roughly twice as fast:

BenchmarkBytesFromData-12        112741796  10.4 ns/op
BenchmarkBytesFromDataUnsafe-12  298846651   4.01 ns/op
BenchmarkDataFromBytes-12        100000000  10.3 ns/op
BenchmarkDataFromBytesUnsafe-12  235992582   5.95 ns/op

All of the examples in this section are found on GitHub.

If you have a program with many of these kinds of conversions, then it’s worth using
these low-level techniques. But for the vast majority of programs, stick with the safe
code.

unsafe Strings and Slices
We can also use unsafe to interact with slices and strings. As we implied in “Strings
and Runes and Bytes” on page 48, a string is represented in Go as a pointer to a
sequence of bytes and a length. There’s a type in the reflect package called
reflect.StringHeader that has this structure, and we use it to access and modify the
underlying representation of a string:

s := "hello"
sHdr := (*reflect.StringHeader)(unsafe.Pointer(&s))
fmt.Println(sHdr.Len) // prints 5

We can read the bytes in the string using “pointer arithmetic,” using the Data field in
sHdr, which is of type uintptr:

for i := 0; i < sHdr.Len; i++ {
    bp := *(*byte)(unsafe.Pointer(sHdr.Data + uintptr(i)))
    fmt.Print(string(bp))
}
fmt.Println()
runtime.KeepAlive(s)

unsafe Is Unsafe | 319

https://oreil.ly/E4MEF


The Data field in the reflect.StringHeader is of type uintptr, and as we’ve dis‐
cussed, you can’t rely on a uintptr to refer to valid memory for longer than a single
statement. How do we keep garbage collection from making this reference invalid?
We do so by adding a call to runtime.KeepAlive(s) at the end of the function. This
tells the Go runtime to not garbage collect s until after the call to KeepAlive.

If you want to give this code a try, go to The Go Playground.

Just as you can get a reflect.StringHeader from a string via unsafe, you can get a
reflect.SliceHeader from a slice. It has three fields, Len, Cap, and Data, which rep‐
resent the length, capacity, and data pointer for the slice, respectively:

s := []int{10, 20, 30}
sHdr := (*reflect.SliceHeader)(unsafe.Pointer(&s))
fmt.Println(sHdr.Len) // prints 3
fmt.Println(sHdr.Cap) // prints 3

Just like we did for strings, we use a type conversion to convert a pointer to our int
slice to an unsafe.Pointer. We then convert the unsafe.Pointer to a pointer to a
reflect.SliceHeader. We can then access the length and the capacity of the slice via
the Len and Cap fields. Next, we can walk through the slice:

intByteSize := unsafe.Sizeof(s[0])
fmt.Println(intByteSize)
for i := 0; i < sHdr.Len; i++ {
    intVal := *(*int)(unsafe.Pointer(sHdr.Data + intByteSize*uintptr(i)))
    fmt.Println(intVal)
}
runtime.KeepAlive(s)

Since the size of an int can be either 32 or 64 bits, we must use unsafe.Sizeof to
find out how many bytes each value is in the block of memory that’s pointed to by the
Data field. We then convert i to uintptr, multiply it by the size of an int, add it to
the Data field, convert from uintptr to unsafe.Pointer, and then convert to a
pointer to an int, and then finally dereference the int to get the value.

You can run this code on The Go Playground.

unsafe Tools
Go is a language that values tooling, and there is a compiler flag to help you find
misuse of uintptr and unsafe.Pointer. Run your code with the flag
-gcflags=-d=checkptr to add additional checks at runtime. Like the race checker, it’s
not guaranteed to find every unsafe problem and it does slow down your program.
However, it’s a good practice while testing your code.

If you want to learn more about unsafe, read through the package documentation.

320 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo

https://oreil.ly/1DTR5
https://oreil.ly/u9qB9
https://oreil.ly/xmihF


The unsafe package is powerful and low-level! Avoid using it
unless you know what you are doing and you need the perfor‐
mance improvements that it provides.

Cgo Is for Integration, Not Performance
Just like reflection and unsafe, cgo is most useful at the border between Go programs
and the outside world. Reflection helps integrate with external textual data, unsafe is
best used with operating system and network data, and cgo is best for integrating
with C libraries.

Despite being nearly 50 years old, C is still the lingua franca of programming lan‐
guages. All of the major operating systems are primarily written in either C or C++,
which means that they are bundled with libraries written in C. It also means that
nearly every programming language provides a way to integrate with C libraries. Go
calls its FFI (foreign function interface) to C cgo.

As we have seen many times, Go is a language that favors explicit specification. Go
developers sometimes deride automatic behaviors in other languages as “magic.”
However, using cgo feels a bit like spending time with Merlin. Let’s take a look at this
magical glue code. You can’t run cgo code on The Go Playground, so you can find
these code samples on GitHub. We’ll start with a very simple program that calls C
code to do some math:

package main

import "fmt"

/*
    #cgo LDFLAGS: -lm
    #include <stdio.h>
    #include <math.h>
    #include "mylib.h"

    int add(int a, int b) {
        int sum = a + b;
        printf("a: %d, b: %d, sum %d\n", a, b, sum);
        return sum;
    }
*/
import "C"

func main() {
    sum := C.add(3, 2)
    fmt.Println(sum)
    fmt.Println(C.sqrt(100))

Cgo Is for Integration, Not Performance | 321

https://oreil.ly/ct9xd


    fmt.Println(C.multiply(10, 20))
}

The mylib.h header is in the same directory as our main.go, along with mylib.c:

int multiply(int a, int b);

#include "mylib.h"

int multiply(int a, int b) {
    return a * b;
}

Assuming you have a C compiler installed on your computer, all you need to do is
compile your program with go build:

$ go build
$ ./example1
a: 3, b: 2, sum 5
5
10
200

What’s going on here? There isn’t a real package in the standard library named C.
Instead, C is an automatically generated package whose identifiers mostly come from
the C code embedded in the comments that immediately proceed it. In our example,
we declare a C function called add and cgo makes it available to your Go program as
the name C.add. We can also invoke functions or global variables that are imported
into the comment block from libraries via header files, as you can see when we call
C.sqrt from main (imported from math.h) or C.multiply (imported from mylib.h).

In addition to the identifier names that appear in the comment block (or are impor‐
ted into the comment block), the C pseudopackage also defines types like C.int and
C.char to represent the built-in C types and functions, such as C.CString to convert
a Go string to a C string.

You can use more magic to call Go functions from C functions. Go function can be
exposed to C code by putting an //export comment before the function:

//export doubler
func doubler(i int) int {
    return i * 2
}

If you do this, you can no longer declare C code directly in the comment before the
import "C" statement. You can only declare functions, not define them:

/*
    extern int add(int a, int b);
*/
import "C"

322 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo



You then have to place your C code into a .c file in the same directory as your Go
code and include the magic header "_cgo_export.h":

#include "_cgo_export.h"

int add(int a, int b) {
    int doubleA = doubler(a);
    int sum = doubleA + b;
    return sum;
}

So far, this seems pretty simple, but there’s one stumbling block when using cgo: Go is
a garbage-collected language and C is not. This makes it difficult to integrate non-
trivial Go code with C. While you can pass a pointer into C code, you cannot pass
something that contains a pointer. This is very limiting, as things like strings, slices,
and functions are implemented with pointers and therefore cannot be contained in a
struct passed into a C function. That’s not all: a C function cannot store a copy of a
Go pointer that lasts after the function returns. If you break these rules, your program
will compile and run, but it may crash or behave incorrectly at runtime when the
memory pointed to by the pointer is garbage collected.

There are other limitations. For example, you cannot use cgo to call a variadic C
function (such as printf). Union types in C are converted into byte arrays. And you
cannot invoke a C function pointer (but you can assign it to a Go variable and pass it
back into a C function).

These rules make using cgo nontrivial. If you have a background in Python or Ruby,
you might think that using cgo is worth it for performance reasons. Those developers
write the performance-critical parts of their programs in C. The speed of NumPy is
due to the C libraries that are wrapped by Python code.

In most cases, Go code is many times faster than Python or Ruby, so the need to
rewrite algorithms in a lower-level language is greatly reduced. You might think that
you could save cgo for those situations when you do need additional performance
gains, but unfortunately, it’s very difficult to make your code faster using cgo. Due to
the mismatches in the processing and memory models, calling a C function from Go
is roughly 29 times slower than a C function calling another C function. At CapitalGo
2018, Filippo Valsorda gave a talk, called “Why cgo is slow.” Unfortunately, the talk
wasn’t recorded, but slides are available. They explain why cgo is slow and why it will
not be made appreciably faster in the future.

Since cgo isn’t fast, and it isn’t easy to use for nontrivial programs, the only reason to
use cgo is if there is a C library that you must use and there is no suitable Go replace‐
ment. Rather than writing cgo yourself, see if there’s already a third-party module that
provides the wrapper. For example, if you want to embed SQLite in a Go application,
look at GitHub. For ImageMagick, check out this repository.

Cgo Is for Integration, Not Performance | 323

https://oreil.ly/MLRFY
https://oreil.ly/IEskN
https://oreil.ly/l58-1


If you find yourself needing to use an internal C library or third-party library that
doesn’t have a wrapper, you can find additional details on how to write your integra‐
tion in the Go documentation. For information on the sorts of performance and
design trade-offs that you are likely to encounter when using cgo, read Tobias Grieg‐
er’s blog post called “The Cost and Complexity of Cgo”.

Wrapping Up
In this chapter, we’ve covered reflection, unsafe, and cgo. These features are probably
the most exciting parts of Go because they allow you to break the rules that make Go
a boring, type-safe, memory-safe language. More importantly, we’ve learned why you
would want to break the rules and why you should avoid doing so most of the time.

In the next chapter, we’re taking a look at a feature that’s coming soon: Go is adding
generics.

324 | Chapter 14: Here There Be Dragons: Reflect, Unsafe, and Cgo

https://oreil.ly/9JvNI
https://oreil.ly/Oj9Tw


CHAPTER 15

A Look at the Future: Generics in Go

Despite the lower priority placed on features, Go isn’t a static, unchanging language.
New features are adopted slowly, after much discussion and experimentation. Since
the initial release of Go 1.0, there have been significant changes to the patterns that
define idiomatic Go. The first was the adoption of the context in Go 1.7. This was
followed by the adoption of modules in Go 1.11 and error wrapping in Go 1.13.

The next big change is coming soon. The Go team has released a draft design for type
parameters, which are colloquially referred to as generics. It’s expected to be included
in Go 1.18. While there might still be last-minute changes, this chapter includes the
latest information available before the book went to press. In this chapter we’ll
explore why people want generics, what Go’s implementation of generics can do, what
generics won’t be able to do, and how they might change idiomatic patterns.

Generics Reduce Repetitive Code and Increase Type Safety
Go is a statically typed language, which means that the types of variables and parame‐
ters are checked when the code is compiled. Built-in types (maps, slices, channels)
and functions (such as len, cap, or make) are able to accept and return values of dif‐
ferent types, but user-defined Go types and functions cannot. If you are familiar with
Java, C++, or another language with some variety of generics, the simplicity of Go’s
type system has probably caused a few frustrations.

If you are familiar with dynamically typed languages, where types are not evaluated
until the code runs, you might not understand what the fuss is about generics, and
you might be a bit unclear on what they are. It helps if you think of them as “type
parameters.” We are used to writing functions that take in parameters whose values
are specified when the function is called. Similarly, we create structs where the value
for the fields is specified when the struct is instantiated. Generics is the concept that it

325



is sometimes useful to write functions or structs where the specific type of a parame‐
ter or field is specified when it is used.

The case for generics on types is easy to understand. In “Code Your Methods for nil
Instances” on page 133, we looked at a binary tree for ints. If we wanted a binary tree
for strings or float64s and we wanted type safety, we would have to write a custom
tree for each type. That’s verbose and error-prone. It would be nice to write a single
data structure that could handle any type that can be compared with a <, but Go
doesn’t let you do that today.

We can create a tree that works with an interface that specifies a way to order values:

type Orderable interface {
    // Order returns:
    // a value < 0 when the Orderable is less than the supplied value,
    // a value > 0 when the Orderable is greater than the supplied value,
    // and 0 when the two values are equal.
    Order(interface{}) int
}

Now that we have Orderable, we can insert any type that has an Order method into
our Tree:

type Tree struct {
    val         Orderable
    left, right *Tree
}

func (t *Tree) Insert(val Orderable) *Tree {
    if t == nil {
        return &Tree{val: val}
    }

    switch comp := val.Order(t.val); {
    case comp < 0:
        t.left = t.left.Insert(val)
    case comp > 0:
        t.right = t.right.Insert(val)
    }
    return t
}

With an OrderableInt type, we can then insert int values:

type OrderableInt int

func (oi OrderableInt) Order(val interface{}) int {
    return int(oi - val.(OrderableInt))
}

func main() {
    var it *Tree

326 | Chapter 15: A Look at the Future: Generics in Go



    it = it.Insert(OrderableInt(5))
    it = it.Insert(OrderableInt(3))
    // etc...
}

While the Orderable interface allows us to order our values, it doesn’t allow the com‐
piler to validate that the values inserted into our data structure are all the same. If we
also had an OrderableString type:

type OrderableString string

func (os OrderableString) Order(val interface{}) int {
    return strings.Compare(string(os), val.(string))
}

The following code compiles:

var it *Tree
it = it.Insert(OrderableInt(5))
it = it.Insert(OrderableString("nope"))

The Order function uses interface{} to represent the value that’s passed in. This
effectively short-circuits one of Go’s primary advantages, compile-time type safety
checking. When we compile code that attempts to insert an OrderableString into a
Tree that already contains an OrderableInt, the compiler accepts the code. However,
it panics when run:

panic: interface conversion: interface {} is main.OrderableInt, not string

While data structures without generics are inconvenient, the real limitation is in writ‐
ing functions. Rather than write multiple functions to handle different numeric types,
Go implements functions like math.Max, math.Min, and math.Mod using float64
parameters, which have a range big enough to represent nearly every other numeric
type exactly. (The exceptions are an int, int64, or uint with a value greater than 253 –
1 or less than –253 – 1.) You also cannot create a new instance of a variable that’s
specified by interface, nor can you specify that two parameters that are of the same
interface type are also of the same concrete type. Go also doesn’t provide a way to
process a slice of any type; you cannot assign a []string or []int to a variable of
[]interface{}. This means functions that operate on slices have to be repeated for
each type of slice, unless you resort to reflection and give up some performance along
with compile-time type safety (this is how sort.Slice works).

In 2017, I wrote a blog post called Closures Are the Generics for Go that explored
using closures to work around some of these issues. However, the closure approach
has several drawbacks. It is far less readable, forces values to escape to the heap, and
simply doesn’t work in many common situations.

The result is that many common algorithms, such as map, reduce, and filter, end up
being reimplemented for different types. While simple algorithms are easy enough to

Generics Reduce Repetitive Code and Increase Type Safety | 327

https://oreil.ly/2pKYt


copy, many (if not most) software engineers find it grating to duplicate code simply
because the compiler isn’t smart enough to do it automatically.

Introducing Generics in Go
Since the first announcement of Go, there have been calls for generics to be added to
the language. Russ Cox, the development lead for Go, wrote a blog post in 2009
to explain why generics weren’t initially included. Go emphasizes a fast compiler,
readable code, and good execution time, and none of the generics implementations
that they were aware of would allow them to include all three. After a decade studying
the problem, the Go team thinks it has a workable approach, which is outlined in the
Type Parameters-Draft Design.

We’ll see how generics work in Go by looking at a simple stack. If you were to imple‐
ment a stack for any type without generics, here’s what you’d do:

type Stack struct {
    vals []interface{}
}

func (s *Stack) Push(val interface{}) {
    s.vals = append(s.vals, val)
}

func (s *Stack) Pop() (interface{}, bool) {
    if len(s.vals) == 0 {
        return nil, false
    }
    top := s.vals[len(s.vals)-1]
    s.vals = s.vals[:len(s.vals)-1]
    return top, true
}

We can use it like this:

func main() {
    var s Stack
    s.Push(10)
    s.Push(20)
    s.Push(30)
    v, ok := s.Pop()
    fmt.Println(v, ok)
}

This works and prints out 30 true, but you can insert a value of any type into this
stack, and if you want to do more than print out the value returned by Pop, you need
to use a type assertion to convert it to the type that was inserted. Let’s see how Go
generics make this stack type-safe:

328 | Chapter 15: A Look at the Future: Generics in Go

https://oreil.ly/U4huA
https://oreil.ly/POhSg


type Stack[T any] struct {
    vals []T
}

func (s *Stack[T]) Push(val T) {
    s.vals = append(s.vals, val)
}

func (s *Stack[T]) Pop() (T, bool) {
    if len(s.vals) == 0 {
        var zero T
        return zero, false
    }
    top := s.vals[len(s.vals)-1]
    s.vals = s.vals[:len(s.vals)-1]
    return top, true
}

There are a few things to note. First, we have [T any] after the type declaration. Type
parameters are placed within brackets. They are written just like variable parameters,
with the type name first and the type bound second. You can pick any name for the
type parameter, but it is customary to use capital letters for them. Go uses interfaces
to specify which types can be used. If any type is usable, this is specified with the new
universe block identifier any, which is exactly equivalent to interface{}, but is only
valid within a type constraint. Inside the Stack declaration, we declare vals to be of
type []T instead of []interface{}.

Next, we look at our method declarations. Just like we replaced interface{} with T
in our vars declaration, we do the same here. We also refer to the type in the receiver
section with Stack[T] instead of Stack.

Finally, generics make zero value handling a little interesting. In Pop, we can’t just
return nil, because that’s not a valid value for a value type, like int. The easiest way
to get a zero value for a generic is to simply declare a variable with var and return it,
since by definition, var always initializes its variable to the zero value if no other
value is assigned.

Using a generic type is very similar to using a nongeneric one:

func main() {
    var s Stack[int]
    s.Push(10)
    s.Push(20)
    s.Push(30)
    v, ok := s.Pop()
    fmt.Println(v, ok)
}

The only difference is that when we declare our variable, we include the type that we
want to use with our Stack, in this case int. Now, v has type int and not

Introducing Generics in Go | 329



interface{}, so you can use it without a type assertion. Furthermore, if you try to
push a string onto our stack, the compiler will catch it. Adding the line:

s.Push("nope")

produces the compiler error:

cannot convert "nope" (untyped string constant) to int

Since generics are not officially released yet, they are not supported on The Go Play‐
ground. However, there’s a temporary “Go2Go” Playground where you can try out the
generic stack.

Let’s add another method to our stack to tell us if the stack contains a value:

func (s Stack[T]) Contains(val T) bool {
    for _, v := range s.vals {
        if v == val {
            return true
        }
    }
    return false
}

Unfortunately, this does not compile. It gives the error:

cannot compare v == val (operator == not defined for T)

Just as interface{} doesn’t say anything, neither does any. We can only store values
of any type and retrieve them. To use ==, we need a different type. Since nearly all Go
types can be compared with == and !=, a new built-in interface called comparable is
defined in the universe block. If we change our definition of Stack to use
comparable:

type Stack[T comparable] struct {
    vals []T
}

we can then use our new method:

func main() {
    var s Stack[int]
    s.Push(10)
    s.Push(20)
    s.Push(30)
    fmt.Println(s.Contains(10))
    fmt.Println(s.Contains(5))
}

This prints out:

true
false

330 | Chapter 15: A Look at the Future: Generics in Go

https://oreil.ly/MikKu


You can try out this updated stack.

Let’s go back to our binary tree and see about making it generic. We want to limit it to
types that implement Orderable, and we want to enforce type safety at compile time.
We do this by adding type parameters. First, let’s modify the Orderable interface:

type Orderable[T any] interface {
    Order(T) int
}

This declaration says that the Orderable interface defines a single type parameter
named T that can be any type. For a type to implement this interface, the input
parameter for the Order method must be of type T. We then change the Order
method for OrderableInt to be compatible with this new generic interface:

func (oi OrderableInt) Order(val OrderableInt) int {
    return int(oi - val)
}

This is simpler than our previous method definition, which had an input parameter
of type interface{} and required a type assertion. We make a similar change to
OrderableString:

func (os OrderableString) Order(val OrderableString) int {
    return strings.Compare(string(os), string(val))
}

And now we update our Tree definition to refer to our generic Orderable interface:

type Tree[T Orderable[T]] struct {
    val         T
    left, right *Tree[T]
}

This definition might look a little complicated, but all it says is that our Tree struct
can only contain types that implement Orderable. We also update the Tree method
definitions. Insert is now:

func (t *Tree[T]) Insert(val T) *Tree[T]

and Contains is now:

func (t *Tree[T]) Contains(val T) bool

We also have to make a small change to the body of Insert. When we instantiate a
new Tree, we now use:

return &Tree[T]{val: val}

We declare our generic tree with a type parameter:

var it *Tree[OrderableInt]

Introducing Generics in Go | 331

https://oreil.ly/S6lwP


While we can assign untyped constants without an explicit type conversion, assigning
an int variable requires a type conversion (because Go doesn’t convert types
automatically):

a := 10
it = it.Insert(OrderableInt(a))

Also, notice that if we pass an OrderableString to Insert, we now get a compile-
time error:

cannot use OrderableString("nope") (constant "nope" of type OrderableString)
 as OrderableInt value in argument

You can look at our generic tree on The Go2Go Playground.

Use Type Lists to Specify Operators
While we can use our Tree with built-in types when there’s an associated type that
meets Orderable, it might be nice to use a Tree with built-in types that didn’t require
the wrappers. To do that, we need a way to specify that we can use the < operator. Go
generics do that with a type list, which is simply a list of types specified within an
interface:

type BuiltInOrdered interface {
    type string, int, int8, int16, int32, int64, float32, float64,
        uint, uint8, uint16, uint32, uint64, uintptr
}

When a type constraint is specified with an interface containing a type list, any listed
type can match. However, the allowed operators are the ones that apply for all of the
listed types. In this case, those are the operators ==, !=, >, <, >=, <=, and +. Let’s see
how this works with yet another version of Tree. First, we switch from Orderable to
BuiltInOrdered:

type Tree[T BuiltInOrdered] struct

Next, we change our switch statements in Insert and Contains back to the way they
looked in IntTree:

switch {
case val < t.val:
case val > t.val:
}

We can now use this Tree with the built-in int type (or any of the other types listed
in BuiltInOrdered):

func main() {
    var it *Tree[int]
    it = it.Insert(5)
    a := 10

332 | Chapter 15: A Look at the Future: Generics in Go

https://oreil.ly/_Z5vP


    it = it.Insert(a)
    // etc...
}

You can look at this generic tree variant on The Go2Go Playground.

Generic Functions Abstract Algorithms
We can also write generic functions. Earlier we mentioned that not having generics
made it difficult to write map, reduce, and filter implementations that work for all
types. Generics make it easy. Here are implementations from the type parameters
draft design:

// Map turns a []T1 to a []T2 using a mapping function.
// This function has two type parameters, T1 and T2.
// This works with slices of any type.
func Map[T1, T2 any](s []T1, f func(T1) T2) []T2 {
    r := make([]T2, len(s))
    for i, v := range s {
        r[i] = f(v)
    }
    return r
}

// Reduce reduces a []T1 to a single value using a reduction function.
func Reduce[T1, T2 any](s []T1, initializer T2, f func(T2, T1) T2) T2 {
    r := initializer
    for _, v := range s {
        r = f(r, v)
    }
    return r
}

// Filter filters values from a slice using a filter function.
// It returns a new slice with only the elements of s
// for which f returned true.
func Filter[T any](s []T, f func(T) bool) []T {
    var r []T
    for _, v := range s {
        if f(v) {
            r = append(r, v)
        }
    }
    return r
}

Functions place their type parameters after the function name and before the variable
parameters. Map and Reduce have two type parameters, both of any type, while Filter
has one. When we run the code:

Generic Functions Abstract Algorithms | 333

https://oreil.ly/N5cd2


words := []string{"One", "Potato", "Two", "Potato"}
filtered := Filter(words, func(s string) bool {
    return s != "Potato"
})
fmt.Println(filtered)
lengths := Map(filtered, func(s string) int {
    return len(s)
})
fmt.Println(lengths)
sum := Reduce(lengths, 0, func(acc int, val int) int {
    return acc + val
})
fmt.Println(sum)

we get the output:

[One Two]
[3 3]
6

Try it for yourself.

Just as Go supports type inference when using the := operator, it also supports type
inference to simplify calls to generic functions. In some situations, type inference isn’t
possible (for example, when a type parameter is only used as a return value). When
that happens, all of the type arguments must be specified:

type Integer interface {
    type int, int8, int16, int32, int64, uint, uint8, uint16, uint32, uint64
}

func Convert[T1, T2 Integer](in T1) T2 {
    return T2(in)
}

func main() {
    var a int = 10
    b := Convert[int, int64](a)
    fmt.Println(b)
}

Type Lists Limit Constants and Implementations
Type lists also specify which constants can be assigned to variables of the generic
type. There are no constants that can be assigned to all of the listed types in
BuiltInOrdered, so you cannot assign a constant to a variable of that generic type. If
you use the Integer interface, the following code will not compile, because you can‐
not assign 1000 to an 8-bit integer:

// INVALID!
func PlusOneThousand[T Integer](in T) T {

334 | Chapter 15: A Look at the Future: Generics in Go

https://oreil.ly/xauU3


    return in + 1_000
}

However, this is valid:

// VALID
func PlusOneHundred[T Integer](in T) T {
    return in + 100
}

In addition to built-in types, type lists can also contain type literals for slices, maps,
arrays, channels, or structs. This is a bit contrived, but we can use this ability to write
a single function that can copy the values out of any map or slice:

type Rangeable[E comparable, T any] interface {
    type []T, map[E]T
}

func CopyVals[E comparable, T any, R Rangeable[E, T]](vals R) []T {
    var out []T
    for _, v := range vals {
        out = append(out, v)
    }
    return out
}

This example gets a little mind-bending, because we use type parameters on an inter‐
face that we use as a type parameter. Here’s how we use the CopyVals function with a
[]string and a map[string]float64:

func main() {
    x := []string{"a", "b", "c"}
    var out []string = CopyVals[interface{}, string, []string](x)
    fmt.Println(out)

    y := map[string]float64{"a": 1.2, "b": 3.1, "c": 10}
    var out2 []float64 = CopyVals[string, float64, map[string]float64](y)
    fmt.Println(out2)
}

Unfortunately, the current implementation of type inference can’t infer the type
parameters, so we have to supply them. This code prints out:

[a b c]
[3.1 10 1.2]

You can try this code for yourself.

A type list entry that’s a built-in type or type literal matches any type whose underly‐
ing type matches the built-in type or type literal. If you specify user-defined types on
a type list, only the specified types can be used for the type parameter.

Type Lists Limit Constants and Implementations | 335

https://oreil.ly/K9SWe


If you specify both built-in types and user-defined types in your
type list, the interface can be met by any of the specified user-
defined types or by any type whose underlying type matches the
built-in types.

Specifying a user-defined type does not give you access to the methods on the type.
Any methods on user-defined types that you want to access must be defined in the
interface, but all types specified in the type list must implement those methods, or
they will not match the interface. Here’s some code to make this clearer. Let’s define a
few types:

type MyInt int
func (mi MyInt) String() string {
    return strconv.Itoa(int(mi))
}

type AlsoMyInt int
func (ami AlsoMyInt) String() string {
    return "42"
}

type MyFloat float64
func (mf MyFloat) String() string {
    return strconv.FormatFloat(float64(mf), 'E', -1, 64)
}

Here’s a function that takes in a value of type T, doubles it, and returns the result of
calling the String method. We’re going to try a few different interfaces as a type
bound, so we’ll put ??? here for now (this is not valid Go syntax):

func DoubleString[T ???](val T) string {
    x := val * 2
    return x.String()
}

Our first type bound attempt is:

type IntOrFloat interface {
    type int, float64
}

If we try to use IntOrFloat as the type bound, the code fails to compile with:

x.String undefined (interface IntOrFloat has no method String)

Let’s try another type bound, this one using MyInt and MyFloat:

type MyTypes interface {
    type MyInt, MyFloat
}

336 | Chapter 15: A Look at the Future: Generics in Go



Because the methods on types in the type list are ignored, we get the same compila‐
tion error:

x.String undefined (interface MyTypes has no method String)

Now let’s try to include a method in our type bound:

type StringableIntOrFloat interface {
    type int, float64
    String() string
}

The function compiles if we use StringableIntOrFloat. Since int and float64 don’t
implement String (or any other methods), you cannot pass variables of those types
into DoubleString. If you do, you’ll get compile-time errors:

int does not satisfy StringableIntOrFloat (missing method String)
float64 does not satisfy StringableIntOrFloat (missing method String)

However, you can pass in MyInt, MyFloat, or AlsoMyInt.

Let’s try one last type bound:

type StringableMyType interface {
    type MyInt, MyFloat
    String() string
}

The function also compiles if we use StringableMyType. In this case, you can only
pass in variables of type MyInt or MyFloat. Attempting to pass in a variable of type
AlsoMyInt results in a compile-time error:

AlsoMyInt does not satisfy StringableMyType (AlsoMyInt or int not found in
    MyInt, MyFloat)

One last note about type lists: an interface with a type list can only be used for a type
parameter.

Things That Are Left Out
Go remains a small, focused language, and the generics implementation for Go
doesn’t include many features that are found in generics implementations in other
languages. Here are some of the features that are not going to be included in the ini‐
tial implementation of Go generics.

If you look back at our binary tree example, you’ll see that generics have left us with
two type-safe implementations: one that works with the built-in types that are com‐
pared with > and < via the BuiltInOrdered interface and a second implementation
for user-defined types that meet our Orderable interface. While this is better than
one tree implementation per type, it is still not ideal. Many languages, such as Python,
Ruby, and C++, include operator overloading, which allows user-defined types to

Things That Are Left Out | 337



specify implementations for operators. Go will not be adding this feature. This means
that you can’t use range to iterate over user-defined container types or [] to index
into them.

There are good reasons for leaving out operator overloading. For one thing, there are
a surprisingly large number of operators in Go. Go also doesn’t have function or
method overloading, and you’d need a way to specify different operator functionality
for different types. Furthermore, operator overloading can lead to code that’s harder
to follow as developers invent clever meanings for symbols (in C++, << means “shift
bits left” for some types and “write the value on the right to the value on the left” for
others). These are the sorts of readability issues that Go tries to avoid.

Another useful feature that’s been left out of the initial Go generics implementation is
additional type parameters on methods. Looking back on the Map/Reduce/Filter
functions, you might think they’d be useful as methods, like this:

type functionalSlice[T any] []T

// THIS DOES NOT WORK
func (fs functionalSlice[T]) Map[E any](f func(T) E) functionalSlice[E] {
    out := make(functionalSlice[E], len(fs))
    for i, v := range fs {
        out[i] = f(v)
    }
    return out
}

// THIS DOES NOT WORK
func (fs functionalSlice[T]) Reduce[E any](start E, f func(E, T) E) E {
    out := start
    for _, v := range fs {
        out = f(out, v)
    }
    return out
}

which you could use like this:

var numStrings = functionalSlice[string]{"1", "2", "3"}
sum := numStrings.Map(func(s string) int {
    v, _ := strconv.Atoi(s)
    return v
}).Reduce(0, func(acc int, cur int) int {
    return acc + cur
})

Unfortunately for fans of functional programming, this does not work. Rather than
chaining method calls together, you need to either nest function calls or use the much
more readable approach of invoking the functions one at a time and assigning the
intermediate values to variables. The draft design goes into detail on the reason for

338 | Chapter 15: A Look at the Future: Generics in Go



excluding parameterized methods, but it is unclear how they would interact with a
type meeting an interface.

There are also no variadic type parameters. In “Build Functions with Reflection to
Automate Repetitive Tasks” on page 312, we wrote a wrapper function using reflec‐
tion to time any existing function. Those must still be handled via reflection as there’s
no way to do this with generics. Any time you use type parameters, you must explic‐
itly provide a name for each type you need, so you cannot represent a function with
any number of parameters of different types.

Other features left out of Go generics are more esoteric. These include:

Specialization
A function or method can be overloaded with one or more type-specific versions
in addition to the generic version. Since Go doesn’t have overloading, this feature
is not under consideration.

Currying
Allows you to declare a type based on a generic type that only specifies some of
the type parameters.

Metaprogramming
Allows you to specify code that runs at compile time to produce code that runs at
runtime.

Idiomatic Go and Generics
Adding generics clearly changes some of the advice for how to use Go idiomatically.
The use of float64 to represent any numeric type will end. We will no longer use
interface{} to represent any possible value in a data structure or function parame‐
ter. You can handle different slice types with a single function. But don’t feel the need
to switch all of your code over to using type parameters immediately. Your old code
will still work as new design patterns are invented and refined.

Since there are no production implementations of generics, it’s hard to say how they
will affect performance. It’s likely that there will be some impact at both compile time
and runtime. As always, the goal is to write maintainable programs that are fast
enough to meet your needs. Use the benchmarking and profiling tools we discussed
in “Benchmarks” on page 283 to measure and improve.

Further Futures Unlocked
The first version of generics is planned for Go 1.18. In addition to the new syntax and
the addition of any and comparable to the universe block, it is likely that there will be
changes to the standard library to support generics. These include new interface

Idiomatic Go and Generics | 339



definitions to represent common cases (like Orderable), new types (like a set, tree, or
ordered map), and new functions.

Other changes may follow. Now that any has been reserved to indicate that a type
parameter can match anything, it could be extended to also be used as a general
replacement for interface{}. This wouldn’t change the meaning of any code or give
any new expressive power, but it would change the look of code. Since readability is so
important, these sorts of changes need to be considered carefully.

Generics might be the basis for other future features. One possibility is sum types. Just
as type lists are used to specify the types that can be substituted for a type parameter,
they could also be used for interfaces in variable parameters. This would enable some
interesting features. Today, Go has a problem with a common situation in JSON: a
field that can be a single value or a list of values. Even with generics, the only way to
handle this is with a field of type interface{}. Adding sum types would allow you to
create an interface that specifies that a field could be a string, a slice of strings, and
nothing else. A type switch could then completely enumerate all of the possibilities,
improving type safety. This ability to specify a bounded set of types allows many
modern languages (including Rust and Swift) to use sum types to represent enums.
Given the weakness of Go’s current enum features, this might be an attractive solu‐
tion, but it will take time for these ideas to be evaluated and explored.

Wrapping Up
In this chapter, we took a look forward at generics and how they will change how we
use Go to solve problems. The implementation isn’t released yet, so there’s still a pos‐
sibility of additional changes, but they are likely to be minimal.

We’ve completed our journey through Go and how to use it idiomatically. Like any
graduation ceremony, it’s time for a few closing words. Let’s look back at what was
said in the preface. “[P]roperly written, Go is boring….Well-written Go programs
tend to be straightforward and sometimes a bit repetitive.” I hope you can now see
why this leads to better software engineering. Idiomatic Go is a set of tools, practices,
and patterns that makes it easier to maintain software across time and changing
teams. That’s not to say the cultures around other languages don’t value maintainabil‐
ity; it just may not be their highest priority. Instead, they emphasize things like per‐
formance, new features, or concise syntax. There is a place for these trade-offs, but in
the long run, I suspect Go’s focus on crafting software that lasts will win out.

I wish you the best as you create the software for the next 50 years of computing.

340 | Chapter 15: A Look at the Future: Generics in Go



Index

A
abstract types, 130, 141
address operator (&), 109
addresses, 107
aliases, creating, 188
Amdahl’s Law, 204
anonymous functions, 96
anonymous structs, 58
APL programming language, 137
append function, 39-40, 43-46
arithmetic operators, 22
arrays, 35-37

array literals, 35
converting arrays to slices, 46
versus slices, 37
sparse arrays, 35

Artifactory, 201
As function, 170-173
assignment operator (=), 29
atomic variables, 230
automated testing, 271
automatic type promotion, 26
automation, 312

B
backpressure, 217
backward compatibility, 14
Base64 encoding, 247
benchmarks, 283-286
binary data, converting external, 316-319
bit-manipulation operators, 22
blackhole variable, 284
blank imports, 187
blank returns, 93

blank switch statement, 81
blocks (see also control structures; shadowing)

basics of, 61
detecting shadowed variables, 64
file block, 61, 181
package block, 29, 61
shadowing variables, 62-64
universe block, 65

booleans, 19
bracket syntax, 36
break statement, 69
buckets, 52
buffered channels, 207, 216
build tags, 294
built-in functions

append, 39-40, 43-46
cap, 40, 207
close, 208
complex, 24
copy, 46
delete, 54
imag, 24
len, 36, 38, 49, 207
make, 41, 42, 51, 206
new, 109
panic, 174-176
real, 24
recover, 174-176

built-in types
array, 35-37, 46
booleans, 19
channel, 206-209, 227-230
complex types, 24
concepts applying to

341



literals, 18
zero value, 17

map, 51-56, 73, 119-122
numeric types

choosing which integer to use, 21
floating point types, 22
integer operators, 22
integer types, 20
special integer types, 20

slice, 37-47, 98, 119-123, 319, 335
string, 18, 26, 48-51, 74, 163, 319

bytes, 48-51

C
C library integration, 321-324
call by value languages, 39, 104-106, 113
camel case, 33
cancel function, 216
cancellation, 258-261
cap function, 40, 207
cgo, 299, 321-324
channels

basics of, 206
behavior of, 209
closing, 208
creating, 206
for-range and, 208
versus mutexes, 227-230
reading, writing, and buffering, 206

chi, 253
child instances, 136
circular dependencies, 187
classes, 56
close function, 208
closures

benefits of, 97
definition of term, 97
passing functions as parameters, 98
returning functions from functions, 99
using as generics, 327

code
avoiding fragile programs, 96
avoiding repetitive, 312, 325
avoiding unneeded allocations, 123
checking code coverage, 280-282
cleaning up import statements, 6
cleanup code, 100-104
ease of reading, 104
formatting, 6

handling context cancellation, 263
linting and vetting, 8, 185
made clearer with documentation, 136, 184
organizing with packages, 178
overriding principle, 17
placeholders for, 256
profiling code, 286
running code exactly once, 222
semicolon insertion rule, 7
timing out code, 219
writing readable and maintainable, 147, 182

code examples, obtaining and using, xv, 271
code points, 50
code reuse, 139
collisions, 52
comma ok idiom, 54, 119, 150, 208, 262, 265
comments, writing, 184
comparison operators, 22
compatibility promise, 256
compile-time errors (see also error handling)

comparing slices, 38
failure to assign value returned from

append, 39
importing packages without identifiers, 180
panics, 36
specifying slice capacity less than length, 42
unused variables, 32
variables for len function, 38

complex function, 24
complex numbers, 24
composite types

arrays, 35-37
maps

comma ok idiom, 54, 119, 150, 208, 262,
265

declaring maps, 51
deleting from maps, 54
hash maps, 52
maps versus slices, 52
reading and writing maps, 53
using maps as sets, 55

slices
append function, 39
versus arrays, 37
benefits of, 37
capacity of, 39-41
converting arrays to slices, 46
copy function, 46
creating, 37

342 | Index



declaring slices, 42
inability to compare, 38
len function, 38
make function, 41
maps versus slices, 119-122
reading and writing, 37
slicing slices, 43-46
sorting slices, 98

structs
anonymous structs, 58
comparing and converting structs, 59
defining structs, 56
struct literals, 57

composition and promotion, 139
concatenation operator (+), 26
concrete types, 130
concurrency

additional resources, 230
atomic variables, 230
best use of, 203
channels

basics of, 206
behavior of, 209
closing, 208
creating, 206
for-range and, 208
reading, writing, and buffering, 206

definition of term, 203
finding concurrency problems, 295
goroutines, 205
mutexes, 227-230
versus parallelism, 204
practices and patterns

backpressure, 217
buffered and unbuffered channels, 216
cancel function for termination, 216
concurrency-free APIs, 212
done channel pattern, 215
goroutine cleanup, 214
goroutines, for loops, and varying vari‐

ables, 213
running code exactly once, 222
timing out code, 219
turning off cases in selects, 219
using multiple tools, 223-226
using WaitGroups, 220-222

select statement, 209-212
const keyword, 29-31
constants

declaring, 29
limitations of, 30
naming, 33
typed and untyped, 31
unused constants, 32
using for sentinel errors, 164

context package
acquiring and passing context, 255-258
cancellation, 258-261
context.Background, 256
context.TODO, 256
context.WithValue, 265
timers, 261-265

context.WithDeadline, 262
context.WithTimeout, 262
handling context cancellation, 263

values, 265-270
continue keyword, 70
control structures (see also blocks; shadowing)

for statement
choosing the right statement, 77
complete for statement, 67
condition-only for statement, 68
continuing loops, 70
exiting loops, 69
for loops and goroutines, 213
for-range statement, 71
for-range value as a copy, 75
formats used in Go, 67
infinite for statement, 68
iterating over maps, 73
labeling for statements, 76

goto statement, 83-85
if statement, 65-67
if versus switch statements, 83
switch statement, 78-82

copy function, 46
critical section, 227
crypto/rand package, 183
CSP (Communicating Sequential Processes),

203
csv.NewReader function, 307
csv.NewWriter function, 307
ctx parameter, 255
currying, 339
custom error types, 166

D
data races, 295

Index | 343



Daylight Saving Time, 240
deadlocks, 210
declaration lists, 28 (see also primitive types

and declarations)
decorator pattern, 145, 235
DeepEqual function, 38, 301
defer keyword, 100-104, 173
delete function, 54
Delve debugger, 9
dependencies, circular, 187
dependency injection, 155-159
dereferencing, 109
development environment

deleting secondary, 15
environment variables, 3
go command

go build, 4
go fmt, 6
go install, 5
go run, 3
tools accessed by, 3

Go workspace, 2
goimports, 6
installing Go tools, 1
linting and vetting, 8, 185
Makefiles, 13
tool selection

GoLand, 10
The Go Playground, 11
Visual Studio Code, 9

updating, 14
validating environment setup, 2

do keyword (simulation of), 70
documentation, 136, 184
done channel pattern, 215
duck typing, 142-145
dynamic dispatch, 140
dynamically typed languages, 325

E
embedding, 139-141, 146
encoding/gob, 247
encoding/json package

custom JSON parsing
json.Marshaler, 246
json.Unmarshaler, 246

encoding and decoding JSON streams, 245
JSON, readers, and writers

json.Decoder, 243

json.Encoder, 243
json.NewEncoder, 244

unmarshaling and marshaling, 243
using struct tags to add metadata, 241

enumerations, 137
environment variables

GOPROXY environment variable, 5, 201
GOROOT environment variable, 3
listing, 3

ErrGroup type, 222
error chains, 168
error handling (see also compile-time errors)

avoiding fragile programs, 96
basics of, 161-163
custom error types, 166
errors as values, 165-168
Is and As functions, 170-173
panic and recover functions, 174-176
sentinel errors, 163-165
stack traces, 176
using strings for simple errors, 163
wrapping errors, 168-170
wrapping errors with defer, 173

escape analysis, 125
escapes, 124
explicit type conversion, 26, 36

F
fallthrough keyword, 80
file block, 61
floating point literals, 18
floating point types, 22
for statement

choosing the right for statement, 77
complete for statement, 67
condition-only for statement, 68
for loops and goroutines, 213
for-range and channels, 208
for-range statement, 71
for-range value as a copy, 75
formats used in Go, 67
infinite for statement, 68-71
iterating over maps, 73
labeling for statement, 76

for-select loops, 211
full slice expression, 45
func keyword, 87, 130
functional programming, 338
functions

344 | Index



call by value languages, 104-106
closures, 97-100

benefits of, 97
passing functions as parameters, 98
returning functions from functions, 99
using as generics, 327

declaring and calling, 87-94
blank returns, 93
function declaration parts, 87
ignoring returned values, 91
multiple return values, 90
named return values, 92
simulating named and optional parame‐

ters, 88
variadic input parameters, 89

defer keyword, 100-104
function overloading, 186
functions are values in Go, 94-97

anonymous functions, 96
function type declarations, 96
signature of the function, 94

generic functions, 333
higher-order functions, 100
launching as goroutines, 206
versus methods, 135
similarity to methods, 134

G
garbage collection

garbage creation, 125
reducing workload, 123-126

generics
benefits of, 325-328
features not included, 337
generic functions abstract algorithms, 333
idiomatic Go and, 339
implementing in Go, 328-332
limiting constants and implementations,

334-337
specifying operators with types lists, 332
standard library changes, 339

globally unique identifiers, 177
Go

benefits of, xiii, 6
goals of, 32
language style, 159
overriding principle, 17
prerequisites to learning, xiv
using multiple versions of, 14

go command
go build, 4, 191
go doc, 185
go fmt, 6
go install, 5
go mod, 178
go mod vendor, 197
go run, 3
go test, 272
go vet, 8
tools accessed by, 3

go keyword, 206
The Go Playground, 11
Go runtime

management of processes by, 205
new memory allocation, 40
services provided by, 40

go test tool, 271
Go Wiki page, 198
go-cmp, 277
go.mod files, 178
gob protocol, 247
godoc format, 184
goimports, 6
GoLand, 10
golang.org/x packages, 222
golangci-lint, 8, 185
golint, 8, 185
Gonum, 26
gopls (Go Language Server), 9
GOPROXY environment variable, 5, 201
gorilla mux, 253
GOROOT environment variable, 3
goroutine leaks, 214
goroutines, 205, 213
gotto statement, 83-85
GRPC protocol, 247

H
hash algorithms, 52
hash maps, 52
heap, 124
heap allocations, 147
hey (Go tool), 5
higher-order functions, 100
HTTP/2 client and server, 247

(see also net/http package)
httptest, 291-294

Index | 345



I
identifiers, exporting, 178, 189
IEEE 754 specification, 23
if statements, 65-67, 83
imag function, 24
immutable values, 29, 187
implicit interfaces, 142, 155-159
import paths, 180, 199
import statement, 61, 178, 187
increment operator (++), 54
index expression, 48
indirection operator (*), 109
inheritance, 135, 140
init function, 186, 318
int32 type, 26
integer literals, 18
integer operators, 22
integer types, 20
integration, 26, 321
integration tests, 294
interfaces

accept interfaces, return structs, 146
declaring, 141
embedding and, 146
function types as a bridge to, 154
implicit interfaces, 155-159
naming, 142
nil (zero value)

empty interfaces, 148
nil versus non-nil, 147
type assertions and type switches,

150-154
optional interfaces, 152
purpose of, 142
sharing, 144
as type-safe duck typing, 142-145

internal package, 185
interoperability, 316
interpreted string literals, 18
io package, 233-238

io.Closer, 237
io.Copy, 236
io.LimitReader, 236
io.MultiReader, 236
io.MultiWriter, 236
io.ReadCloser, 237
io.Reader, 233
io.ReadSeeker, 237
io.ReadWriteCloser, 237

io.ReadWriter, 237
io.ReadWriteSeeker, 237
io.SeekCurrent, 237
io.SeekEnd, 237
io.Seeker, 237
io.SeekStart, 237
io.WriteCloser, 237
io.Writer, 233
io.WriteSeeker, 237

ioutil package
ioutil.NopCloser, 238
ioutil.ReadAll, 237
ioutil.ReadFile, 237
ioutil.WriteFile, 237

Is function, 170-173

J
JSON, 241

(see also encoding/json package)

K
keywords

break, 69
case, 79, 210
chan, 207
const, 29-31
continue, 70
default, 78
defer, 100-104, 173
do (simulation of), 70
else, 65
fallthrough, 80
for, 67
func, 87, 130
go, 206
goto, 83
if, 65
import, 178
interface, 141
looping keywords, 67
map, 51
package, 179
versus predeclared identifiers, 65
range, 71
return, 88
select, 209-212, 219
struct, 56
switch, 78, 150
type, 56, 188

346 | Index



var, 27-29

L
lazy loading, 222
len function, 36, 38, 49, 207
library management

building packages
avoiding init function, 186, 318
circular dependencies, 187
creating and accessing packages, 179-181
import and export statements, 178
internal package, 185
module organization, 182
overriding package names, 183-185
package comments, 184
package names, 181-182
renaming and reorganizing APIs, 188

concepts underlying, 177
modules

declaring projects as, 177
Go Wiki page, 198
go.mod files, 178
importing third-party code, 190-192
minimum version selection, 194
module proxy servers, 200-202
publishing, 199
service gathering documentation, 198
updating to compatible versions, 195
updating to incompatible versions, 196
vendoring, 197
versioning modules, 199
working with versions, 192-194

LICENSE file, 199
linear algebra, 26
linting, 8, 64, 185
literals

floating point literals, 18
in Go, 18
integer literals, 18
interpreted string literals, 18
raw string literals, 19
rune literals, 18
string literals, 18

looping keywords, 67

M
main function, 88
major version, 194
make function, 41, 42, 51, 206

Makefiles, 13
making the zero value useful, 223
mantissa, 23
maps

comma ok idiom, 54, 119, 150, 208, 262, 265
declaring maps, 51
deleting from maps, 54
hash maps, 52
iterating over maps, 73
maps versus slices, 52, 119-122
reading and writing maps, 53
using maps as sets, 55

marshaling data, 58, 241, 243, 307
math/rand package, 183
matrices, 26
mechanical sympathy, 126
memoizer function, 313
metadata, 241, 255
metaprogramming, 339
method chaining, 338
method sets, 132, 141
methods

adding to Go types, 238
additional type parameters on, 338
coding for nil instances, 133
defining, 130
enumerations, 137
executable documentation and types, 136
versus functions, 135
inability to make with reflection, 314
method invocations, 131, 247
method overloading, 130
method overriding, 186
packages and, 130
pointer receivers and value receivers,

131-133
receiver specification, 130
similarity to functions, 134
support for in Go, 130
type declarations versus inheritance, 135
using iota for enumerations, 137

middleware pattern, 251-253
minor version, 194
mocks, 291
modules

declaring projects as, 177
Go Wiki page, 198
importing third-party code, 190-192
minimum version selection, 194

Index | 347



module proxy servers, 200-202
organizing, 182
publishing, 199
purpose of, 177
service gathering documentation, 198
updating to compatible versions, 195
updating to incompatible versions, 196
vendoring, 197
versioning modules, 199
working with versions, 192-194

monotonic time, 240
multiple return values, 90
mutability, 113
mutexes, 227-230

N
named return values, 92
nested code, 104
net/http package

*http.Request, 249
*http.ServMux, 250
Client, 247
http.Handler, 249
http.NewServeMux, 250
http.ResponseWriter, 249
Server, 249-253

idiomatic third-party modules, 253
middleware pattern, 251-253

new function, 109
nil

versus null, 38
zero value for pointers, 108

nil instances, 133
NTP (Network Time Protocol), 240
null, 38
numeric types

choosing which integer to use, 21
floating point types, 22
integer operators, 22
integer types, 20
special integer types, 20

numerical computing, 25

O
object-oriented languages, 159
open source Go projects, 198-199
operator overloading, 337
operators

& operator, 109

* operator, 109
+ operator, 26
++ operator, 54
:= operator, 28, 63
<- operator, 206
= operator, 29
arithmetic operators, 22
bit-manipulation operators, 22
checking for bad, 281
comparison operators, 22
integer operators, 22
proper spacing around, 6
specifying with type lists, 332
… operator, 39

optimization, 284
optional interfaces, 152

P
package block, 29, 32, 61
package clause, 179
package keyword, 179
packages

avoiding init function, 186, 318
circular dependencies, 187
creating and accessing, 179-181
import and export statements, 178
internal package, 185
module organization, 182
overriding package names, 183-185
package comments, 184
package names, 181-182
purpose of, 177
renaming and reorganizing APIs, 188

panic function, 174-176
panics, 36
parallelism, 204
parameters

mutable indicated by pointers, 113-115
passing functions as parameters, 98
simulating named and optional, 88
variadic input parameters, 89

parent/child relationships, 136, 258
patch version, 194
performance, 316
pkg.go.dev, 198
placeholders, 256
pointer arithmetic, 109, 315, 319
pointer receivers, 131-133
pointer type, 109

348 | Index



pointers
basics of, 107-111
benefits of in Go, 111
best use of, 117
indicating multiple parameters, 113-115
maps versus slices, 119-122
pointer passing performance, 118
reducing garbage collector's workload,

123-126
slices as buffers, 122
stack pointers, 124
zero value versus no value, 118

predeclared identifiers, 65
primitive types and declarations

built-in types
boleans, 19
complex types, 24
literals and, 18
numeric types, 20-23
zero value and, 17

const, 29-31
explicit type conversion, 26
naming variables and constants, 33
strings and runes, 26
var versus :=, 27-29

private repositories, 201
process, 205
profiling, 286
proxy servers

private repositories, 201
purpose of, 200
specifying, 201
sum database, 200

pseudo-versions, 191
publishing modules, 199

R
race checker, 295
random number generation, 183
raw string literals, 19
real function, 24
receiver specification, 130
recover function, 174-176
reflect package

benefits of, 300
best uses for, 300
core concepts

Elem method, 302, 304
Kind function, 302

Set method, 305
TypeOf function, 301
types and kinds, 301
ValueOf function, 304
values, 304

DeepEqual function, 38
making new values

automating repetitive tasks, 312
avoiding structs, 313
checking if interface value is nil, 306
drawbacks of reflection, 314
inability to make methods, 314
IsNil method, 306
IsValid method, 306
reflect.New function, 305
stringSliceType variable, 306
stringType variable, 306
writing data marshalers, 307-311

representing types in variables, 118
repetitive tasks, 312
repositories

private, 201
purpose of, 177

resource cleanup, 100-104
REST APIs, 241
return keyword, 88
returned values

blank returns, 93
ignoring, 91
multiple, 90
named return values, 92

RPC (remote procedure call), 247
rune literals, 18, 26, 48-51

S
security issues

hijacked modules, 201
passwords and Go Playground, 12
updates for bugs and security fixes, 15

select statement, 209-212, 219
semantic import versioning, 196
semantic versioning (SemVer), 194
semicolon insertion rule, 7
sentinel errors, 163-165
shadow linter, 64
shadowing (see also blocks; control structures)

avoiding in goroutines, 213
detecting shadowed variables, 64
shadowing package names, 63

Index | 349



shadowing variables, 62
shadowing with multiple assignment, 63

simple statements, 67
slice expression, 43, 48
slices

append function, 39
benefits of, 37
as buffers, 122
capacity of, 39-41
converting arrays to slices, 46
copy function, 46
creating, 37
declaring slices, 42
inability to compare, 38
interacting with using unsafe, 319
len function, 38
make function, 41
maps versus slices, 119-122
reading and writing, 37
slicing slices, 43-46
sorting, 98

Sonatype, 201
source code repositories, 5
sparse arrays, 35
special integer types, 20
specialization, 339
stack, 124
stack frames, 124
stack pointers, 124
stack traces, 176
standard library

benefits of, 233
changes in for generics, 339
context package, 255-270
crypto/rand package, 183
documentation, 233
encoding/gob, 247
encoding/json package, 241-247
errors package, 161-176
io package, 233-238
ioutil package, 237-238
math/rand package, 183
net/http package, 247-253
reflect package, 300-315
sync package, 220-230
test package, 271-296
time package, 238-241
unsafe package, 315-321
XML and Base64 encoders, 247

starvation, 209
statically typed languages, 325
statistics, 26
strings

indicating string literals, 18
interacting with using unsafe, 319
iterating over strings, 74
runes and, 26
runes and bytes and, 48-51
using strings for simple errors, 163

strings.NewReader function, 235
struct tags, 241
structs

accept interfaces, return structs, 146
anonymous structs, 58
avoiding with reflection, 313
comparing and converting structs, 59
defining structs, 56, 129
struct literals, 57
using maps as sets, 56

subtyping, 136
sum database, 200
sum types, 340
switch statement, 78-83

similarity to select statement, 209
sync package, 220-230

sync.Map, 230
sync.Mutex, 227
sync.RWMutex, 230
sync.WaitGroup, 221

T
table tests, 278-280
testing

basics of, 271-278
caching test results, 275
comparing test results, 277
reporting test failures, 273
setting up and tearing down, 273
storing sample test data, 275
testing public APIs, 276

benchmarks, 283-286
checking code coverage, 280-282
finding concurrency problems, 295
integration tests and build tags, 294
stubs in Go, 286-294

httptest, 291
mocks versus stubs, 291

table tests, 278-280

350 | Index



The Go Playground, 11
third-party tools

Artifactory, 201
C library integration, 321-324
chi, 253
Delve debugger, 9
go-cmp, 277
GoLand, 10
Gonum, 26
gopls (Go Language Server), 9
gorilla mux, 253
importing third-party code, 190-192
linting and vetting, 8, 64
obtaining, 5
Sonatype, 201
for stack traces, 176
The Go Playground, 11
to enhance server functionality, 253
Visual Studio Code, 9
Wire, 159

threading, 203, 205
threadlocal variables, 255
time package

monotonic time, 240
time.Duration, 238
time.NewTicker, 241
time.Now, 239
time.Parse, 239
time.ParseDuration, 239
time.Tick, 241
time.Time, 239
timers and timeouts, 241

timers, 261-265
truthiness, 27
type assertions, 150-154
type conversion, 26, 36, 49, 136, 151
type declarations

function type declarations, 96, 154
versus inheritance, 135

type inference, 334
type keyword, 56, 188
type lists, 332, 334-337, 340
type safety, 325
type switches, 151-154
types (see also methods)

abstract types, 130
concrete types, 130
declaring, 130
defining structs, 129

U
uint8 type, 26
unbuffered channels, 207, 216
underscore character (_), 33, 72, 162, 173, 187

in numbers, 18
Unicode support, 26
universe block, 65
Unmarshal function, 117, 243, 310
unmarshaling data, 58, 241, 243
unsafe package

benefits of, 299
best use of, 109, 316
common patterns in, 316
converting external binary data, 316-319
functions and type defined in

Alignof function, 315
Offsetof function, 315
Sizeof function, 315
unsafe.Pointer type, 315

tools included in, 320
unsafe strings and slices, 319

unused variables, 32
updates, 14
UTF-8 encoding, 48, 50

V
value receivers, 131-133
var keyword, 27-29
var versus :=, 27
variables

atomic variables, 230
detecting shadowed variables, 64
naming, 33
package-level variables, 29
shadowing variables, 62-64
threadlocal variables, 255
unused variables, 32
varying in goroutines, 213

variadic type parameters, 89, 339
vendoring, 197
versions

minimum version selection, 194
semantic versioning, 194
updating to compatible versions, 195
updating to incompatible versions, 196
versioning modules, 199
working with, 192-194

vetting, 8, 64
Visual Studio Code, 9

Index | 351



W
WaitGroups, 220-222
wall clock, 240
Wire, 159
wrapping pattern, 258

X
XML encoding, 247

Z
zero value, 17, 118

352 | Index



About the Author
Jon Bodner has been a software engineer, lead developer, and architect for over 20
years. In that time, he has worked on software across many fields, including educa‐
tion, finance, commerce, healthcare, law, government, and internet infrastructure.

Jon is a Distinguished Engineer at Capital One, where he has contributed to the com‐
pany’s development and testing workflow, developed patented techniques for web
payment page detection and population, and coauthored tools for finding and man‐
aging software development issues.

Jon is a frequent speaker at Go conferences, and his blog posts on Go and software
engineering have been viewed more than 300,000 times. He is the creator of the Pro‐
teus data access library and codeveloper of checks-out, a fork of the LGTM project.

Colophon
The animal on the cover of Learning Go is a plains pocket gopher (Geomys bursarius),
a burrowing mammal found across the Great Plains of North America. These rodents
are highly adapted to digging and live primarily underground.

Plains pocket gophers are covered in brown fur and have a nearly naked tail. Physical
adaptations to digging include small eyes, short ears, and large, clawed front feet.
They also have a tolerance for low oxygen and high carbon dioxide levels. The
gophers are named for their external cheek pouches, which can be used for carrying
food.

The gophers are territorial and aggressive, and will rarely enter another’s burrow.
They spend nearly three-quarters of their time in their own burrows, which contain
their nests and food caches of roots and grasses. They go above ground to search for
food and mates.

The plains pocket gopher’s conservation status is of least concern. Many of the ani‐
mals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Susan Thompson, based on an antique black and white
engraving from an unknown source. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://github.com/jonbodner/proteus
https://github.com/jonbodner/proteus
https://github.com/capitalone/checks-out


There’s much more  
where this came from.
Experience books, videos, live online  
training courses, and more from O’Reilly  
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k 

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5


	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Setting Up Your Go Environment
	Installing the Go Tools
	The Go Workspace
	The go Command
	go run and go build
	Getting Third-Party Go Tools
	Formatting Your Code

	Linting and Vetting
	Choose Your Tools
	Visual Studio Code
	GoLand
	The Go Playground

	Makefiles
	Staying Up to Date
	Wrapping Up

	Chapter 2. Primitive Types and Declarations
	Built-in Types
	The Zero Value
	Literals
	Booleans
	Numeric Types
	A Taste of Strings and Runes
	Explicit Type Conversion

	var Versus :=
	Using const
	Typed and Untyped Constants
	Unused Variables
	Naming Variables and Constants
	Wrapping Up

	Chapter 3. Composite Types
	Arrays—Too Rigid to Use Directly
	Slices
	len
	append
	Capacity
	make
	Declaring Your Slice
	Slicing Slices
	Converting Arrays to Slices
	copy

	Strings and Runes and Bytes
	Maps
	Reading and Writing a Map
	The comma ok Idiom
	Deleting from Maps
	Using Maps as Sets

	Structs
	Anonymous Structs
	Comparing and Converting Structs

	Wrapping Up

	Chapter 4. Blocks, Shadows, and Control Structures
	Blocks
	Shadowing Variables
	Detecting Shadowed Variables

	if   
	for, Four Ways
	The Complete for Statement
	The Condition-Only for Statement
	The Infinite for Statement
	break and continue
	The for-range Statement
	Labeling Your for Statements
	Choosing the Right for Statement

	switch
	Blank Switches
	Choosing Between if and switch
	goto—Yes, goto
	Wrapping Up

	Chapter 5. Functions
	Declaring and Calling Functions
	Simulating Named and Optional Parameters
	Variadic Input Parameters and Slices
	Multiple Return Values
	Multiple Return Values Are Multiple Values
	Ignoring Returned Values
	Named Return Values
	Blank Returns—Never Use These!

	Functions Are Values
	Function Type Declarations
	Anonymous Functions

	Closures
	Passing Functions as Parameters
	Returning Functions from Functions

	defer
	Go Is Call By Value
	Wrapping Up

	Chapter 6. Pointers
	A Quick Pointer Primer
	Don’t Fear the Pointers
	Pointers Indicate Mutable Parameters
	Pointers Are a Last Resort
	Pointer Passing Performance
	The Zero Value Versus No Value
	The Difference Between Maps and Slices
	Slices as Buffers
	Reducing the Garbage Collector’s Workload
	Wrapping Up

	Chapter 7. Types, Methods, and Interfaces
	Types in Go
	Methods
	Pointer Receivers and Value Receivers
	Code Your Methods for nil Instances
	Methods Are Functions Too
	Functions Versus Methods
	Type Declarations Aren’t Inheritance
	Types Are Executable Documentation
	iota Is for Enumerations—Sometimes

	Use Embedding for Composition
	Embedding Is Not Inheritance
	A Quick Lesson on Interfaces
	Interfaces Are Type-Safe Duck Typing
	Embedding and Interfaces
	Accept Interfaces, Return Structs
	Interfaces and nil
	The Empty Interface Says Nothing
	Type Assertions and Type Switches
	Use Type Assertions and Type Switches Sparingly
	Function Types Are a Bridge to Interfaces
	Implicit Interfaces Make Dependency Injection Easier
	Wire
	Go Isn’t Particularly Object-Oriented (and That’s Great)
	Wrapping Up

	Chapter 8. Errors
	How to Handle Errors: The Basics
	Use Strings for Simple Errors
	Sentinel Errors
	Errors Are Values
	Wrapping Errors
	Is and As
	Wrapping Errors with defer
	panic and recover
	Getting a Stack Trace from an Error
	Wrapping Up

	Chapter 9. Modules, Packages, and Imports
	Repositories, Modules, and Packages
	go.mod
	Building Packages
	Imports and Exports
	Creating and Accessing a Package
	Naming Packages
	How to Organize Your Module
	Overriding a Package’s Name
	Package Comments and godoc
	The internal Package
	The init Function: Avoid if Possible
	Circular Dependencies
	Gracefully Renaming and Reorganizing Your API

	Working with Modules
	Importing Third-Party Code
	Working with Versions
	Minimum Version Selection
	Updating to Compatible Versions
	Updating to Incompatible Versions
	Vendoring
	pkg.go.dev
	Additional Information

	Publishing Your Module
	Versioning Your Module
	Module Proxy Servers
	Specifying a Proxy Server
	Private Repositories

	Wrapping Up

	Chapter 10. Concurrency in Go
	When to Use Concurrency
	Goroutines
	Channels
	Reading, Writing, and Buffering
	for-range and Channels
	Closing a Channel
	How Channels Behave

	select
	Concurrency Practices and Patterns
	Keep Your APIs Concurrency-Free
	Goroutines, for Loops, and Varying Variables
	Always Clean Up Your Goroutines
	The Done Channel Pattern
	Using a Cancel Function to Terminate a Goroutine
	When to Use Buffered and Unbuffered Channels
	Backpressure
	Turning Off a case in a select
	How to Time Out Code
	Using WaitGroups
	Running Code Exactly Once
	Putting Our Concurrent Tools Together

	When to Use Mutexes Instead of Channels
	Atomics—You Probably Don’t Need These
	Where to Learn More About Concurrency
	Wrapping Up

	Chapter 11. The Standard Library
	io and Friends
	time
	Monotonic Time
	Timers and Timeouts

	encoding/json
	Use Struct Tags to Add Metadata
	Unmarshaling and Marshaling
	JSON, Readers, and Writers
	Encoding and Decoding JSON Streams
	Custom JSON Parsing

	net/http
	The Client
	The Server

	Wrapping Up

	Chapter 12. The Context
	What Is the Context?
	Cancellation
	Timers
	Handling Context Cancellation in Your Own Code
	Values
	Wrapping Up

	Chapter 13. Writing Tests
	The Basics of Testing
	Reporting Test Failures
	Setting Up and Tearing Down
	Storing Sample Test Data
	Caching Test Results
	Testing Your Public API
	Use go-cmp to Compare Test Results

	Table Tests
	Checking Your Code Coverage
	Benchmarks
	Stubs in Go
	httptest
	Integration Tests and Build Tags
	Finding Concurrency Problems with the Race Checker
	Wrapping Up

	Chapter 14. Here There Be Dragons: Reflect, 
Unsafe, and Cgo
	Reflection Lets Us Work with Types at Runtime
	Types, Kinds, and Values
	Making New Values
	Use Reflection to Check If an Interface’s Value Is nil
	Use Reflection to Write a Data Marshaler
	Build Functions with Reflection to Automate Repetitive Tasks
	You Can Build Structs with Reflection, but Don’t
	Reflection Can’t Make Methods
	Only Use Reflection If It’s Worthwhile

	unsafe Is Unsafe
	Use unsafe to Convert External Binary Data
	unsafe Strings and Slices
	unsafe Tools

	Cgo Is for Integration, Not Performance
	Wrapping Up

	Chapter 15. A Look at the Future: Generics in Go
	Generics Reduce Repetitive Code and Increase Type Safety
	Introducing Generics in Go
	Use Type Lists to Specify Operators
	Generic Functions Abstract Algorithms
	Type Lists Limit Constants and Implementations
	Things That Are Left Out
	Idiomatic Go and Generics
	Further Futures Unlocked
	Wrapping Up

	Index
	About the Author
	Colophon

