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preface
In 2019, I started my second professional experience with Go as the primary language.
While working in this new context, I noticed some common patterns regarding Go
coding mistakes. I started to think that perhaps writing about these frequent mistakes
could help some developers.

 So, I wrote a blog post called “The Top 10 Most Common Mistakes I’ve Seen in Go
Projects.” The post was very popular: it had more than 100,000 reads and was selected
by the Golang Weekly newsletter as one of the top articles of 2019. Beyond that, I was
pleased with the positive feedback I got from the Go community.

 From that moment, I realized that communicating about common mistakes was a
powerful tool. Accompanied by concrete examples, it can help people learn new skills
efficiently and facilitate remembering the context of a mistake and how to avoid it.

 I spent about a year compiling mistakes from various sources such as other profes-
sional projects, open source repositories, books, blogs, studies, and discussions with
the Go community. To be transparent, I was also a decent source of inspiration regard-
ing mistakes.

 At the end of 2020, I reached 100 Go mistakes, which seemed to me like the right
moment to propose my idea to a publisher. I contacted only one: Manning. I saw Man-
ning as a top-level company known for publishing high-quality books, and to me, it
was the perfect partner. It took me almost 2 years and countless iterations to frame
each of the 100 mistakes alongside meaningful examples and multiple solutions
where context is key.

 I hope this book will help you avoid making these common mistakes and help you
enhance your proficiency in the Go language.
xii
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about this book
100 Go Mistakes and How to Avoid Them contains 100 common mistakes made by Go
developers when working with various aspects of the language. It focuses heavily on
the core language and the standard library, not external libraries or frameworks. The
discussions of most of the mistakes are accompanied by concrete examples to illus-
trate when we are likely to make such errors. It’s not a dogmatic book: each solution is
detailed to convey the context in which it should apply.

Who should read this book

This book is for developers with existing knowledge of the Go language. It doesn’t
review basic concepts such as syntax or keywords. Ideally, you have already worked on
an existing Go project at work or home. But before delving into most topics, we make
sure the foundations are clear.

How this book is organized: A roadmap

100 Go Mistakes and How to Avoid Them consists of 12 chapters:

 Chapter 1, “Go: Simple to learn but hard to master,” describes why despite
being considered a simple language, Go isn’t easy to master. It also shows the
different types of mistakes we cover in the book.

 Chapter 2, “Code and project organization,” contains common mistakes that
can prevent us from organizing a codebase in a clean, idiomatic, and maintain-
able manner.

 Chapter 3, “Data types,” discusses mistakes related to basic types, slices, and
maps.
xiv



ABOUT THIS BOOK xv
 Chapter 4, “Control structures,” explores common mistakes related to loops
and other control structures.

 Chapter 5, “Strings,” looks at the principle of string representation and com-
mon mistakes leading to code inaccuracy or inefficiency.

 Chapter 6, “Functions and methods,” explores common problems related to
functions and methods, such as choosing a receiver type and preventing com-
mon defer bugs.

 Chapter 7, “Error management,” walks through idiomatic and accurate error
handling in Go.

 Chapter 8, “Concurrency: Foundations,” presents the fundamental concepts
behind concurrency. We discuss topics such as why concurrency isn’t always
faster, the differences between concurrency and parallelism, and workload
types.

 Chapter 9, “Concurrency: Practice,” looks at concrete examples of mistakes
related to applying concurrency when using Go channels, goroutines, and
other primitives.

 Chapter 10, “The standard library,” contains common mistakes made when
using the standard library with HTTP, JSON, or (for example) the time API.

 Chapter 11, “Testing,” discusses mistakes that make testing and benchmarking
more brittle, less effective, and less accurate.

 Chapter 12, “Optimizations,” closes the book by exploring how to optimize an
application for performance, from understanding CPU fundamentals to Go-
specific topics.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In some cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/100-go-mistakes-how-to-avoid-them.
The complete code for the examples in the book is available for download from the
Manning website at https://www.manning.com/books/100-go-mistakes-how-to-avoid
-them, and from GitHub at https://github.com/teivah/100-go-mistakes.

https://livebook.manning.com/book/100-go-mistakes-how-to-avoid-them
https://github.com/teivah/100-go-mistakes
https://www.manning.com/books/100-go-mistakes-how-to-avoid-them
https://www.manning.com/books/100-go-mistakes-how-to-avoid-them
https://www.manning.com/books/100-go-mistakes-how-to-avoid-them
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Go: Simple to learn
but hard to master
Making mistakes is part of everyone’s life. As Albert Einstein once said,

A person who never made a mistake never tried anything new.

What matters in the end isn’t the number of mistakes we make, but our capacity to
learn from them. This assertion also applies to programming. The seniority we
acquire in a language isn’t a magical process; it involves making many mistakes and
learning from them. The purpose of this book is centered around this idea. It will
help you, the reader, become a more proficient Go developer by looking at and
learning from 100 common mistakes people make in many areas of the language.

This chapter covers
 What makes Go an efficient, scalable, and 

productive language

 Exploring why Go is simple to learn but hard to 
master

 Presenting the common types of mistakes made 
by developers
1



2 CHAPTER 1 Go: Simple to learn but hard to master
 This chapter presents a quick refresher as to why Go has become mainstream over
the years. We’ll discuss why, despite Go being considered simple to learn, mastering its
nuances can be challenging. Finally, we’ll introduce the concepts this book covers.

1.1 Go outline
If you are reading this book, it’s likely that you’re already sold on Go. Therefore, this
section provides a brief reminder about what makes Go such a powerful language.

 Software engineering has evolved considerably during the past decades. Most mod-
ern systems are no longer written by a single person but by teams consisting of multi-
ple programmers—sometimes even hundreds, if not thousands. Nowadays, code must
be readable, expressive, and maintainable to guarantee a system’s durability over the
years. Meanwhile, in our fast-moving world, maximizing agility and reducing the time
to market is critical for most organizations. Programming should also follow this
trend, and companies strive to ensure that software engineers are as productive as pos-
sible when reading, writing, and maintaining code.

 In response to these challenges, Google created the Go programming language in
2007. Since then, many organizations have adopted the language to support various
use cases: APIs, automation, databases, CLIs (command-line interfaces), and so on.
Many today consider Go the language of the cloud.

 Feature-wise, Go has no type inheritance, no exceptions, no macros, no partial
functions, no support for lazy variable evaluation or immutability, no operator over-
loading, no pattern matching, and on and on. Why are these features missing from
the language? The official Go FAQ (https://go.dev/doc/faq) gives us some insight:

Why does Go not have feature X? Your favorite feature may be missing because it doesn’t
fit, because it affects compilation speed or clarity of design, or because it would make the
fundamental system model too difficult.

Judging the quality of a programming language via its number of features is probably
not an accurate metric. At least, it’s not an objective of Go. Instead, Go utilizes a few
essential characteristics when adopting a language at scale for an organization. These
include the following:

 Stability—Even though Go receives frequent updates (including improvements
and security patches), it remains a stable language. Some may even consider
this one of the best features of the language.

 Expressivity—We can define expressivity in a programming language by how nat-
urally and intuitively we can write and read code. A reduced number of key-
words and limited ways to solve common problems make Go an expressive
language for large codebases.

 Compilation—As developers, what can be more exasperating than having to wait
for a build to test our application? Targeting fast compilation times has always
been a conscious goal for the language designers. This, in turn, enables
productivity.

https://go.dev/doc/faq


31.2 Simple doesn’t mean easy
 Safety—Go is a strong, statically typed language. Hence, it has strict compile-
time rules, which ensure the code is type-safe in most cases.

Go was built from the ground up with solid features such as outstanding concurrency
primitives with goroutines and channels. There’s not a strong need to rely on external
libraries to build efficient concurrent applications. Observing how important concur-
rency is these days also demonstrates why Go is such a suitable language for the pres-
ent and probably for the foreseeable future.

 Some also consider Go a simple language. And, in a sense, this isn’t necessarily
wrong. For example, a newcomer can learn the language’s main features in less than a
day. So why read a book centered on the concept of mistakes if Go is simple?

1.2 Simple doesn’t mean easy
There is a subtle difference between simple and easy. Simple, applied to a technology,
means not complicated to learn or understand. However, easy means that we can
achieve anything without much effort. Go is simple to learn but not necessarily easy to
master.

 Let’s take concurrency, for example. In 2019, a study focusing on concurrency
bugs was published: “Understanding Real-World Concurrency Bugs in Go.”1 This
study was the first systematic analysis of concurrency bugs. It focused on multiple pop-
ular Go repositories such as Docker, gRPC, and Kubernetes. One of the most import-
ant takeaways from this study is that most of the blocking bugs are caused by
inaccurate use of the message-passing paradigm via channels, despite the belief that
message passing is easier to handle and less error-prone than sharing memory.

 What should be an appropriate reaction to such a takeaway? Should we consider
that the language designers were wrong about message passing? Should we reconsider
how we deal with concurrency in our project? Of course not.

 It’s not a question of confronting message passing versus sharing memory and
determining the winner. However, it’s up to us as Go developers to thoroughly under-
stand how to use concurrency, its implications on modern processors, when to favor
one approach over the other, and how to avoid common traps. This example high-
lights that although a concept such as channels and goroutines can be simple to learn,
it isn’t an easy topic in practice.

 This leitmotif—simple doesn’t mean easy—can be generalized to many aspects of
Go, not only concurrency. Hence, to be proficient Go developers, we must have a
thorough understanding of many aspects of the language, which requires time, effort,
and mistakes.

 This book aims to help accelerate our journey toward proficiency by delving into
100 Go mistakes. 

1 T. Tu, X. Liu, et al., “Understanding Real-World Concurrency Bugs in Go,” presented at ASPLOS 2019, April
13–17, 2019.



4 CHAPTER 1 Go: Simple to learn but hard to master
1.3 100 Go mistakes
Why should we read a book about common Go mistakes? Why not deepen our knowl-
edge with an ordinary book that would dig into different topics?

 In a 2011 article, neuroscientists proved that the best time for brain growth is when
we’re facing mistakes.2 Haven’t we all experienced the process of learning from a mis-
take and recalling that occasion after months or even years, when some context
related to it? As presented in another article, by Janet Metcalfe, this happens because
mistakes have a facilitative effect.3 The main idea is that we can remember not only
the error but also the context surrounding the mistake. This is one of the reasons why
learning from mistakes is so efficient.

 To strengthen this facilitative effect, this book accompanies each mistake as much
as possible with real-world examples. This book isn’t only about theory; it also helps us
get better at avoiding mistakes and making more well-informed, conscious decisions
because we now understand the rationale behind them.

Tell me and I forget. Teach me and I remember. Involve me and I learn.

                                                                                                           —Unknown

This book presents seven main categories of mistakes. Overall, the mistakes can be
classified as

 Bugs
 Needless complexity
 Weaker readability
 Suboptimal or unidiomatic organization
 Lack of API convenience
 Under-optimized code
 Lack of productivity

We introduce each mistake category next.

1.3.1 Bugs

The first type of mistake and probably the most obvious is software bugs. In 2020, a
study conducted by Synopsys estimated the cost of software bugs in the U.S. alone to
be over $2 trillion.4

 Furthermore, bugs can also lead to tragic impacts. We can, for example, mention
cases such as Therac-25, a radiation therapy machine produced by Atomic Energy of
Canada Limited (AECL). Because of a race condition, the machine gave its patients

2 J. S. Moser, H. S. Schroder, et al., “Mind Your Errors: Evidence for a Neural Mechanism Linking Growth Mind-
set to Adaptive Posterror Adjustments,” Psychological Science, vol. 22, no. 12, pp. 1484–1489, Dec. 2011.

3 J. Metcalfe, “Learning from Errors,” Annual Review of Psychology, vol. 68, pp. 465–489, Jan. 2017.
4 Synopsys, “The Cost of Poor Software Quality in the US: A 2020 Report.” 2020. https://news.synopsys.com/

2021-01-06-Synopsys-Sponsored-CISQ-Research-Estimates-Cost-of-Poor-Software-Quality-in-the-US-2-08
-Trillion-in-2020.

https://news.synopsys.com/2021-01-06-Synopsys-Sponsored-CISQ-Research-Estimates-Cost-of-Poor-Software-Quality-in-the-US-2-08-Trillion-in-2020
https://news.synopsys.com/2021-01-06-Synopsys-Sponsored-CISQ-Research-Estimates-Cost-of-Poor-Software-Quality-in-the-US-2-08-Trillion-in-2020
https://news.synopsys.com/2021-01-06-Synopsys-Sponsored-CISQ-Research-Estimates-Cost-of-Poor-Software-Quality-in-the-US-2-08-Trillion-in-2020


51.3 100 Go mistakes
radiation doses that were hundreds of times greater than expected, leading to the
death of three patients. Hence, software bugs aren’t only about money. As developers,
we should remember how impactful our jobs are.

 This book covers plenty of cases that could lead to various software bugs, including
data races, leaks, logic errors, and other defects. Although accurate tests should be a
way to discover such bugs as early as possible, we may sometimes miss cases because of
different factors such as time constraints or complexity. Therefore, as a Go developer,
it’s essential to make sure we avoid common bugs. 

1.3.2 Needless complexity

The next category of mistakes is related to unnecessary complexity. A significant part
of software complexity comes from the fact that, as developers, we strive to think
about imaginary futures. Instead of solving concrete problems right now, it can be
tempting to build evolutionary software that could tackle whatever future use case
arises. However, this leads to more drawbacks than benefits in most cases because it
can make a codebase more complex to understand and reason about.

 Getting back to Go, we can think of plenty of use cases where developers might be
tempted to design abstractions for future needs, such as interfaces or generics. This
book discusses topics where we should remain careful not to harm a codebase with
needless complexity. 

1.3.3 Weaker readability

Another kind of mistake is to weaken readability. As Robert C. Martin wrote in his
book Clean Code: A Handbook of Agile Software Craftsmanship, the ratio of time spent
reading versus writing is well over 10 to 1.5 Most of us started to program on solo proj-
ects where readability wasn’t that important. However, today’s software engineering is
programming with a time dimension: making sure we can still work with and maintain
an application months, years, or perhaps even decades later.

 When programming in Go, we can make many mistakes that can harm readability.
These mistakes may include nested code, data type representations, or not using
named result parameters in some cases. Throughout this book, we will learn how to
write readable code and care for future readers (including our future selves). 

1.3.4 Suboptimal or unidiomatic organization

Be it while working on a new project or because we acquire inaccurate reflexes,
another type of mistake is organizing our code and a project suboptimally and unidi-
omatically. Such issues can make a project harder to reason about and maintain. This
book covers some of these common mistakes in Go. For example, we’ll look at how to
structure a project and deal with utility packages or init functions. All in all, looking at
these mistakes should help us organize our code and projects more efficiently and idi-
omatically. 

5 R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, 2008.
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1.3.5 Lack of API convenience

Making common mistakes that weaken how convenient an API is for our clients is
another type of mistake. If an API isn’t user-friendly, it will be less expressive and,
hence, harder to understand and more error-prone.

 We can think about many situations such as overusing any types, using the wrong
creational pattern to deal with options, or blindly applying standard practices from
object-oriented programming that affect the usability of our APIs. This book covers
common mistakes that prevent us from exposing convenient APIs for our users. 

1.3.6 Under-optimized code

Under-optimized code is another type of mistake made by developers. It can happen
for various reasons, such as not understanding language features or even a lack of fun-
damental knowledge. Performance is one of the most obvious impacts of this mistake,
but not the only one.

 We can think about optimizing code for other goals, such as accuracy. For exam-
ple, this book provides some common techniques to ensure that floating-point opera-
tions are accurate. Meanwhile, we will cover plenty of cases that can negatively impact
performance code because of poorly parallelized executions, not knowing how to
reduce allocations, or the impacts of data alignment, for example. We will tackle opti-
mization via different prisms. 

1.3.7 Lack of productivity

In most cases, what’s the best language we can choose when working on a new project?
The one we’re the most productive with. Being comfortable with how a language
works and exploiting it to get the best out of it is crucial to reach proficiency.

 In this book, we will cover many cases and concrete examples that will help us to be
more productive while working in Go. For instance, we’ll look at writing efficient tests
to ensure that our code works, relying on the standard library to be more effective,
and getting the best out of the profiling tools and linters. Now, it’s time to delve into
those 100 common Go mistakes. 

Summary
 Go is a modern programming language that enables developer productivity,

which is crucial for most companies today.
 Go is simple to learn but not easy to master. This is why we need to deepen our

knowledge to make the most effective use of the language.
 Learning via mistakes and concrete examples is a powerful way to be proficient

in a language. This book will accelerate our path to proficiency by exploring
100 common mistakes.



Code and project
organization
Organizing a Go codebase in a clean, idiomatic, and maintainable manner isn’t an
easy task. It requires experience and even mistakes to understand all the best prac-
tices related to code and project organization. What are the traps to avoid (for
example, variable shadowing and nested code abuse)? How do we structure pack-
ages? When and where do we use interfaces or generics, init functions, and utility
packages? In this chapter, we examine common organizational mistakes.

2.1 #1: Unintended variable shadowing
The scope of a variable refers to the places a variable can be referenced: in other
words, the part of an application where a name binding is valid. In Go, a variable
name declared in a block can be redeclared in an inner block. This principle,
called variable shadowing, is prone to common mistakes.

This chapter covers
 Organizing our code idiomatically

 Dealing efficiently with abstractions: interfaces and 
generics

 Best practices regarding how to structure a project
7
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 The following example shows an unintended side effect because of a shadowed
variable. It creates an HTTP client in two different ways, depending on the value of a
tracing Boolean:

var client *http.Client
if tracing {

client, err := createClientWithTracing()
if err != nil {

return err
}
log.Println(client)

} else {
client, err := createDefaultClient()
if err != nil {

return err
}
log.Println(client)

}
// Use client

In this example, we first declare a client variable. Then, we use the short variable
declaration operator (:=) in both inner blocks to assign the result of the function call
to the inner client variables—not the outer one. As a result, the outer variable is
always nil.

NOTE This code compiles because the inner client variables are used in the
logging calls. If not, we would have compilation errors such as client
declared and not used.

How can we ensure that a value is assigned to the original client variable? There are
two different options.

 The first option uses temporary variables in the inner blocks this way:

var client *http.Client
if tracing {

c, err := createClientWithTracing()
if err != nil {

return err
}
client = c

} else {
// Same logic

}

Here, we assign the result to a temporary variable, c, whose scope is only within the if
block. Then, we assign it back to the client variable. Meanwhile, we do the same for
the else part.

 The second option uses the assignment operator (=) in the inner blocks to directly
assign the function results to the client variable. However, this requires creating an
error variable because the assignment operator works only if a variable name has
already been declared. For example:

Declares a 
client variable

Creates an HTTP client with tracing 
enabled. (The client variable is 
shadowed in this block.)

Creates a default HTTP client. 
(The client variable is also 
shadowed in this block.)

Creates a temporary 
variable c

Assigns this temporary 
variable to client
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var client *http.Client
var err error
if tracing {

client, err = createClientWithTracing()
if err != nil {

return err
}

} else {
// Same logic

}

Instead of assigning to a temporary variable first, we can directly assign the result to
client.

 Both options are perfectly valid. The main difference between the two alternatives
is that we perform only one assignment in the second option, which may be consid-
ered easier to read. Also, with the second option, we can mutualize and implement
error handling outside the if/else statements, as this example shows:

if tracing {
client, err = createClientWithTracing()

} else {
client, err = createDefaultClient()

}
if err != nil {

// Common error handling
}

Variable shadowing occurs when a variable name is redeclared in an inner block, but we
saw that this practice is prone to mistakes. Imposing a rule to forbid shadowed variables
depends on personal taste. For example, sometimes it can be convenient to reuse an
existing variable name like err for errors. Yet, in general, we should remain cautious
because we now know that we can face a scenario where the code compiles, but the vari-
able that receives the value is not the one expected. Later in this chapter, we will also see
how to detect shadowed variables, which may help us spot possible bugs.

 The following section shows why it is important to avoid abusing nested code. 

2.2 #2: Unnecessary nested code
A mental model applied to software is an internal representation of a system’s behav-
ior. While programming, we need to maintain mental models (about overall code
interactions and function implementations, for example). Code is qualified as read-
able based on multiple criteria such as naming, consistency, formatting, and so forth.
Readable code requires less cognitive effort to maintain a mental model; hence, it is
easier to read and maintain.

 A critical aspect of readability is the number of nested levels. Let’s do an exercise.
Suppose that we are working on a new project and need to understand what the fol-
lowing join function does:

func join(s1, s2 string, max int) (string, error) {
if s1 == "" {

Declares an err variable

Uses the assignment operator to 
assign the *http.Client returned 
to the client variable directly
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return "", errors.New("s1 is empty")
} else {

if s2 == "" {
return "", errors.New("s2 is empty")

} else {
concat, err := concatenate(s1, s2)
if err != nil {

return "", err
} else {

if len(concat) > max {
return concat[:max], nil

} else {
return concat, nil

}
}

}
}

}

func concatenate(s1 string, s2 string) (string, error) {
// ...

}

This join function concatenates two strings and returns a substring if the length is
greater than max. Meanwhile, it handles checks on s1 and s2 and whether the call to
concatenate returns an error.

 From an implementation perspective, this function is correct. However, building a
mental model encompassing all the different cases is probably not a straightforward
task. Why? Because of the number of nested levels.

 Now, let’s try this exercise again with the same function but implemented differently:

func join(s1, s2 string, max int) (string, error) {
if s1 == "" {

return "", errors.New("s1 is empty")
}
if s2 == "" {

return "", errors.New("s2 is empty")
}
concat, err := concatenate(s1, s2)
if err != nil {

return "", err
}
if len(concat) > max {

return concat[:max], nil
}
return concat, nil

}

func concatenate(s1 string, s2 string) (string, error) {
// ...

}

You probably noticed that building a mental model of this new version requires less
cognitive load despite doing the same job as before. Here we maintain only two nested

Calls a concatenate 
function to perform some 
specific concatenation 
but may return errors



112.2 #2: Unnecessary nested code
levels. As mentioned by Mat Ryer, a panelist on the Go Time podcast (https://
medium.com/@matryer/line-of-sight-in-code-186dd7cdea88):

Align the happy path to the left; you should quickly be able to scan down one column to
see the expected execution flow.

It was difficult to distinguish the expected execution flow in the first version because
of the nested if/else statements. Conversely, the second version requires scanning
down one column to see the expected execution flow and down the second column to
see how the edge cases are handled, as figure 2.1 shows.

In general, the more nested levels a function requires, the more complex it is to read
and understand. Let’s see some different applications of this rule to optimize our
code for readability:

 When an if block returns, we should omit the else block in all cases. For exam-
ple, we shouldn’t write

if foo() {
// ...
return true

} else {
// ...

}

Instead, we omit the else block like this:

if foo() {
// ...
return true

}
// ...

func join(s1, s2 string, max int) (string, error) {
    if s1 == "" {
        return "", errors.New("s1 is empty")
    }
    if s2 == "" {
        return "", errors.New("s2 is empty")
    }
    concat, err := concatenate(s1, s2)
    if err != nil {
        return "", err
    }
    if len(concat) > max {
        return concat[:max], nil
    }
    return concat, nil
}

Happy path Error path & edge cases

Figure 2.1 To understand 
the expected execution flow, 
we just have to scan the 
happy path column.

https://medium.com/@matryer/line-of-sight-in-code-186dd7cdea88
https://medium.com/@matryer/line-of-sight-in-code-186dd7cdea88
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With this new version, the code living previously in the else block is moved to
the top level, making it easier to read.

 We can also follow this logic with a non-happy path:

if s != "" {
// ...

} else {
return errors.New("empty string")

}

Here, an empty s represents the non-happy path. Hence, we should flip the
condition like so:

if s == "" {
return errors.New("empty string")

}
// ...

This new version is easier to read because it keeps the happy path on the left
edge and reduces the number of blocks.

Writing readable code is an important challenge for every developer. Striving to
reduce the number of nested blocks, aligning the happy path on the left, and return-
ing as early as possible are concrete means to improve our code’s readability.

 In the next section, we discuss a common misuse in Go projects: init functions. 

2.3 #3: Misusing init functions
Sometimes we misuse init functions in Go applications. The potential consequences
are poor error management or a code flow that is harder to understand. Let’s refresh
our minds about what an init function is. Then, we will see when its usage is or isn’t
recommended.

2.3.1 Concepts

An init function is a function used to initialize the state of an application. It takes no
arguments and returns no result (a func() function). When a package is initialized,
all the constant and variable declarations in the package are evaluated. Then, the init
functions are executed. Here is an example of initializing a main package:

package main

import "fmt"

var a = func() int {
fmt.Println("var")
return 0

}()

func init() {
fmt.Println("init")

}

Flips the if 
condition

Executed first

Executed second
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func main() {
fmt.Println("main")

}

Running this example prints the following output:

var
init
main

An init function is executed when a package is initialized. In the following example,
we define two packages, main and redis, where main depends on redis. First, main
.go from the main package:

package main

import (
"fmt"

"redis"
)

func init() {
// ...

}

func main() {
err := redis.Store("foo", "bar")
// ...

}

And then redis.go from the redis package:

package redis

// imports

func init() {
// ...

}

func Store(key, value string) error {
// ...

}

Because main depends on redis, the redis package’s init function is executed first,
followed by the init of the main package, and then the main function itself. Figure 2.2
shows this sequence.

 We can define multiple init functions per package. When we do, the execution
order of the init function inside the package is based on the source files’ alphabetical
order. For example, if a package contains an a.go file and a b.go file and both have an
init function, the a.go init function is executed first.

Executed last

A dependency on 
the redis package
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We shouldn’t rely on the ordering of init functions within a package. Indeed, it can be
dangerous as source files can be renamed, potentially impacting the execution order.

 We can also define multiple init functions within the same source file. For exam-
ple, this code is perfectly valid:

package main

import "fmt"

func init() {
fmt.Println("init 1")

}

func init() {
fmt.Println("init 2")

}

func main() {
}

The first init function executed is the first one in the source order. Here’s the output:

init 1
init 2

We can also use init functions for side effects. In the next example, we define a main
package that doesn’t have a strong dependency on foo (for example, there’s no direct
use of a public function). However, the example requires the foo package to be initial-
ized. We can do that by using the _ operator this way:

package main

import (
"fmt"

_ "foo"
)

func main() {
// ...

}

Package main Package redis

main.go

init()

main()

redis.go

init()

Store(string, string)

Init functions example

12

3
Figure 2.2 The init function 
of the redis package is 
executed first, then the init 
function of main, and finally 
the main function.

First init function

Second init function

Imports foo for side effects



152.3 #3: Misusing init functions
In this case, the foo package is initialized before main. Hence, the init functions of foo
are executed.

 Another aspect of an init function is that it can’t be invoked directly, as in the fol-
lowing example:

package main

func init() {}

func main() {
init()

}

This code produces the following compilation error:

$ go build .
./main.go:6:2: undefined: init

Now that we’ve refreshed our minds about how init functions work, let’s see when we
should use or not use them. The following section sheds some light on this.

2.3.2 When to use init functions

First, let’s look at an example where using an init function can be considered inappro-
priate: holding a database connection pool. In the init function in the example, we
open a database using sql.Open. We make this database a global variable that other
functions can later use:

var db *sql.DB

func init() {
dataSourceName :=

os.Getenv("MYSQL_DATA_SOURCE_NAME")
d, err := sql.Open("mysql", dataSourceName)
if err != nil {

log.Panic(err)
}
err = d.Ping()
if err != nil {

log.Panic(err)
}
db = d

}

In this example, we open the database, check whether we can ping it, and then assign
it to the global variable. What should we think about this implementation? Let’s
describe three main downsides.

 First, error management in an init function is limited. Indeed, as an init function
doesn’t return an error, one of the only ways to signal an error is to panic, leading the
application to be stopped. In our example, it might be OK to stop the application any-
way if opening the database fails. However, it shouldn’t necessarily be up to the

Invalid reference

Environment variable

Assigns the DB connection 
to the global db variable
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package itself to decide whether to stop the application. Perhaps a caller might have
preferred implementing a retry or using a fallback mechanism. In this case, opening
the database within an init function prevents client packages from implementing their
error-handling logic.

 Another important downside is related to testing. If we add tests to this file, the init
function will be executed before running the test cases, which isn’t necessarily what
we want (for example, if we add unit tests on a utility function that doesn’t require this
connection to be created). Therefore, the init function in this example complicates
writing unit tests.

 The last downside is that the example requires assigning the database connection
pool to a global variable. Global variables have some severe drawbacks; for example:

 Any functions can alter global variables within the package.
 Unit tests can be more complicated because a function that depends on a

global variable won’t be isolated anymore.

In most cases, we should favor encapsulating a variable rather than keeping it global.
 For these reasons, the previous initialization should probably be handled as part of

a plain old function like so:

func createClient(dsn string) (*sql.DB, error) {
db, err := sql.Open("mysql", dsn)
if err != nil {

return nil, err
}
if err = db.Ping(); err != nil {

return nil, err
}
return db, nil

}

Using this function, we tackled the main downsides discussed previously. Here’s how:

 The responsibility of error handling is left up to the caller.
 It’s possible to create an integration test to check that this function works.
 The connection pool is encapsulated within the function.

Is it necessary to avoid init functions at all costs? Not really. There are still use cases
where init functions can be helpful. For example, the official Go blog (http://
mng.bz/PW6w) uses an init function to set up the static HTTP configuration:

func init() {
redirect := func(w http.ResponseWriter, r *http.Request) {

http.Redirect(w, r, "/", http.StatusFound)
}
http.HandleFunc("/blog", redirect)
http.HandleFunc("/blog/", redirect)

static := http.FileServer(http.Dir("static"))
http.Handle("/favicon.ico", static)

Accepts a data source 
name and returns an 
*sql.DB and an error

Returns an error

http://mng.bz/PW6w
http://mng.bz/PW6w
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http.Handle("/fonts.css", static)
http.Handle("/fonts/", static)

http.Handle("/lib/godoc/", http.StripPrefix("/lib/godoc/",
http.HandlerFunc(staticHandler)))

}

In this example, the init function cannot fail (http.HandleFunc can panic, but only if
the handler is nil, which isn’t the case here). Meanwhile, there’s no need to create
any global variables, and the function will not impact possible unit tests. Therefore,
this code snippet provides a good example of where init functions can be helpful. In
summary, we saw that init functions can lead to some issues:

 They can limit error management.
 They can complicate how to implement tests (for example, an external depen-

dency must be set up, which may not be necessary for the scope of unit tests).
 If the initialization requires us to set a state, that has to be done through global

variables.

We should be cautious with init functions. They can be helpful in some situations,
however, such as defining static configuration, as we saw in this section. Otherwise,
and in most cases, we should handle initializations through ad hoc functions. 

2.4 #4: Overusing getters and setters
In programming, data encapsulation refers to hiding the values or state of an object.
Getters and setters are means to enable encapsulation by providing exported methods
on top of unexported object fields.

 In Go, there is no automatic support for getters and setters as we see in some lan-
guages. It is also considered neither mandatory nor idiomatic to use getters and set-
ters to access struct fields. For example, the standard library implements structs in
which some fields are accessible directly, such as the time.Timer struct:

timer := time.NewTimer(time.Second)
<-timer.C

Although it’s not recommended, we could even modify C directly (but we wouldn’t
receive events anymore). However, this example illustrates that the standard Go
library doesn’t enforce using getters and/or setters even when we shouldn’t modify a
field.

 On the other hand, using getters and setters presents some advantages, including
these:

 They encapsulate a behavior associated with getting or setting a field, allowing
new functionality to be added later (for example, validating a field, returning a
computed value, or wrapping the access to a field around a mutex).

 They hide the internal representation, giving us more flexibility in what we
expose.

C is a <–chan Time field
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 They provide a debugging interception point for when the property changes at
run time, making debugging easier.

If we fall into these cases or foresee a possible use case while guaranteeing forward
compatibility, using getters and setters can bring some value. For example, if we use
them with a field called balance, we should follow these naming conventions:

 The getter method should be named Balance (not GetBalance).
 The setter method should be named SetBalance.

Here’s an example:

currentBalance := customer.Balance()
if currentBalance < 0 {

customer.SetBalance(0)
}

In summary, we shouldn’t overwhelm our code with getters and setters on structs if
they don’t bring any value. We should be pragmatic and strive to find the right bal-
ance between efficiency and following idioms that are sometimes considered indisput-
able in other programming paradigms.

 Remember that Go is a unique language designed for many characteristics, includ-
ing simplicity. However, if we find a need for getters and setters or, as mentioned, fore-
see a future need while guaranteeing forward compatibility, there’s nothing wrong
with using them.

 Next, we will discuss the problem of overusing interfaces. 

2.5 #5: Interface pollution
Interfaces are one of the cornerstones of the Go language when designing and struc-
turing our code. However, like many tools or concepts, abusing them is generally not a
good idea. Interface pollution is about overwhelming our code with unnecessary
abstractions, making it harder to understand. It’s a common mistake made by devel-
opers coming from another language with different habits. Before delving into the
topic, let’s refresh our minds about Go’s interfaces. Then, we will see when it’s appro-
priate to use interfaces and when it may be considered pollution.

2.5.1 Concepts

An interface provides a way to specify the behavior of an object. We use interfaces to
create common abstractions that multiple objects can implement. What makes Go
interfaces so different is that they are satisfied implicitly. There is no explicit keyword
like implements to mark that an object X implements interface Y.

 To understand what makes interfaces so powerful, we will dig into two popular
ones from the standard library: io.Reader and io.Writer. The io package provides
abstractions for I/O primitives. Among these abstractions, io.Reader relates to read-
ing data from a data source and io.Writer to writing data to a target, as represented
in figure 2.3.

Getter

Setter
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The io.Reader contains a single Read method:

type Reader interface {
Read(p []byte) (n int, err error)

}

Custom implementations of the io.Reader interface should accept a slice of bytes, fill-
ing it with its data and returning either the number of bytes read or an error.

 On the other hand, io.Writer defines a single method, Write:

type Writer interface {
Write(p []byte) (n int, err error)

}

Custom implementations of io.Writer should write the data coming from a slice to a
target and return either the number of bytes written or an error. Therefore, both
interfaces provide fundamental abstractions:

 io.Reader reads data from a source.
 io.Writer writes data to a target.

What is the rationale for having these two interfaces in the language? What is the
point of creating these abstractions?

 Let’s assume we need to implement a function that should copy the content of one
file to another. We could create a specific function that would take as input two
*os.Files. Or, we can choose to create a more generic function using io.Reader and
io.Writer abstractions:

func copySourceToDest(source io.Reader, dest io.Writer) error {
// ...

}

io.Reader and io.Writer interfaces 

Data source

Read

Target

Write

io.Reader io.Writer

H E L L O

Byte slice

Figure 2.3 io.Reader reads from a data 
source and fills a byte slice, whereas 
io.Writer writes to a target from a byte slice.
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This function would work with *os.File parameters (as *os.File implements both
io.Reader and io.Writer) and any other type that would implement these interfaces.
For example, we could create our own io.Writer that writes to a database, and the
code would remain the same. It increases the genericity of the function; hence, its
reusability.

 Furthermore, writing a unit test for this function is easier because, instead of hav-
ing to handle files, we can use the strings and bytes packages that provide helpful
implementations:

func TestCopySourceToDest(t *testing.T) {
const input = "foo"
source := strings.NewReader(input)
dest := bytes.NewBuffer(make([]byte, 0))

err := copySourceToDest(source, dest)
if err != nil {

t.FailNow()
}

got := dest.String()
if got != input {

t.Errorf("expected: %s, got: %s", input, got)
}

}

In the example, source is a *strings.Reader, whereas dest is a *bytes.Buffer. Here,
we test the behavior of copySourceToDest without creating any files.

 While designing interfaces, the granularity (how many methods the interface con-
tains) is also something to keep in mind. A known proverb in Go (https://www.youtube
.com/watch?v=PAAkCSZUG1c&t=318s) relates to how big an interface should be:

The bigger the interface, the weaker the abstraction.

                                                                            —Rob Pike

Indeed, adding methods to an interface can decrease its level of reusability.
io.Reader and io.Writer are powerful abstractions because they cannot get any sim-
pler. Furthermore, we can also combine fine-grained interfaces to create higher-level
abstractions. This is the case with io.ReadWriter, which combines the reader and
writer behaviors:

type ReadWriter interface {
Reader
Writer

}

NOTE As Einstein said, “Everything should be made as simple as possible, but
no simpler.” Applied to interfaces, this denotes that finding the perfect gran-
ularity for an interface isn’t necessarily a straightforward process.

Let’s now discuss common cases where interfaces are recommended. 

Creates an io.Reader

Creates an 
io.Writer

Calls copySourceToDest 
from a *strings.Reader 
and a *bytes.Buffer

https://www.youtube.com/watch?v=PAAkCSZUG1c&t=318s
https://www.youtube.com/watch?v=PAAkCSZUG1c&t=318s
https://www.youtube.com/watch?v=PAAkCSZUG1c&t=318s
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2.5.2 When to use interfaces

When should we create interfaces in Go? Let’s look at three concrete use cases where
interfaces are usually considered to bring value. Note that the goal isn’t to be exhaus-
tive because the more cases we add, the more they would depend on the context.
However, these three cases should give us a general idea:

 Common behavior
 Decoupling
 Restricting behavior

COMMON BEHAVIOR

The first option we will discuss is to use interfaces when multiple types implement a
common behavior. In such a case, we can factor out the behavior inside an interface.
If we look at the standard library, we can find many examples of such a use case. For
example, sorting a collection can be factored out via three methods:

 Retrieving the number of elements in the collection
 Reporting whether one element must be sorted before another
 Swapping two elements

Hence, the following interface was added to the sort package:

type Interface interface {
Len() int
Less(i, j int) bool
Swap(i, j int)

}

This interface has a strong potential for reusability because it encompasses the com-
mon behavior to sort any collection that is index-based.

 Throughout the sort package, we can find dozens of implementations. If at some
point we compute a collection of integers, for example, and we want to sort it, are we
necessarily interested in the implementation type? Is it important whether the sorting
algorithm is a merge sort or a quicksort? In many cases, we don’t care. Hence, the sort-
ing behavior can be abstracted, and we can depend on the sort.Interface.

 Finding the right abstraction to factor out a behavior can also bring many benefits.
For example, the sort package provides utility functions that also rely on
sort.Interface, such as checking whether a collection is already sorted. For
instance,

func IsSorted(data Interface) bool {
n := data.Len()
for i := n - 1; i > 0; i-- {

if data.Less(i, i-1) {
return false

}
}
return true

}

Number of elements
Checks two elements

Swaps two elements
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Because sort.Interface is the right level of abstraction, it makes it highly valuable.
 Let’s now see another main use case when using interfaces. 

DECOUPLING

Another important use case is about decoupling our code from an implementation. If
we rely on an abstraction instead of a concrete implementation, the implementation
itself can be replaced with another without even having to change our code. This is the
Liskov Substitution Principle (the L in Robert C. Martin’s SOLID design principles).

 One benefit of decoupling can be related to unit testing. Let’s assume we want to
implement a CreateNewCustomer method that creates a new customer and stores it. We
decide to rely on the concrete implementation directly (let’s say a mysql.Store struct):

type CustomerService struct {
store mysql.Store

}

func (cs CustomerService) CreateNewCustomer(id string) error {
customer := Customer{id: id}
return cs.store.StoreCustomer(customer)

}

Now, what if we want to test this method? Because customerService relies on the
actual implementation to store a Customer, we are obliged to test it through integra-
tion tests, which requires spinning up a MySQL instance (unless we use an alternative
technique such as go-sqlmock, but this isn’t the scope of this section). Although inte-
gration tests are helpful, that’s not always what we want to do. To give us more flexibil-
ity, we should decouple CustomerService from the actual implementation, which can
be done via an interface like so:

type customerStorer interface {
StoreCustomer(Customer) error

}

type CustomerService struct {
storer customerStorer

}

func (cs CustomerService) CreateNewCustomer(id string) error {
customer := Customer{id: id}
return cs.storer.StoreCustomer(customer)

}

Because storing a customer is now done via an interface, this gives us more flexibility
in how we want to test the method. For instance, we can

 Use the concrete implementation via integration tests
 Use a mock (or any kind of test double) via unit tests
 Or both

Let’s now discuss another use case: to restrict a behavior. 

Depends on the concrete 
implementation

Creates a storage 
abstraction

Decouples CustomerService from 
the actual implementation
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RESTRICTING BEHAVIOR

The last use case we will discuss can be pretty counterintuitive at first sight. It’s about
restricting a type to a specific behavior. Let’s imagine we implement a custom configu-
ration package to deal with dynamic configuration. We create a specific container for
int configurations via an IntConfig struct that also exposes two methods: Get and
Set. Here’s how that code would look:

type IntConfig struct {
// ...

}

func (c *IntConfig) Get() int {
// Retrieve configuration

}

func (c *IntConfig) Set(value int) {
// Update configuration

}

Now, suppose we receive an IntConfig that holds some specific configuration, such as
a threshold. Yet, in our code, we are only interested in retrieving the configuration
value, and we want to prevent updating it. How can we enforce that, semantically, this
configuration is read-only, if we don’t want to change our configuration package? By
creating an abstraction that restricts the behavior to retrieving only a config value:

type intConfigGetter interface {
Get() int

}

Then, in our code, we can rely on intConfigGetter instead of the concrete imple-
mentation:

type Foo struct {
threshold intConfigGetter

}

func NewFoo(threshold intConfigGetter) Foo {
return Foo{threshold: threshold}

}

func (f Foo) Bar() {
threshold := f.threshold.Get()
// ...

}

In this example, the configuration getter is injected into the NewFoo factory method. It
doesn’t impact a client of this function because it can still pass an IntConfig struct as
it implements intConfigGetter. Then, we can only read the configuration in the Bar
method, not modify it. Therefore, we can also use interfaces to restrict a type to a spe-
cific behavior for various reasons, such as semantics enforcement.

Injects the
configuration getter

Reads the 
configuration
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 In this section, we saw three potential use cases where interfaces are generally con-
sidered as bringing value: factoring out a common behavior, creating some decou-
pling, and restricting a type to a certain behavior. Again, this list isn’t exhaustive, but it
should give us a general understanding of when interfaces are helpful in Go.

 Now, let’s finish this section and discuss the problems with interface pollution. 

2.5.3 Interface pollution

It’s fairly common to see interfaces being overused in Go projects. Perhaps the devel-
oper’s background was C# or Java, and they found it natural to create interfaces
before concrete types. However, this isn’t how things should work in Go.

 As we discussed, interfaces are made to create abstractions. And the main caveat
when programming meets abstractions is remembering that abstractions should be dis-
covered, not created. What does this mean? It means we shouldn’t start creating abstrac-
tions in our code if there is no immediate reason to do so. We shouldn’t design with
interfaces but wait for a concrete need. Said differently, we should create an interface
when we need it, not when we foresee that we could need it.

 What’s the main problem if we overuse interfaces? The answer is that they make
the code flow more complex. Adding a useless level of indirection doesn’t bring any
value; it creates a worthless abstraction making the code more difficult to read, under-
stand, and reason about. If we don’t have a strong reason for adding an interface and
it’s unclear how an interface makes a code better, we should challenge this interface’s
purpose. Why not call the implementation directly?

NOTE We may also experience performance overhead when calling a
method through an interface. It requires a lookup in a hash table’s data struc-
ture to find the concrete type an interface points to. But this isn’t an issue in
many contexts as the overhead is minimal.

In summary, we should be cautious when creating abstractions in our code—abstrac-
tions should be discovered, not created. It’s common for us, software developers, to
overengineer our code by trying to guess what the perfect level of abstraction is, based
on what we think we might need later. This process should be avoided because, in
most cases, it pollutes our code with unnecessary abstractions, making it more com-
plex to read.

Don’t design with interfaces, discover them.

                                                                 —Rob Pike

Let’s not try to solve a problem abstractly but solve what has to be solved now. Last, but
not least, if it’s unclear how an interface makes the code better, we should probably
consider removing it to make our code simpler.

 The following section continues with this thread and discusses a common interface
mistake: creating interfaces on the producer side. 
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2.6 #6: Interface on the producer 
side
We saw in the previous section when inter-
faces are considered valuable. But Go
developers often misunderstand one ques-
tion: where should an interface live?

 Before delving into this topic, let’s
make sure the terms we use throughout
this section are clear:

 Producer side—An interface defined
in the same package as the concrete
implementation (see figure 2.4).

 Consumer side—An interface defined
in an external package where it’s
used (see figure 2.5).

It’s common to see developers creating
interfaces on the producer side, alongside
the concrete implementation. This design
is perhaps a habit from developers having
a C# or a Java background. But in Go, in
most cases this is not what we should do.

 Let’s discuss the following example.
Here, we create a specific package to store
and retrieve customer data. Meanwhile,
still in the same package, we decide that all the calls have to go through the following
interface:

package store

type CustomerStorage interface {
StoreCustomer(customer Customer) error
GetCustomer(id string) (Customer, error)
UpdateCustomer(customer Customer) error
GetAllCustomers() ([]Customer, error)
GetCustomersWithoutContract() ([]Customer, error)
GetCustomersWithNegativeBalance() ([]Customer, error)

}

We might think we have some excellent reasons to create and expose this interface on
the producer side. Perhaps it’s a good way to decouple the client code from the actual
implementation. Or, perhaps we can foresee that it will help clients in creating test
doubles. Whatever the reason, this isn’t a best practice in Go.

 As mentioned, interfaces are satisfied implicitly in Go, which tends to be a game-
changer compared to languages with an explicit implementation. In most cases, the

Package foo

Interface

Satisfies

Implementation

The interface lives 
on the producer side.

Package bar

Uses Some code

Figure 2.4 The interface is defined alongside 
the concrete implementation.

Package foo

Implementation

The interface lives 
on the consumer side.

Package bar

Uses

Some code

InterfaceSatisfies

Figure 2.5 The interface is defined where it’s 
used.
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approach to follow is similar to what we described in the previous section: abstractions
should be discovered, not created. This means that it’s not up to the producer to force a
given abstraction for all the clients. Instead, it’s up to the client to decide whether it
needs some form of abstraction and then determine the best abstraction level for its
needs.

 In the previous example, perhaps one client won’t be interested in decoupling its
code. Maybe another client wants to decouple its code but is only interested in the
GetAllCustomers method. In this case, this client can create an interface with a single
method, referencing the Customer struct from the external package:

package client

type customersGetter interface {
GetAllCustomers() ([]store.Customer, error)

}

From a package organization, figure 2.6 shows the result. A couple of things to note:

 Because the customersGetter interface is only used in the client package, it
can remain unexported.

 Visually, in the figure, it looks like circular dependencies. However, there’s no
dependency from store to client because the interface is satisfied implicitly.
This is why such an approach isn’t always possible in languages with an explicit
implementation.

The main point is that the client package can now define the most accurate abstrac-
tion for its need (here, only one method). It relates to the concept of the Interface-
Segregation Principle (the I in SOLID), which states that no client should be forced
to depend on methods it doesn’t use. Therefore, in this case, the best approach is to
expose the concrete implementation on the producer side and let the client decide
how to use it and whether an abstraction is needed.

 For the sake of completeness, let’s mention that this approach—interfaces on the
producer side—is sometimes used in the standard library. For example, the encoding
package defines interfaces implemented by other subpackages such as encoding/json
or encoding/binary. Is the encoding package wrong about this? Definitely not. In this

Package store

Implementation

Package client

Uses

Some code

References

customersGetter
interfaceSatisfies

Customer struct Figure 2.6 The client package defines 
the abstraction it needs by creating its 
own interface.
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case, the abstractions defined in the encoding package are used across the standard
library, and the language designers knew that creating these abstractions up front was
valuable. We are back to the discussion in the previous section: don’t create an
abstraction if you think it might be helpful in an imaginary future or, at least, if you
can’t prove this abstraction is valid.

 An interface should live on the consumer side in most cases. However, in particu-
lar contexts (for example, when we know—not foresee—that an abstraction will be
helpful for consumers), we may want to have it on the producer side. If we do, we
should strive to keep it as minimal as possible, increasing its reusability potential and
making it more easily composable.

 Let’s continue the discussion about interfaces in the context of function signa-
tures. 

2.7 #7: Returning interfaces
While designing a function signature, we may have to return either an interface or a
concrete implementation. Let’s understand why returning an interface is, in many
cases, considered a bad practice in Go.

 We just presented why interfaces live, in general, on the consumer side. Figure 2.7
shows what would happen dependency-wise if a function returns an interface instead
of a struct. We will see that it leads to issues.

 We will consider two packages:

 client, which contains a Store interface
 store, which contains an implementation of Store

Figure 2.7 There’s a dependency from the store package to the client package.

In the store package, we define an InMemoryStore struct that implements the Store
interface. Meanwhile, we create a NewInMemoryStore function to return a Store inter-
face. There’s a dependency from the implementation package to the client package in
this design, and that may already sound a bit odd.

 For example, the client package can’t call the NewInMemoryStore function any-
more; otherwise, there would be a cyclic dependency. A possible solution could be to

Package client

Depends

Package store

Store
interface

InMemoryStore
struct

NewInMemoryStore()               {
    // ...
    return 
}        

client.
Store

InMemoryStore
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call this function from another package and to inject a Store implementation to cli-
ent. However, being obliged to do that means that the design should be challenged.

 Furthermore, what happens if another client uses the InMemoryStore struct? In
that case, perhaps we would like to move the Store interface to another package, or
back to the implementation package—but we discussed why, in most cases, this isn’t a
best practice. It looks like a code smell.

 Hence, in general, returning an interface restricts flexibility because we force all
the clients to use one particular type of abstraction. In most cases, we can get inspira-
tion from Postel’s law (https://datatracker.ietf.org/doc/html/rfc761):

Be conservative in what you do, be liberal in what you accept from others.

                                                                                              —Transmission Control Protocol

If we apply this idiom to Go, it means

 Returning structs instead of interfaces
 Accepting interfaces if possible

Of course, there are some exceptions. As software engineers, we are familiar with the
fact that rules are never true 100% of the time. The most relevant one concerns the
error type, an interface returned by many functions. We can also examine another
exception in the standard library with the io package:

func LimitReader(r Reader, n int64) Reader {
return &LimitedReader{r, n}

}

Here, the function returns an exported struct, io.LimitedReader. However, the func-
tion signature is an interface, io.Reader. What’s the rationale for breaking the rule
we’ve discussed so far? The io.Reader is an up-front abstraction. It’s not one defined
by clients, but it’s one that is forced because the language designers knew in advance
that this level of abstraction would be helpful (for example, in terms of reusability and
composability).

 All in all, in most cases, we shouldn’t return interfaces but concrete implementa-
tions. Otherwise, it can make our design more complex due to package dependencies
and can restrict flexibility because all the clients would have to rely on the same
abstraction. Again, the conclusion is similar to the previous sections: if we know (not
foresee) that an abstraction will be helpful for clients, we can consider returning an
interface. Otherwise, we shouldn’t force abstractions; they should be discovered by cli-
ents. If a client needs to abstract an implementation for whatever reason, it can still do
that on the client’s side.

 In the next section, we will discuss a common mistake related to using any. 

2.8 #8: any says nothing
In Go, an interface type that specifies zero methods is known as the empty interface,
interface{}. With Go 1.18, the predeclared type any became an alias for an empty
interface; hence, all the interface{} occurrences can be replaced by any. In many

https://datatracker.ietf.org/doc/html/rfc761
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cases, any can be considered an overgeneralization; and as mentioned by Rob Pike, it
doesn’t convey anything (https://www.youtube.com/watch?v=PAAkCSZUG1c&t=7m
36s). Let’s first remind ourselves of the core concepts, and then we can discuss the
potential problems.

 An any type can hold any value type:

func main() {
var i any

i = 42
i = "foo"
i = struct {

s string
}{

s: "bar",
}
i = f

_ = i
}

func f() {}

In assigning a value to an any type, we lose all type information, which requires a type
assertion to get anything useful out of the i variable, as in the previous example. Let’s
look at another example, where using any isn’t accurate. In the following, we imple-
ment a Store struct and the skeleton of two methods, Get and Set. We use these
methods to store the different struct types, Customer and Contract:

package store

type Customer struct{
// Some fields

}
type Contract struct{

// Some fields
}

type Store struct{}

func (s *Store) Get(id string) (any, error) {
// ...

}

func (s *Store) Set(id string, v any) error {
// ...

}

Although there is nothing wrong with Store compilation-wise, we should take a min-
ute to think about the method signatures. Because we accept and return any argu-
ments, the methods lack expressiveness. If future developers need to use the Store
struct, they will probably have to dig into the documentation or read the code to

An int
A string

A struct

A function

Assignment to the blank 
identifier so that the 
example compiles

Returns any

Accepts any

https://www.youtube.com/watch?v=PAAkCSZUG1c&t=7m36s
https://www.youtube.com/watch?v=PAAkCSZUG1c&t=7m36s
https://www.youtube.com/watch?v=PAAkCSZUG1c&t=7m36s
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understand how to use these methods. Hence, accepting or returning an any type
doesn’t convey meaningful information. Also, because there is no safeguard at com-
pile time, nothing prevents a caller from calling these methods with whatever data
type, such as an int:

s := store.Store{}
s.Set("foo", 42)

By using any, we lose some of the benefits of Go as a statically typed language. Instead,
we should avoid any types and make our signatures explicit as much as possible. Regard-
ing our example, this could mean duplicating the Get and Set methods per type:

func (s *Store) GetContract(id string) (Contract, error) {
// ...

}

func (s *Store) SetContract(id string, contract Contract) error {
// ...

}

func (s *Store) GetCustomer(id string) (Customer, error) {
// ...

}

func (s *Store) SetCustomer(id string, customer Customer) error {
// ...

}

In this version, the methods are expressive, reducing the risk of incomprehension.
Having more methods isn’t necessarily a problem because clients can also create their
own abstraction using an interface. For example, if a client is interested only in the
Contract methods, it could write something like this:

type ContractStorer interface {
GetContract(id string) (store.Contract, error)
SetContract(id string, contract store.Contract) error

}

What are the cases when any is helpful? Let’s take a look at the standard library and
see two examples where functions or methods accept any arguments. The first exam-
ple is in the encoding/json package. Because we can marshal any type, the Marshal
function accepts an any argument:

func Marshal(v any) ([]byte, error) {
// ...

}

Another example is in the database/sql package. If the query is parameterized (for
example, SELECT * FROM FOO WHERE id = ?), the parameters could be any kind. Hence,
it also uses any arguments:

func (c *Conn) QueryContext(ctx context.Context, query string,
args ...any) (*Rows, error) {
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// ...
}

In summary, any can be helpful if there is a genuine need for accepting or returning
any possible type (for instance, when it comes to marshaling or formatting). In gen-
eral, we should avoid overgeneralizing the code we write at all costs. Perhaps a little bit
of duplicated code might occasionally be better if it improves other aspects such as
code expressiveness.

 Next, we will discuss another type of abstraction: generics. 

2.9 #9: Being confused about when to use generics
Go 1.18 adds generics to the language. In a nutshell, this allows writing code with types
that can be specified later and instantiated when needed. However, it can be confusing
about when to use generics and when not to. Throughout this section, we will describe
the concept of generics in Go and then look at common uses and misuses.

2.9.1 Concepts

Consider the following function that extracts all the keys from a map[string]int type:

func getKeys(m map[string]int) []string {
var keys []string
for k := range m {

keys = append(keys, k)
}
return keys

}

What if we want to use a similar feature for another map type such as a
map[int]string? Before generics, Go developers had a few options: using code gen-
eration, reflection, or duplicating code. For example, we could write two functions,
one for each map type, or even try to extend getKeys to accept different map types:

func getKeys(m any) ([]any, error) {
switch t := m.(type) {
default:

return nil, fmt.Errorf("unknown type: %T", t)
case map[string]int:

var keys []any
for k := range t {

keys = append(keys, k)
}
return keys, nil

case map[int]string:
// Copy the extraction logic

}
}

With this example, we start to notice a few issues. First, it increases boilerplate code.
Indeed, when we want to add a case, it requires duplicating the range loop. Mean-
while, the function now accepts an any type, which means we lose some of the benefits

Accepts and returns 
any arguments

Handles run-time 
errors if a type isn’t 
implemented yet
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of Go as a typed language. Indeed, checking whether a type is supported is done at
run time instead of compile time. Hence, we also need to return an error if the pro-
vided type is unknown. Finally, because the key type can be either int or string, we
are obliged to return a slice of any type to factor out key types. This approach
increases the effort on the caller side because the client may also need to perform a
type check of the keys or an extra conversion. Thanks to generics, we can now refactor
this code using type parameters.

 Type parameters are generic types that we can use with functions and types. For
example, the following function accepts a type parameter:

func foo[T any](t T) {
// ...

}

When calling foo, we pass a type argument of any type. Supplying a type argument is
called instantiation, and the work is done at compile time. This keeps type safety as
part of the core language features and avoids run-time overhead.

 Let’s get back to the getKeys function and use type parameters to write a generic
version that would accept any kind of map:

func getKeys[K comparable, V any](m map[K]V) []K {
var keys []K
for k := range m {

keys = append(keys, k)
}
return keys

}

To handle the map, we define two kinds of type parameters. First, the values can be of
the any type: V any. However, in Go, the map keys can’t be of the any type. For exam-
ple, we cannot use slices:

var m map[[]byte]int

This code leads to a compilation error: invalid map key type []byte. Therefore,
instead of accepting any key type, we are obliged to restrict type arguments so that the
key type meets specific requirements. Here, the requirement is that the key type must
be comparable (we can use == or !=). Hence, we defined K as comparable instead
of any.

 Restricting type arguments to match specific requirements is called a constraint. A
constraint is an interface type that can contain

 A set of behaviors (methods)
 Arbitrary types

Let’s check out a concrete example for the latter. Imagine we don’t want to accept any
comparable type for the map key type. For instance, we want to restrict it to either int
or string types. We can define a custom constraint this way:

T is a type 
parameter.

The keys are comparable, 
whereas values are of the 
any type.

Creates the 
keys slice
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type customConstraint interface {
~int | ~string

}

func getKeys[K customConstraint,
V any](m map[K]V) []K {

// Same implementation
}

First, we define a customConstraint interface to restrict the types to be either int or
string using the union operator | (we will discuss the use of ~ a bit later). K is now a
customConstraint instead of a comparable as before.

 The signature of getKeys enforces that we can call it with a map of any value type,
but the key type has to be an int or a string—for example, on the caller side:

m = map[string]int{
"one": 1,
"two": 2,
"three": 3,

}
keys := getKeys(m)

Note that Go can infer that getKeys is called with a string type argument. The previ-
ous call is equivalent to this:

keys := getKeys[string](m)

~int vs. int
What’s the difference between a constraint using ~int or one using int? Using int
restricts it to that type, whereas ~int restricts all the types whose underlying type is
an int. To illustrate, let’s imagine a constraint where we would like to restrict a type
to any int type implementing the String() string method:

type customConstraint interface {
~int
String() string

}

Using this constraint restricts type arguments to custom types. For example,

type customInt int

func (i customInt) String() string {
return strconv.Itoa(int(i))

}

Because customInt is an int and implements the String() string method, the
customInt type satisfies the defined constraint. However, if we change the con-
straint to contain an int instead of an ~int, using customInt leads to a compilation
error because the int type doesn’t implement String() string.

Defines a custom type that 
restricts types to int and string

Changes the type parameter K 
to be a customConstraint type
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So far, we have discussed examples using generics for functions. However, we can also
use generics with data structures. For example, we can create a linked list containing
values of any type. For this, we will write an Add method to append a node:

type Node[T any] struct {
Val T
next *Node[T]

}

func (n *Node[T]) Add(next *Node[T]) {
n.next = next

}

In the example, we use type parameters to define T and use both fields in Node.
Regarding the method, the receiver is instantiated. Indeed, because Node is generic, it
has to follow the defined type parameter as well.

 One last thing to note about type parameters is that they can’t be used with
method arguments, only with function arguments or method receivers. For example,
the following method won’t compile:

type Foo struct {}

func (Foo) bar[T any](t T) {}

./main.go:29:15: methods cannot have type parameters

If we want to use generics with methods, it’s the receiver that needs to be a type
parameter.

 Now, let’s examine concrete cases where we should and shouldn’t use generics. 

2.9.2 Common uses and misuses

When are generics useful? Let’s discuss a few common uses where generics are
recommended:

 Data structures—We can use generics to factor out the element type if we imple-
ment a binary tree, a linked list, or a heap, for example.

 Functions working with slices, maps, and channels of any type—A function to merge
two channels would work with any channel type, for example. Hence, we could
use type parameters to factor out the channel type:

func merge[T any](ch1, ch2 <-chan T) <-chan T {
// ...

}

 Factoring out behaviors instead of types—The sort package, for example, contains
a sort.Interface interface with three methods:

type Interface interface {
Len() int
Less(i, j int) bool
Swap(i, j int)

}

Uses a type 
parameter

Instantiates a 
type receiver
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This interface is used by different functions such as sort.Ints or sort
.Float64s. Using type parameters, we could factor out the sorting behavior
(for example, by defining a struct holding a slice and a comparison function):

type SliceFn[T any] struct {
S []T
Compare func(T, T) bool

}

func (s SliceFn[T]) Len() int { return len(s.S) }
func (s SliceFn[T]) Less(i, j int) bool { return s.Compare(s.S[i], s.S[j]) }
func (s SliceFn[T]) Swap(i, j int) { s.S[i], s.S[j] = s.S[j], s.S[i] }

Then, because the SliceFn struct implements sort.Interface, we can sort the
provided slice using the sort.Sort(sort.Interface) function:

s := SliceFn[int]{
S: []int{3, 2, 1},
Compare: func(a, b int) bool {

return a < b
},

}
sort.Sort(s)
fmt.Println(s.S)

[1 2 3]

In this example, factoring out a behavior allows us to avoid creating one func-
tion per type.

Conversely, when is it recommended that we not use generics?

 When calling a method of the type argument—Consider a function that receives an
io.Writer and calls the Write method, for example:

func foo[T io.Writer](w T) {
b := getBytes()
_, _ = w.Write(b)

}

In this case, using generics won’t bring any value to our code whatsoever. We
should make the w argument an io.Writer directly.

 When it makes our code more complex—Generics are never mandatory, and as Go
developers, we have lived without them for more than a decade. If we’re writing
generic functions or structures and we figure out that it doesn’t make our code
clearer, we should probably reconsider our decision for that particular use case.

Although generics can be helpful in particular conditions, we should be cautious
about when to use them and when not to use them. In general, if we want to answer
when not to use generics, we can find similarities with when not to use interfaces.
Indeed, generics introduce a form of abstraction, and we have to remember that
unnecessary abstractions introduce complexity.

Uses a type parameter

Compares two
T elements
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 Again, let’s not pollute our code with needless abstractions, and let’s focus on solv-
ing concrete problems for now. This means that we shouldn’t use type parameters pre-
maturely. Let’s wait until we are about to write boilerplate code to consider using
generics.

 In the following section, we will discuss the possible problems while using type
embedding. 

2.10 #10: Not being aware of the possible 
problems with type embedding
When creating a struct, Go offers the option to embed types. But this can sometimes
lead to unexpected behaviors if we don’t understand all the implications of type
embedding. Throughout this section, we look at how to embed types, what these
bring, and the possible issues.

 In Go, a struct field is called embedded if it’s declared without a name. For example,

type Foo struct {
Bar

}

type Bar struct {
Baz int

}

In the Foo struct, the Bar type is declared without an associated name; hence, it’s an
embedded field.

 We use embedding to promote the fields and methods of an embedded type.
Because Bar contains a Baz field, this field is promoted to Foo (see figure 2.8). There-
fore, Baz becomes available from Foo:

foo := Foo{}
foo.Baz = 42

Note that Baz is available from two different paths: either from the promoted one using
Foo.Baz or from the nominal one via Bar, Foo.Bar.Baz. Both relate to the same field.

Interfaces and embedding
Embedding is also used within interfaces to compose an interface with others. In the
following example, io.ReadWriter is composed of an io.Reader and an
io.Writer:

Embedded 
field

Foo struct {
 Bar
 [Baz int]
}

Bar struct {
  Baz int
}
    Promote Figure 2.8 baz is promoted, hence 

accessible directly from S.
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Now that we’ve reminded ourselves what embedded types are, let’s look at an example
of a wrong usage. In the following, we implement a struct that holds some in-memory
data, and we want to protect it against concurrent accesses using a mutex:

type InMem struct {
sync.Mutex
m map[string]int

}

func New() *InMem {
return &InMem{m: make(map[string]int)}

}

We decided to make the map unexported so that clients can’t interact with it directly
but only via exported methods. Meanwhile, the mutex field is embedded. Therefore,
we can implement a Get method this way:

func (i *InMem) Get(key string) (int, bool) {
i.Lock()
v, contains := i.m[key]
i.Unlock()
return v, contains

}

Because the mutex is embedded, we can directly access the Lock and Unlock methods
from the i receiver.

 We mentioned that such an example is a wrong usage of type embedding. What’s
the reason for this? Since sync.Mutex is an embedded type, the Lock and Unlock
methods will be promoted. Therefore, both methods become visible to external cli-
ents using InMem:

m := inmem.New()
m.Lock() // ??

This promotion is probably not desired. A mutex is, in most cases, something that we
want to encapsulate within a struct and make invisible to external clients. Therefore,
we shouldn’t make it an embedded field in this case:

type InMem struct {
mu sync.Mutex
m map[string]int

}

type ReadWriter interface {
Reader
Writer

}

But the scope of this section is only related to embedded fields in structs.

Embedded 
field

Accesses the Lock 
method directly

The same goes for the 
Unlock method.

Specifies that the sync.Mutex 
field is not embedded
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Because the mutex isn’t embedded and is unexported, it can’t be accessed from exter-
nal clients. Let’s now look at another example, but this time where embedding can be
considered a correct approach.

 We want to write a custom logger that contains an io.WriteCloser and exposes
two methods, Write and Close. If io.WriteCloser wasn’t embedded, we would need
to write it like so:

type Logger struct {
writeCloser io.WriteCloser

}

func (l Logger) Write(p []byte) (int, error) {
return l.writeCloser.Write(p)

}

func (l Logger) Close() error {
return l.writeCloser.Close()

}

func main() {
l := Logger{writeCloser: os.Stdout}
_, _ = l.Write([]byte("foo"))
_ = l.Close()

}

Logger would have to provide both a Write and a Close method that would only for-
ward the call to io.WriteCloser. However, if the field now becomes embedded, we
can remove these forwarding methods:

type Logger struct {
io.WriteCloser

}

func main() {
l := Logger{WriteCloser: os.Stdout}
_, _ = l.Write([]byte("foo"))
_ = l.Close()

}

It remains the same for clients with two exported Write and Close methods. But the
example prevents implementing these additional methods simply to forward a call.
Also, as Write and Close are promoted, it means that Logger satisfies the io.Write-
Closer interface.

Embedding vs. OOP subclassing
Differentiating embedding from OOP subclassing can sometimes be confusing. The
main difference is related to the identity of the receiver of a method. Let’s look at the
following figure. The left-hand side represents a type X being embedded in Y, whereas
on the right-hand side, Y extends X.

Forwards the call 
to writeCloser

Forwards the call 
to writeCloser

Makes io.Writer 
embedded
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What should we conclude about type embedding? First, let’s note that it’s rarely a
necessity, and it means that whatever the use case, we can probably solve it as well with-
out type embedding. Type embedding is mainly used for convenience: in most cases,
to promote behaviors.

 If we decide to use type embedding, we need to keep two main constraints in mind:

 It shouldn’t be used solely as some syntactic sugar to simplify accessing a field
(such as Foo.Baz() instead of Foo.Bar.Baz()). If this is the only rationale, let’s
not embed the inner type and use a field instead.

 It shouldn’t promote data (fields) or a behavior (methods) we want to hide
from the outside: for example, if it allows clients to access a locking behavior
that should remain private to the struct.

NOTE Some may also argue that using type embedding could lead to extra
efforts in terms of maintenance in the context of exported structs. Indeed,
embedding a type inside an exported struct means remaining cautious when
this type evolves. For example, if we add a new method to the inner type, we
should ensure it doesn’t break the latter constraint. Hence, to avoid this extra
effort, teams can also prevent type embedding in public structs.

Using type embedding consciously by keeping these constraints in mind can help avoid
boilerplate code with additional forwarding methods. However, let’s make sure we
don’t do it solely for cosmetics and not promote elements that should remain hidden.

 In the next section, we’ll discuss common patterns to deal with optional
configurations. 

With embedding, the receiver of Foo remains X. However, with subclassing, the
receiver of Foo becomes the subclass, Y. Embedding is about composition, not inher-
itance.

X

 Foo()

Foo() becomes a method of Y;
X remains the receiver of Foo().

Y

 X
 [Foo()]

Embedding Subclassing

X

 Foo()

Extends

Foo() becomes a method of Y;
Y becomes the receiver of Foo().

Y

 Foo()

Promote

With embedding, the 
embedded type remains the 
receiver of a method. 
Conversely, with subclassing, 
the subclass becomes the 
receiver of a method.



40 CHAPTER 2 Code and project organization
2.11 #11: Not using the functional options pattern
When designing an API, one question may arise: how do we deal with optional config-
urations? Solving this problem efficiently can improve how convenient our API will
become. This section goes through a concrete example and covers different ways to
handle optional configurations.

 For this example, let’s say we have to design a library that exposes a function to cre-
ate an HTTP server. This function would accept different inputs: an address and a
port. The following shows the skeleton of the function:

func NewServer(addr string, port int) (*http.Server, error) {
// ...

}

The clients of our library have started to use this function, and everyone is happy. But
at some point, our clients begin to complain that this function is somewhat limited
and lacks other parameters (for example, a write timeout and a connection context).
However, we notice that adding new function parameters breaks the compatibility,
forcing the clients to modify the way they call NewServer. In the meantime, we would
like to enrich the logic related to port management this way (figure 2.9):

 If the port isn’t set, it uses the default one.
 If the port is negative, it returns an error.
 If the port is equal to 0, it uses a random port.
 Otherwise, it uses the port provided by the client.

No

Yes

Port is set? Default port

Yes

No

Is negative? Returns error

Yes

No

Is equal to 0? Random port

Use the port
provided

Port setup

Figure 2.9 Logic related to the port option
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How can we implement this function in an API-friendly way? Let’s look at the different
options.

2.11.1 Config struct

Because Go doesn’t support optional parameters in function signatures, the first pos-
sible approach is to use a configuration struct to convey what’s mandatory and what’s
optional. For example, the mandatory parameters could live as function parameters,
whereas the optional parameters could be handled in the Config struct:

type Config struct {
Port int

}

func NewServer(addr string, cfg Config) {
}

This solution fixes the compatibility issue. Indeed, if we add new options, it will not
break on the client side. However, this approach doesn’t solve our requirement
related to port management. Indeed, we should bear in mind that if a struct field isn’t
provided, it’s initialized to its zero value:

 0 for an integer
 0.0 for a floating-point type
 "" for a string
 Nil for slices, maps, channels, pointers, interfaces, and functions

Therefore, in the following example, both structs are equal:

c1 := httplib.Config{
Port: 0,

}
c2 := httplib.Config{

}

In our case, we need to find a way to distinguish between a port purposely set to 0 and
a missing port. Perhaps one option might be to handle all the parameters of the con-
figuration struct as pointers in this way:

type Config struct {
Port *int

}

Using an integer pointer, semantically, we can highlight the difference between the
value 0 and a missing value (a nil pointer).

 This option would work, but it has a couple of downsides. First, it’s not handy for
clients to provide an integer pointer. Clients have to create a variable and then pass a
pointer this way:

Initializes 
Port to 0

Port is missing, so 
it’s initialized to 0.
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port := 0
config := httplib.Config{

Port: &port,
}

It’s not a showstopper as such, but the overall API becomes a bit less convenient to
use. Also, the more options we add, the more complex the code becomes.

 The second downside is that a client using our library with the default configura-
tion will need to pass an empty struct this way:

httplib.NewServer("localhost", httplib.Config{})

This code doesn’t look great. Readers will have to understand what this magical
struct’s meaning is.

 Another option is to use the classic builder pattern, as presented in the next section. 

2.11.2 Builder pattern

Originally part of the Gang of Four design patterns, the builder pattern provides a flexi-
ble solution to various object-creation problems. The construction of Config is sepa-
rated from the struct itself. It requires an extra struct, ConfigBuilder, which receives
methods to configure and build a Config.

 Let’s see a concrete example and how it can help us in designing a friendly API
that tackles all our requirements, including port management:

type Config struct {
Port int

}

type ConfigBuilder struct {
port *int

}

func (b *ConfigBuilder) Port(
port int) *ConfigBuilder {
b.port = &port
return b

}

func (b *ConfigBuilder) Build() (Config, error) {
cfg := Config{}

if b.port == nil {
cfg.Port = defaultHTTPPort

} else {
if *b.port == 0 {

cfg.Port = randomPort()
} else if *b.port < 0 {

return Config{}, errors.New("port should be positive")
} else {

cfg.Port = *b.port
}

}

Provides an integer pointer

Config 
struct

Config builder struct, 
containing an optional port

Public method to 
set up the port

Build method to create 
the config struct

Main logic related 
to port management
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return cfg, nil
}

func NewServer(addr string, config Config) (*http.Server, error) {
// ...

}

The ConfigBuilder struct holds the client configuration. It exposes a Port method to
set up the port. Usually, such a configuration method returns the builder itself so that
we can use method chaining (for example, builder.Foo("foo").Bar("bar")). It also
exposes a Build method that holds the logic on initializing the port value (whether
the pointer was nil, etc.) and returns a Config struct once created.

NOTE There isn’t a single possible implementation of the builder pattern.
For example, some may favor an approach where the logic to define the final
port value is inside the Port method instead of Build. This section’s scope is
to present an overview of the builder pattern, not to look at all the different
possible variations.

Then, a client would use our builder-based API in the following manner (we assume
that we have put our code in an httplib package):

builder := httplib.ConfigBuilder{}
builder.Port(8080)
cfg, err := builder.Build()
if err != nil {

return err
}

server, err := httplib.NewServer("localhost", cfg)
if err != nil {

return err
}

First, the client creates a ConfigBuilder and uses it to set up an optional field, such as
the port. Then, it calls the Build method and checks for errors. If OK, the configura-
tion is passed to NewServer.

 This approach makes port management handier. It’s not required to pass an inte-
ger pointer, as the Port method accepts an integer. However, we still need to pass a
config struct that can be empty if a client wants to use the default configuration:

server, err := httplib.NewServer("localhost", nil)

Another downside, in some situations, is related to error management. In program-
ming languages where exceptions are thrown, builder methods such as Port can raise
exceptions if the input is invalid. If we want to keep the ability to chain the calls, the
function can’t return an error. Therefore, we have to delay the validation in the Build

Creates a 
builder config

Sets the port

Builds the 
config struct

Passes the config struct
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method. If a client can pass multiple options, but we want to handle precisely the case
that a port is invalid, it makes error handling more complex.

 Let’s now look at another approach called the functional options pattern, which
relies on variadic arguments. 

2.11.3 Functional options pattern

The last approach we will discuss is the functional options pattern (figure 2.10).
Although there are different implementations with minor variations, the main idea is
as follows:

 An unexported struct holds the configuration: options.
 Each option is a function that returns the same type: type Option

func(options *options) error. For example, WithPort accepts an int argu-
ment that represents the port and returns an Option type that represents how
to update the options struct.

Here’s the Go implementation for the options struct, the Option type, and the With-
Port option:

type options struct {
port *int

}

type Option func(options *options) error

func WithPort(port int) Option {
return func(options *options) error {

if port < 0 {
return errors.New("port should be positive")

}
options.port = &port
return nil

}
}

Uses

Option type

func(*                ) error

options struct

port *int

ReturnsWithPort(port int)                
options

Option

Figure 2.10 The WithPort 
option updates the final 
options struct.

Configuration 
struct

Represents a function type that 
updates the configuration struct

A configuration function 
that updates the port
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Here, WithPort returns a closure. A closure is an anonymous function that references
variables from outside its body; in this case, the port variable. The closure respects the
Option type and implements the port-validation logic. Each config field requires cre-
ating a public function (that starts with the With prefix by convention) containing
similar logic: validating inputs if needed and updating the config struct.

 Let’s look at the last part on the provider side: the NewServer implementation.
We’ll pass the options as variadic arguments. Hence, we must iterate over these
options to mutate the options config struct:

func NewServer(addr string, opts ...Option) (
*http.Server, error) {
var options options
for _, opt := range opts {

err := opt(&options)
if err != nil {

return nil, err
}

}

// At this stage, the options struct is built and contains the config
// Therefore, we can implement our logic related to port configuration
var port int
if options.port == nil {

port = defaultHTTPPort
} else {

if *options.port == 0 {
port = randomPort()

} else {
port = *options.port

}
}

// ...
}

We start by creating an empty options struct. Then, we iterate over each Option argu-
ment and execute them to mutate the options struct (bear in mind that the Option
type is a function). Once the options struct is built, we can implement the final logic
regarding port management.

 Because NewServer accepts variadic Option arguments, a client can now call this API
by passing multiple options following the mandatory address argument. For example,

server, err := httplib.NewServer("localhost",
httplib.WithPort(8080),
httplib.WithTimeout(time.Second))

However, if the client needs the default configuration, it doesn’t have to provide an
argument (for example, an empty struct, as we saw with the previous approaches).
The client’s call now might look something like this:

server, err := httplib.NewServer("localhost")

Accepts variadic 
Option arguments

Creates an empty 
options struct

Iterates over all 
the input optionsCalls each option, 

which results in 
modifying the common 
options struct
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This pattern is the functional options pattern. It provides a handy and API-friendly
way to handle options. Although the builder pattern can be a valid option, it has some
minor downsides that tend to make the functional options pattern the idiomatic way
to deal with this problem in Go. Let’s also note that this pattern is used in different Go
libraries such as gRPC.

 The next section will discuss another common mistake: misorganization. 

2.12 #12: Project misorganization
Organizing a Go project isn’t an easy task. Because the Go language provides a lot of
freedom in designing packages and modules, the best practices are not quite as ubiq-
uitous as they should be. This section first discusses a common way of structuring a
project and then discusses a few best practices, showing ways to improve how we orga-
nize a project.

2.12.1 Project structure

The Go language maintainer has no strong convention about structuring a project in
Go. However, one layout has emerged over the years: project-layout (https://
github.com/golang-standards/project-layout).

 If our project is small enough (only a few files), or if our organization has already
created its standard, it may not be worth using or migrating to project-layout. Other-
wise, it might be worth considering. Let’s look at this layout and see what the main
directories are:

 /cmd—The main source files. The main.go of a foo application should live in
/cmd/foo/main.go.

 /internal—Private code that we don’t want others importing for their applica-
tions or libraries.

 /pkg—Public code that we want to expose to others.
 /test—Additional external tests and test data. Unit tests in Go live in the same

package as the source files. However, public API tests or integration tests, for
example, should live in /test.

 /configs—Configuration files.
 /docs—Design and user documents.
 /examples—Examples for our application and/or a public library.
 /api—API contract files (Swagger, Protocol Buffers, etc.).
 /web—Web application-specific assets (static files, etc.).
 /build—Packaging and continuous integration (CI) files.
 /scripts—Scripts for analysis, installation, and so on.
 /vendor—Application dependencies (for example, Go modules dependencies).

There’s no /src directory like in some other languages. The rationale is that /src is
too generic; hence, this layout favors directories such as /cmd, /internal, or /pkg.

https://github.com/golang-standards/project-layout
https://github.com/golang-standards/project-layout


472.12 #12: Project misorganization
NOTE In 2021, Russ Cox, one of the core maintainers of Go, criticized this
layout. Mainly, a project lives under the GitHub golang-standards organiza-
tion despite not being an official standard. In any case, we must bear in mind
that, regarding project structure, there’s no mandatory convention. This lay-
out may be helpful for you or not, but what’s important here is that indeci-
sion is the only wrong decision. Hence, agree on a layout to keep things
consistent in your organization so that developers don’t waste time switching
from one repository to another.

Now, let’s discuss how to organize the main logic of a Go repository. 

2.12.2 Package organization

In Go, there is no concept of subpackages. However, we can decide to organize pack-
ages within subdirectories. If we take a look at the standard library, the net directory is
organized this way:

/net
/http

client.go
...

/smtp
auth.go
...

addrselect.go
...

net acts both as a package and a directory that contains other packages. But net/http
doesn’t inherit from net or have specific access rights to the net package. Elements
inside of net/http can only see exported net elements. The main benefit of subdirec-
tories is to keep packages in a place where they live with high cohesion.

 Regarding the overall organization, there are different schools of thought. For
example, should we organize our application by context or by layer? It depends on
our preferences. We may favor grouping code per context (such as the customer con-
text, the contract context, etc.), or we may favor following hexagonal architecture
principles and group per technical layer. If the decision we make fits our use case, it
cannot be a wrong decision, as long as we remain consistent with it.

 Regarding packages, there are multiple best practices that we should follow. First,
we should avoid premature packaging because it might cause us to overcomplicate a
project. Sometimes, it’s better to use a simple organization and have our project
evolve when we understand what it contains rather than forcing ourselves to make the
perfect structure up front.

 Granularity is another essential thing to consider. We should avoid having dozens
of nano packages containing only one or two files. If we do, it’s because we have prob-
ably missed some logical connections across these packages, making our project
harder for readers to understand. Conversely, we should also avoid huge packages
that dilute the meaning of a package name.



48 CHAPTER 2 Code and project organization
 Package naming should also be considered with care. As we all know (as develop-
ers), naming is hard. To help clients understand a Go project, we should name our
packages after what they provide, not what they contain. Also, naming should be
meaningful. Therefore, a package name should be short, concise, expressive, and, by
convention, a single lowercase word.

 Regarding what to export, the rule is pretty straightforward. We should minimize
what should be exported as much as possible to reduce the coupling between pack-
ages and keep unnecessary exported elements hidden. If we are unsure whether to
export an element or not, we should default to not exporting it. Later, if we discover
that we need to export it, we can adjust our code. Let’s also keep in mind some excep-
tions, such as making fields exported so that a struct can be unmarshaled with
encoding/json.

 Organizing a project isn’t straightforward, but following these rules should help
make it easier to maintain. However, remember that consistency is also vital to ease
maintainability. Therefore, let’s make sure that we keep things as consistent as possi-
ble within a codebase.

 In the next section, we will tackle utility packages. 

2.13 #13: Creating utility packages
This section discusses a common bad practice: creating shared packages such as
utils, common, and base. We will examine the problems with such an approach and
learn how to improve our organization.

 Let’s look at an example inspired by the official Go blog. It’s about implementing a
set data structure (a map where the value is ignored). The idiomatic way to do this in
Go is to handle it via a map[K]struct{} type with K that can be any type allowed in a
map as a key, whereas the value is a struct{} type. Indeed, a map whose value type is
struct{} conveys that we aren’t interested in the value itself. Let’s expose two meth-
ods in a util package:

package util

func NewStringSet(...string) map[string]struct{} {
// ...

}

func SortStringSet(map[string]struct{}) []string {
// ...

}

A client will use this package like this:

set := util.NewStringSet("c", "a", "b")
fmt.Println(util.SortStringSet(set))

Creates a 
string set

Returns a sorted 
list of keys
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The problem here is that util is meaningless. We could call it common, shared, or
base, but it remains a meaningless name that doesn’t provide any insight about what
the package provides.

 Instead of a utility package, we should create an expressive package name such as
stringset. For example,

package stringset

func New(...string) map[string]struct{} { ... }
func Sort(map[string]struct{}) []string { ... }

In this example, we removed the suffixes for NewStringSet and SortStringSet,
which respectively became New and Sort. On the client side, it now looks like this:

set := stringset.New("c", "a", "b")
fmt.Println(stringset.Sort(set))

NOTE In the previous section, we discussed the idea of nano packages. We
mentioned how creating dozens of nano packages in an application can make
the code path more complex to follow. However, the idea itself of a nano
package isn’t necessarily bad. If a small code group has high cohesion and
doesn’t really belong somewhere else, it’s perfectly acceptable to organize it
into a specific package. There isn’t a strict rule to apply, and often, the chal-
lenge is finding the right balance.

We could even go a step further. Instead of exposing utility functions, we could create
a specific type and expose Sort as a method this way:

package stringset

type Set map[string]struct{}
func New(...string) Set { ... }
func (s Set) Sort() []string { ... }

This change makes the client even simpler. There would only be one reference to the
stringset package:

set := stringset.New("c", "a", "b")
fmt.Println(set.Sort())

With this small refactoring, we get rid of a meaningless package name to expose an
expressive API. As Dave Cheney (a project member of Go) mentioned, we reasonably
often find utility packages that handle common facilities. For example, if we decide to
have a client and a server package, where should we put the common types? In this
case, perhaps one solution is to combine the client, the server, and the common code
into a single package.

 Naming a package is a critical piece of application design, and we should be cau-
tious about this as well. As a rule of thumb, creating shared packages without mean-
ingful names isn’t a good idea; this includes utility packages such as utils, common, or
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base. Also, bear in mind that naming a package after what it provides and not what it
contains can be an efficient way to increase its expressiveness.

 In the next section, we will discuss packages and package collisions. 

2.14 #14: Ignoring package name collisions
Package collisions occur when a variable name collides with an existing package
name, preventing the package from being reused. Let’s look at a concrete example
with a library exposing a Redis client:

package redis

type Client struct { ... }

func NewClient() *Client { ... }

func (c *Client) Get(key string) (string, error) { ... }

Now, let’s jump on the client side. Despite the package name, redis, it’s perfectly
valid in Go to also create a variable named redis:

redis := redis.NewClient()
v, err := redis.Get("foo")

Here, the redis variable name collides with the redis package name. Even though
this is allowed, it should be avoided. Indeed, throughout the scope of the redis vari-
able, the redis package won’t be accessible.

 Suppose that a qualifier references both a variable and a package name through-
out a function. In that case, it might be ambiguous for a code reader to know what a
qualifier refers to. What are the options to avoid such a collision? The first option is to
use a different variable name. For example,

redisClient := redis.NewClient()
v, err := redisClient.Get("foo")

This is probably the most straightforward approach. However, if for some reason we
prefer to keep our variable named redis, we can play with package imports. Using
package imports, we can use an alias to change the qualifier to reference the redis
package. For example,

import redisapi "mylib/redis"

// ...

redis := redisapi.NewClient()
v, err := redis.Get("foo")

Here, we used the redisapi import alias to reference the redis package so that we
can keep our variable name redis.

Calls NewClient from 
the redis package

Uses the redis 
variable

Creates an alias for 
the redis package

Accesses the redis package 
via the redisapi alias
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NOTE One option could also be to use dot imports to access all the public
elements of a package without the package qualifier. However, this approach
tends to increase confusion and should, in most cases, be avoided.

Also note that we should avoid naming collisions between a variable and a built-in
function. For example, we could do something like this:

copy := copyFile(src, dst)

In this case, the copy built-in function wouldn’t be accessible as long as the copy variable
lives. In summary, we should prevent variable name collisions to avoid ambiguity. If we
face a collision, we should either find another meaningful name or use an import alias.

 In the next section, we will see a common mistake related to code documentation. 

2.15 #15: Missing code documentation
Documentation is an important aspect of coding. It simplifies how clients can con-
sume an API but can also help in maintaining a project. In Go, we should follow some
rules to make our code idiomatic. Let’s examine these rules.

 First, every exported element must be documented. Whether it is a structure, an
interface, a function, or something else, if it’s exported, it must be documented. The
convention is to add comments, starting with the name of the exported element. For
example,

// Customer is a customer representation.
type Customer struct{}

// ID returns the customer identifier.
func (c Customer) ID() string { return "" }

As a convention, each comment should be a complete sentence that ends with punc-
tuation. Also bear in mind that when we document a function (or a method), we
should highlight what the function intends to do, not how it does it; this belongs to
the core of a function and comments, not documentation. Furthermore, the docu-
mentation should ideally provide enough information that the consumer does not
have to look at our code to understand how to use an exported element.

Deprecated elements
It’s possible to deprecate an exported element using the // Deprecated: comment
this way:

// ComputePath returns the fastest path between two points.
// Deprecated: This function uses a deprecated way to compute
// the fastest path. Use ComputeFastestPath instead.
func ComputePath() {}

Then, if a developer uses the ComputePath function, they should get a warning.
(Most IDEs handle deprecated comments.)

The copy variable collides with 
the copy built-in function.
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When it comes to documenting a variable or a constant, we might be interested in
conveying two aspects: its purpose and its content. The former should live as code
documentation to be useful for external clients. The latter, though, shouldn’t neces-
sarily be public. For example,

// DefaultPermission is the default permission used by the store engine.
const DefaultPermission = 0o644 // Need read and write accesses.

This constant represents the default permission. The code documentation conveys its
purpose, whereas the comment alongside the constant describes its actual content
(read and write accesses).

 To help clients and maintainers understand a package’s scope, we should also doc-
ument each package. The convention is to start the comment with // Package fol-
lowed by the package name:

// Package math provides basic constants and mathematical functions.
//
// This package does not guarantee bit-identical results
// across architectures.
package math

The first line of a package comment should be concise. That’s because it will appear
in the package (figure 2.11 provides an example). Then, we can provide all the infor-
mation we need in the following lines.

Figure 2.11 An example of the generated Go standard library

Documenting a package can be done in any of the Go files; there is no rule. In gen-
eral, we should put package documentation in a relevant file with the same name as
the package or in a specific file such as doc.go.

 One last thing to mention regarding package documentation is that comments not
adjacent to the declaration are omitted. For example, the following copyright com-
ment will not be visible in the produced documentation:

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package math provides basic constants and mathematical functions.
//

Empty line. The previous
comments will not be included

in the documentation.
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// This package does not guarantee bit-identical results
// across architectures.
package math

In summary, we should keep in mind that every exported element needs to be docu-
mented. Documenting our code shouldn’t be a constraint. We should take the oppor-
tunity to make sure it helps clients and maintainers to understand the purpose of
our code.

 Finally, in the last section of this chapter, we will see a common mistake regarding
tooling: not using linters. 

2.16 #16: Not using linters
A linter is an automatic tool to analyze code and catch errors. The scope of this section
isn’t to give an exhaustive list of the existing linters; otherwise, it will become depre-
cated pretty quickly. But we should understand and remember why linters are essen-
tial for most Go projects.

 To understand why linters are important, let’s take one concrete example. In mis-
take #1, “Unintended variable shadowing,” we discussed potential errors related to
variable shadowing. Using vet, a standard linter from the Go toolset, and shadow, we
can detect shadowed variables:

package main

import "fmt"

func main() {
i := 0
if true {

i := 1
fmt.Println(i)

}
fmt.Println(i)

}

Because vet is included with the Go binary, let’s first install shadow, link it with Go
vet, and then run it on the previous example:

$ go install \
golang.org/x/tools/go/analysis/passes/shadow/cmd/shadow

$ go vet -vettool=$(which shadow)
./main.go:8:3:

declaration of "i" shadows declaration at line 6

As we can see, vet informs us that the variable i is shadowed in this example. Using
appropriate linters can help make our code more robust and detect potential errors.

NOTE Linters don’t cover all the mistakes in this book. Therefore, it’s recom-
mended that you just keep reading ;).

Shadowed 
variable

Installs shadow

Links to Go vet using 
the vettol argument

Go vet detects the 
shadow variable.
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Again, this section’s goal isn’t to list all the available linters. However, if you’re not a
regular user of linters, here is a list that you may want to use daily:

 https://golang.org/cmd/vet/—A standard Go analyzer
 https://github.com/kisielk/errcheck—An error checker
 https://github.com/fzipp/gocyclo—A cyclomatic complexity analyzer
 https://github.com/jgautheron/goconst—A repeated string constants analyzer

Besides linters, we should also use code formatters to fix code style. Here is a list of
some code formatters for you to try:

 https://golang.org/cmd/gofmt/—A standard Go code formatter
 https://godoc.org/golang.org/x/tools/cmd/goimports—A standard Go

imports formatter

Meanwhile, we should also look at golangci-lint (https://github.com/golangci/
golangci-lint). It’s a linting tool that provides a facade on top of many useful linters
and formatters. Also, it allows running the linters in parallel to improve analysis
speed, which is quite handy.

 Linters and formatters are a powerful way to improve the quality and consistency
of our codebase. Let’s take the time to understand which one we should use and make
sure we automate their execution (such as a CI or Git precommit hook). 

Summary
 Avoiding shadowed variables can help prevent mistakes like referencing the

wrong variable or confusing readers.
 Avoiding nested levels and keeping the happy path aligned on the left makes

building a mental code model easier.
 When initializing variables, remember that init functions have limited error

handling and make state handling and testing more complex. In most cases,
initializations should be handled as specific functions.

 Forcing the use of getters and setters isn’t idiomatic in Go. Being pragmatic and
finding the right balance between efficiency and blindly following certain idi-
oms should be the way to go.

 Abstractions should be discovered, not created. To prevent unnecessary com-
plexity, create an interface when you need it and not when you foresee needing
it, or if you can at least prove the abstraction to be a valid one.

 Keeping interfaces on the client side avoids unnecessary abstractions.
 To prevent being restricted in terms of flexibility, a function shouldn’t return

interfaces but concrete implementations in most cases. Conversely, a function
should accept interfaces whenever possible.

 Only use any if you need to accept or return any possible type, such as json.
Marshal. Otherwise, any doesn’t provide meaningful information and can lead
to compile-time issues by allowing a caller to call methods with any data type.

https://github.com/golangci/golangci-lint
https://github.com/golangci/golangci-lint
https://github.com/golangci/golangci-lint
https://godoc.org/golang.org/x/tools/cmd/goimports
https://golang.org/cmd/gofmt/
https://github.com/jgautheron/goconst
https://github.com/fzipp/gocyclo
https://github.com/kisielk/errcheck
https://golang.org/cmd/vet/
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 Relying on generics and type parameters can prevent writing boilerplate code
to factor out elements or behaviors. However, do not use type parameters pre-
maturely, but only when you see a concrete need for them. Otherwise, they
introduce unnecessary abstractions and complexity.

 Using type embedding can also help avoid boilerplate code; however, ensure
that doing so doesn’t lead to visibility issues where some fields should have
remained hidden.

 To handle options conveniently and in an API-friendly manner, use the func-
tional options pattern.

 Following a layout such as project-layout can be a good way to start structuring
Go projects, especially if you are looking for existing conventions to standardize
a new project.

 Naming is a critical piece of application design. Creating packages such as
common, util, and shared doesn’t bring much value for the reader. Refactor
such packages into meaningful and specific package names.

 To avoid naming collisions between variables and packages, leading to confu-
sion or perhaps even bugs, use unique names for each one. If this isn’t feasible,
use an import alias to change the qualifier to differentiate the package name
from the variable name, or think of a better name.

 To help clients and maintainers understand your code’s purpose, document
exported elements.

 To improve code quality and consistency, use linters and formatters.



Data types
Dealing with data types is a frequent operation for software engineers. This chapter
delves into the most common mistakes related to basic types, slices, and maps. The
only data type that we omit is strings because a later chapter deals with this type
exclusively.

3.1 #17: Creating confusion with octal literals
Let’s first look at a common misunderstanding with octal literal representation,
which can lead to confusion or even bugs. What do you believe should be the out-
put of the following code?

sum := 100 + 010
fmt.Println(sum)

This chapter covers
 Common mistakes related to basic types

 Fundamental concepts for slices and maps to 
prevent possible bugs, leaks, or inaccuracies

 Comparing values
56
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At first glance, we may expect this code to print the result of 100 + 10 = 110. But it
prints 108 instead. How is that possible?

 In Go, an integer literal starting with 0 is considered an octal integer (base 8), so
10 in base 8 equals 8 in base 10. Thus, the sum in the previous example is equal to 100
+ 8 = 108. This is an important property of integer literals to keep in mind—for exam-
ple, to avoid confusion while reading existing code.

 Octal integers are useful in different scenarios. For instance, suppose we want to
open a file using os.OpenFile. This function requires passing a permission as a
uint32. If we want to match a Linux permission, we can pass an octal number for
readability instead of a base 10 number:

file, err := os.OpenFile("foo", os.O_RDONLY, 0644)

In this example, 0644 represents a specific Linux permission (read for all and write
only for the current user). It’s also possible to add an o character (the letter o in lower-
case) following the zero:

file, err := os.OpenFile("foo", os.O_RDONLY, 0o644)

Using 0o as a prefix instead of only 0 means the same thing. However, it can help
make the code clearer.

NOTE We can also use an uppercase O character instead of a lowercase o. But
passing 0O644 can increase confusion because, depending on the character
font, 0 can look very similar to O.

We should also note the other integer literal representations:

 Binary—Uses a 0b or 0B prefix (for example, 0b100 is equal to 4 in base 10)
 Hexadecimal—Uses an 0x or 0X prefix (for example, 0xF is equal to 15 in base 10)
 Imaginary—Uses an i suffix (for example, 3i)

Finally, we can also use an underscore character (_) as a separator for readability. For
example, we can write 1 billion this way: 1_000_000_000. We can also use the under-
score character with other representations (for example, 0b00_00_01).

 In summary, Go handles binary, hexadecimal, imaginary, and octal numbers. Octal
numbers start with a 0. However, to improve readability and avoid potential mistakes
for future code readers, make octal numbers explicit using a 0o prefix.

 The next section digs into integers, and we discuss how overflows are handled in
Go. 

3.2 #18: Neglecting integer overflows
Not understanding how integer overflows are handled in Go can lead to critical bugs.
This section delves into this topic. But first, let’s remind ourselves of a few concepts
related to integers.
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3.2.1 Concepts

Go provides a total of 10 integer types. There are four signed integer types and four
unsigned integer types, as the following table shows.

The other two integer types are the most commonly used: int and uint. These two
types have a size that depends on the system: 32 bits on 32-bit systems or 64 bits on 64-
bit systems.

 Let’s now discuss overflow. Suppose we want to initialize an int32 to its maximum
value and then increment it. What should be the behavior of this code?

var counter int32 = math.MaxInt32
counter++
fmt.Printf("counter=%d\n", counter)

This code compiles and doesn’t panic at run time. However, the counter++ statement
generates an integer overflow:

counter=-2147483648

An integer overflow occurs when an arithmetic operation creates a value outside the
range that can be represented with a given number of bytes. An int32 is represented
using 32 bits. Here is the binary representation of the maximum int32 value
(math.MaxInt32):

01111111111111111111111111111111
|------31 bits set to 1-------|

Because an int32 is a signed integer, the bit on the left represents the integer’s sign: 0
for positive, 1 for negative. If we increment this integer, there is no space left to repre-
sent the new value. Hence, this leads to an integer overflow. Binary-wise, here’s the
new value:

10000000000000000000000000000000
|------31 bits set to 0-------|

As we can see, the bit sign is now equal to 1, meaning negative. This value is the small-
est possible value for a signed integer represented with 32 bits.

NOTE The smallest possible negative value isn’t 111111111111111111111111
11111111. Indeed, most systems rely on the two’s complement operation to

Signed integers Unsigned integers

int8 (8 bits) uint8 (8 bits)

int16 (16 bits) uint16 (16 bits)

int32 (32 bits) uint32 (32 bits)

int64 (64 bits) uint64 (64 bits)
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represent binary numbers (invert every bit and add 1). The main goal of this
operation is to make x + (–x) equal 0 regardless of x.

In Go, an integer overflow that can be detected at compile time generates a compila-
tion error. For example,

var counter int32 = math.MaxInt32 + 1

constant 2147483648 overflows int32

However, at run time, an integer overflow or underflow is silent; this does not lead to
an application panic. It is essential to keep this behavior in mind, because it can lead
to sneaky bugs (for example, an integer increment or addition of positive integers
that leads to a negative result).

 Before delving into how to detect an integer overflow with common operations,
let’s think about when to be concerned about it. In most contexts, like handling a
counter of requests or basic additions/multiplications, we shouldn’t worry too much if
we use the right integer type. But in some cases, like memory-constrained projects
using smaller integer types, dealing with large numbers, or doing conversions, we may
want to check possible overflows.

NOTE The Ariane 5 launch failure in 1996 (https://www.bugsnag.com/blog/
bug-day-ariane-5-disaster) was due to an overflow resulting from converting a
64-bit floating-point to a 16-bit signed integer. 

3.2.2 Detecting integer overflow when incrementing

If we want to detect an integer overflow during an increment operation with a type
based on a defined size (int8, int16, int32, int64, uint8, uint16, uint32, or uint64),
we can check the value against the math constants. For example, with an int32:

func Inc32(counter int32) int32 {
if counter == math.MaxInt32 {

panic("int32 overflow")
}
return counter + 1

}

This function checks whether the input is already equal to math.MaxInt32. We know
whether the increment leads to an overflow if that’s the case.

 What about int and uint types? Before Go 1.17, we had to build these constants
manually. Now, math.MaxInt, math.MinInt, and math.MaxUint are part of the math
package. If we have to test an overflow on an int type, we can do it using math.MaxInt:

func IncInt(counter int) int {
if counter == math.MaxInt {

panic("int overflow")
}
return counter + 1

}

Compares with 
math.MaxInt32

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster
https://www.bugsnag.com/blog/bug-day-ariane-5-disaster
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The logic is the same for a uint. We can use math.MaxUint:

func IncUint(counter uint) uint {
if counter == math.MaxUint {

panic("uint overflow")
}
return counter + 1

}

In this section, we learned how to check integer overflows following an increment
operation. Now, what about addition?

3.2.3 Detecting integer overflows during addition

How can we detect an integer overflow during an addition? The answer is to reuse
math.MaxInt:

func AddInt(a, b int) int {
if a > math.MaxInt-b {

panic("int overflow")
}

return a + b
}

In the example, a and b are the two operands. If a is greater than math.MaxInt - b,
the operation will lead to an integer overflow. Now, let’s look at the multiplication
operation. 

3.2.4 Detecting an integer overflow during multiplication

Multiplication is a bit more complex to handle. We have to perform checks against
the minimal integer, math.MinInt:

func MultiplyInt(a, b int) int {
if a == 0 || b == 0 {

return 0
}

result := a * b
if a == 1 || b == 1 {

return result
}
if a == math.MinInt || b == math.MinInt {

panic("integer overflow")
}
if result/b != a {

panic("integer overflow")
}
return result

}

Checking an integer overflow with multiplication requires multiple steps. First, we
need to test if one of the operands is equal to 0, 1, or math.MinInt. Then we divide

Checks if an integer 
overflow will occur

If one of the operands is equal 
to 0, it directly returns 0.

Checks if one of the 
operands is equal to 1

Checks if one of the operands 
is equal to math.MinInt

Checks if the multiplication 
leads to an integer overflow
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the multiplication result by b. If the result isn’t equal to the original factor (a), it
means an integer overflow occurred.

 In summary, integer overflows (and underflows) are silent operations in Go. If we
want to check for overflows to avoid sneaky errors, we can use the utility functions
described in this section. Also remember that Go provides a package to deal with large
numbers: math/big. This might be an option if an int isn’t enough.

 We continue talking about basic Go types in the next section with floating points. 

3.3 #19: Not understanding floating points
In Go, there are two floating-point types (if we omit imaginary numbers): float32
and float64. The concept of a floating point was invented to solve the major problem
with integers: their inability to represent fractional values. To avoid bad surprises, we
need to know that floating-point arithmetic is an approximation of real arithmetic.
Let’s examine the impact of working with approximations and how to increase accu-
racy. For that, we’ll look at a multiplication example:

var n float32 = 1.0001
fmt.Println(n * n)

We may expect this code to print the result of 1.0001 * 1.0001 = 1.00020001, right?
However, running it on most x86 processors prints 1.0002, instead. How do we explain
that? We need to understand the arithmetic of floating points first.

 Let’s take the float64 type as an example. Note that there’s an infinite number of
real values between math.SmallestNonzeroFloat64 (the float64 minimum) and
math.MaxFloat64 (the float64 maximum). Conversely, the float64 type has a finite
number of bits: 64. Because making infinite values fit into a finite space isn’t possible,
we have to work with approximations. Hence, we may lose precision. The same logic
goes for the float32 type.

 Floating points in Go follow the IEEE-754 standard, with some bits representing a
mantissa and other bits representing an exponent. A mantissa is a base value, whereas
an exponent is a multiplier applied to the mantissa. In single-precision floating-point
types (float32), 8 bits represent the exponent, and 23 bits represent the mantissa. In
double-precision floating-point types (float64), the values are 11 and 52 bits, respec-
tively, for the exponent and the mantissa. The remaining bit is for the sign. To convert
a floating point into a decimal, we use the following calculation:

sign * 2^exponent * mantissa

Figure 3.1 illustrates the representation of 1.0001 as a float32. The exponent uses the
8-bit excess/bias notation: the 01111111 exponent value means 2^0, whereas the man-
tissa is equal to 1.000100016593933. (Note that the scope of this section isn’t to
explain how conversions work.) Hence, the decimal value equals 1 × 2^0 ×
1.000100016593933. Thus, what we store in a single-precision floating-point value isn’t
1.0001 but 1.000100016593933. A lack of precision affects the accuracy of the value
stored.
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Figure 3.1 Representation of 1.0001 in float32

Once we understand that float32 and float64 are approximations, what are the impli-
cations for us as developers? The first implication is related to comparisons. Using the
== operator to compare two floating-point numbers can lead to inaccuracies. Instead,
we should compare their difference to see if it is less than some small error value. For
example, the testify testing library (https://github.com/stretchr/testify) has an
InDelta function to assert that two values are within a given delta of each other.

 Also bear in mind that the result of floating-point calculations depends on the
actual processor. Most processors have a floating-point unit (FPU) to deal with such
calculations. There is no guarantee that the result executed on one machine will be
the same on another machine with a different FPU. Comparing two values using a
delta can be a solution for implementing valid tests across different machines.

So far, we have seen that decimal-to-floating-point conversions can lead to a loss of
accuracy. This is the error due to conversion. Also note that the error can accumulate
in a sequence of floating-point operations.

Kinds of floating-point numbers
Go also has three special kinds of floating-point numbers:

 Positive infinite
 Negative infinite
 NaN (Not-a-Number), which is the result of an undefined or unrepresentable

operation

According to IEEE-754, NaN is the only floating-point number satisfying f != f.
Here’s an example that constructs these special kinds of numbers, along with the
output:

var a float64
positiveInf := 1 / a
negativeInf := -1 / a
nan := a / a
fmt.Println(positiveInf, negativeInf, nan)

+Inf -Inf NaN

We can check whether a floating-point number is infinite using math.IsInf and
whether it is NaN using math.IsNaN.

00 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1

Sign Exponent (8 bits) Mantissa (23 bits)

https://github.com/stretchr/testify


633.3 #19: Not understanding floating points
 Let’s look at an example with two functions that perform the same sequence of
operations in a different order. In our example, f1 starts by initializing a float64 to
10,000 and then repeatedly adds 1.0001 to this result (n times). Conversely, f2 per-
forms the same operations but in the opposite order (adding 10,000 in the end):

func f1(n int) float64 {
result := 10_000.
for i := 0; i < n; i++ {

result += 1.0001
}
return result

}

func f2(n int) float64 {
result := 0.
for i := 0; i < n; i++ {

result += 1.0001
}
return result + 10_000.

}

Now, let’s run these functions on an x86 processor. This time, however, we’ll vary n.

Notice that the bigger n is, the greater the imprecision. However, we can also see that
the f2 accuracy is better than f1. Keep in mind that the order of floating-point calcu-
lations can affect the accuracy of the result.

 When performing a chain of additions and subtractions, we should group the
operations to add or subtract values with a similar order of magnitude before adding
or subtracting those with magnitudes that aren’t close. Because f2 adds 10,000, in the
end it produces more accurate results than f1.

 What about multiplications and divisions? Let’s imagine that we want to compute
the following:

a × (b + c)

As we know, this calculation is equal to

a × b + a × c

Let’s run these two calculations with a having a different order of magnitude than b
and c:

a := 100000.001
b := 1.0001

n Exact result f1 f2

10 10010.001 10010.000999999993 10010.001

1k 11000.1 11000.099999999293 11000.099999999982

1m 1.0101e+06 1.0100999999761417e+06 1.0100999999766762e+06
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c := 1.0002

fmt.Println(a * (b + c))
fmt.Println(a*b + a*c)

200030.00200030004
200030.0020003

The exact result is 200,030.002. Hence, the first calculation has the worst accuracy.
Indeed, when performing floating-point calculations involving addition, subtraction,
multiplication, or division, we have to complete the multiplication and division opera-
tions first to get better accuracy. Sometimes, this may impact the execution time (in
the previous example, it requires three operations instead of two). In that case, it’s a
choice between accuracy and execution time.

 Go’s float32 and float64 are approximations. Because of that, we have to bear a
few rules in mind:

 When comparing two floating-point numbers, check that their difference is
within an acceptable range.

 When performing additions or subtractions, group operations with a similar
order of magnitude for better accuracy.

 To favor accuracy, if a sequence of operations requires addition, subtraction,
multiplication, or division, perform the multiplication and division operations
first.

The following section begins our examination of slices. It discusses two crucial con-
cepts: a slice’s length and capacity. 

3.4 #20: Not understanding slice length and capacity
It’s pretty common for Go developers to mix slice length and capacity or not under-
stand them thoroughly. Assimilating these two concepts is essential for efficiently han-
dling core operations such as slice initialization and adding elements with append,
copying, or slicing. This misunderstanding can lead to using slices suboptimally or
even to memory leaks (as we will see in later sections).

 In Go, a slice is backed by an array. That means the slice’s data is stored contigu-
ously in an array data structure. A slice also handles the logic of adding an element if
the backing array is full or shrinking the backing array if it’s almost empty.

 Internally, a slice holds a pointer to the backing array plus a length and a capacity.
The length is the number of elements the slice contains, whereas the capacity is the
number of elements in the backing array. Let’s go through a few examples to make
things clearer. First, let’s initialize a slice with a given length and capacity:

s := make([]int, 3, 6) Three-length, 
six-capacity slice



653.4 #20: Not understanding slice length and capacity
The first argument, representing the
length, is mandatory. However, the sec-
ond argument representing the capacity
is optional. Figure 3.2 shows the result
of this code in memory.

 In this case, make creates an array of
six elements (the capacity). But because
the length was set to 3, Go initializes
only the first three elements. Also,
because the slice is an []int type, the
first three elements are initialized to the
zeroed value of an int: 0. The grayed
elements are allocated but not yet used.

 If we print this slice, we get the ele-
ments within the range of the length, [0
0 0]. If we set s[1] to 1, the second ele-
ment of the slice updates without
impacting its length or capacity. Figure
3.3 illustrates this.

 However, accessing an element outside the length range is forbidden, even though
it’s already allocated in memory. For example, s[4] = 0 would lead to the following
panic:

panic: runtime error: index out of range [4] with length 3

How can we use the remaining space of the slice? By using the append built-in function:

s = append(s, 2)

This code appends to the existing s slice a new element. It uses the first grayed ele-
ment (which was allocated but not yet used) to store element 2, as figure 3.4 shows.

 The length of the slice is updated
from 3 to 4 because the slice now con-
tains four elements. Now, what happens
if we add three more elements so that
the backing array isn’t large enough?

s = append(s, 3, 4, 5)
fmt.Println(s)

If we run this code, we see that the slice
was able to cope with our request:

[0 1 0 2 3 4 5]

Because an array is a fixed-size structure, it can store the new elements until element
4. When we want to insert element 5, the array is already full: Go internally creates

ptr

len
3

cap
6

0 0 0

s

Figure 3.2 A three-length, six-capacity slice

Figure 3.3 Updating the slice’s second element: 
s[1] = 1

ptr

len
4

cap
6

0 1 0

s

2

Figure 3.4 Appending an element to s

ptr

len
3

cap
6

0 1 0

s
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another array by doubling the capacity, copying all the elements, and then inserting
element 5. Figure 3.5 shows this process.

Figure 3.5 Because the initial backing array is full, Go creates another array and 
copies all the elements.

NOTE In Go, a slice grows by doubling its size until it contains 1,024 ele-
ments, after which it grows by 25%.

The slice now references the new backing array. What will happen to the previous
backing array? If it’s no longer referenced, it’s eventually freed by the garbage collec-
tor (GC) if allocated on the heap. (We discuss heap memory in mistake #95, “Not
understanding stack vs. heap,” and we look at how the GC works in mistake #99, “Not
understanding how the GC works.”)

 What happens with slicing? Slicing is an operation done on an array or a slice, pro-
viding a half-open range; the first index is included, whereas the second is excluded.
The following example shows the impact, and figure 3.6 displays the result in memory:

s1 := make([]int, 3, 6)
s2 := s1[1:3]

0 1 0 2 3 4 5

ptr

len
7

cap
12

0 1 0 2 3 4

Original array
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Figure 3.6 The slices s1 and s2 
reference the same backing array with 
different lengths and capacities.
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First, s1 is created as a three-length,
six-capacity slice. When s2 is created by
slicing s1, both slices reference the
same backing array. However, s2 starts
from a different index, 1. Therefore, its
length and capacity (a two-length, five-
capacity slice) differ from s1. If we
update s1[1] or s2[0], the change is
made to the same array, hence, visible
in both slices, as figure 3.7 shows.

 Now, what happens if we append an
element to s2? Does the following code
change s1 as well?

s2 = append(s2, 2)

The shared backing array is modified,
but only the length of s2 changes. Fig-
ure 3.8 shows the result of appending
an element to s2.

 s1 remains a three-length, six-
capacity slice. Therefore, if we print s1
and s2, the added element is only visi-
ble for s2:

s1=[0 1 0], s2=[1 0 2]

It’s important to understand this
behavior so that we don’t make wrong
assumptions while using append.

NOTE In these examples, the backing array is internal and not available
directly to the Go developer. The only exception is when a slice is created
from slicing an existing array.

One last thing to note: what if we keep appending elements to s2 until the backing
array is full? What will the state be, memory-wise? Let’s add three more elements so
that the backing array will not have enough capacity:

s2 = append(s2, 3)
s2 = append(s2, 4)
s2 = append(s2, 5)

This code leads to creating another backing array. Figure 3.9 displays the results in
memory.
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Figure 3.9 Appending elements to s2 until the backing array is full

s1 and s2 now reference two different arrays. As s1 is still a three-length, six-capacity
slice, it still has some available buffer, so it keeps referencing the initial array. Also, the
new backing array was made by copying the initial one from the first index of s2.
That’s why the new array starts with element 1, not 0.

 To summarize, the slice length is the number of available elements in the slice,
whereas the slice capacity is the number of elements in the backing array. Adding an
element to a full slice (length == capacity) leads to creating a new backing array with a
new capacity, copying all the elements from the previous array, and updating the slice
pointer to the new array. 

 In the next section, we use the concepts of length and capacity with slice
initialization. 

3.5 #21: Inefficient slice initialization
While initializing a slice using make, we saw that we have to provide a length and an
optional capacity. Forgetting to pass an appropriate value for both of these parameters
when it makes sense is a widespread mistake. Let’s see precisely when this is consid-
ered appropriate.

 Suppose we want to implement a convert function that maps a slice of Foo into a
slice of Bar, and both slices will have the same number of elements. Here is a first
implementation:

func convert(foos []Foo) []Bar {
bars := make([]Bar, 0)

for _, foo := range foos {
bars = append(bars, fooToBar(foo))

}
return bars

}

First, we initialize an empty slice of Bar elements using make([]Bar, 0). Then, we use
append to add the Bar elements. At first, bars is empty, so adding the first element
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allocates a backing array of size 1. Every time the backing array is full, Go creates
another array by doubling its capacity (discussed in the previous section).

 This logic of creating another array because the current one is full is repeated mul-
tiple times when we add a third element, a fifth, a ninth, and so on. Assuming the
input slice has 1,000 elements, this algorithm requires allocating 10 backing arrays
and copying more than 1,000 elements in total from one array to another. This leads
to additional effort for the GC to clean all these temporary backing arrays.

 Performance-wise, there’s no good reason not to give the Go runtime a helping
hand. There are two different options for this. The first option is to reuse the same
code but allocate the slice with a given capacity:

func convert(foos []Foo) []Bar {
n := len(foos)
bars := make([]Bar, 0, n)

for _, foo := range foos {
bars = append(bars, fooToBar(foo))

}
return bars

}

The only change is to create bars with a capacity equal to n, the length of foos.
 Internally, Go preallocates an array of n elements. Therefore, adding up to n ele-

ments means reusing the same backing array and hence reducing the number of allo-
cations drastically. The second option is to allocate bars with a given length:

func convert(foos []Foo) []Bar {
n := len(foos)
bars := make([]Bar, n)

for i, foo := range foos {
bars[i] = fooToBar(foo)

}
return bars

}

Because we initialize the slice with a length, n elements are already allocated and ini-
tialized to the zero value of Bar. Hence, to set elements, we have to use, not append
but bars[i].

 Which option is best? Let’s run a benchmark with the three solutions and an input
slice of 1 million elements:

BenchmarkConvert_EmptySlice-4 22 49739882 ns/op
BenchmarkConvert_GivenCapacity-4 86 13438544 ns/op
BenchmarkConvert_GivenLength-4 91 12800411 ns/op

Initializes with a zero length 
and a given capacity

Updates bars to append 
a new element

Initializes with 
a given length

Sets element i 
of the slice

First solution with
an empty slice

Second solution using a
given capacity and append

Third solution using a 
given length and bars[i]
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As we can see, the first solution has a significant impact performance-wise. When we
keep allocating arrays and copying elements, the first benchmark is almost 400%
slower than the other two. Comparing the second and the third solutions, the third is
about 4% faster because we avoid repeated calls to the built-in append function, which
has a small overhead compared to a direct assignment.

 If setting a capacity and using append is less efficient than setting a length and
assigning to a direct index, why do we see this approach being used in Go projects?
Let’s look at a concrete example in Pebble, an open source key-value store developed
by Cockroach Labs (https://github.com/cockroachdb/pebble).

 A function called collectAllUserKeys needs to iterate over a slice of structs to for-
mat a particular byte slice. The resulting slice will be twice the length of the input slice:

func collectAllUserKeys(cmp Compare,
tombstones []tombstoneWithLevel) [][]byte {
keys := make([][]byte, 0, len(tombstones)*2)
for _, t := range tombstones {

keys = append(keys, t.Start.UserKey)
keys = append(keys, t.End)

}
// ...

}

Here, the conscious choice is to use a given capacity and append. What’s the rationale?
If we used a given length instead of a capacity, the code would be the following:

func collectAllUserKeys(cmp Compare,
tombstones []tombstoneWithLevel) [][]byte {
keys := make([][]byte, len(tombstones)*2)
for i, t := range tombstones {

keys[i*2] = t.Start.UserKey
keys[i*2+1] = t.End

}
// ...

}

Notice how more complex the code to handle the slice index looks. Given that this
function isn’t performance sensitive, it was decided to favor the easiest option to read.

Slices and conditions
What if the future length of the slice isn’t known precisely? For example, what if the
length of the output slice depends on a condition?

func convert(foos []Foo) []Bar {
// bars initialization

for _, foo := range foos {
if something(foo) {

// Add a bar element
}

Add a Foo element 
only if a specific 
condition is valid.

https://github.com/cockroachdb/pebble


713.6 #22: Being confused about nil vs. empty slices
Converting one slice type into another is a frequent operation for Go developers. As
we have seen, if the length of the future slice is already known, there is no good rea-
son to allocate an empty slice first. Our options are to allocate a slice with either a
given capacity or a given length. Of these two solutions, we have seen that the second
tends to be slightly faster. But using a given capacity and append can be easier to
implement and read in some contexts. 

 The next section discusses the difference between nil and empty slices and why it
matters for Go developers. 

3.6 #22: Being confused about nil vs. empty slices
Go developers fairly frequently mix nil and empty slices. We may want to use one over
the other depending on the use case. Meanwhile, some libraries make a distinction
between the two. To be proficient with slices, we need to make sure we don’t mix these
concepts. Before looking at an example, let’s discuss some definitions:

 A slice is empty if its length is equal to 0.
 A slice is nil if it equals nil.

Now, let’s look at different ways to initialize a slice. Can you guess the output of the fol-
lowing code? Each time, we will print whether the slice is empty or nil:

func main() {
var s []string
log(1, s)

s = []string(nil)
log(2, s)

s = []string{}
log(3, s)

s = make([]string, 0)
log(4, s)

}

func log(i int, s []string) {
fmt.Printf("%d: empty=%t\tnil=%t\n", i, len(s) == 0, s == nil)

}

}
return bars

}

In this example, a Foo element is converted into a Bar and added to the slice only in
a specific condition (if something(foo)). Should we initialize bars as an empty
slice or with a given length or capacity?

There’s no strict rule here. It’s a traditional software problem: is it better to trade CPU
or memory? Perhaps if something(foo) is true in 99% of the cases, it’s worth ini-
tializing bars with a length or capacity. It depends on our use case.

Option 1 (a 0 value)

Option 2

Option 3

Option 4
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This example prints the following:

1: empty=true nil=true
2: empty=true nil=true
3: empty=true nil=false
4: empty=true nil=false

All the slices are empty, meaning the length equals 0. Therefore, a nil slice is also an
empty slice. However, only the first two are nil slices. If we have multiple ways to initial-
ize a slice, which option should we favor? There are two things to note:

 One of the main differences between a nil and an empty slice regards alloca-
tions. Initializing a nil slice doesn’t require any allocation, which isn’t the case
for an empty slice.

 Regardless of whether a slice is nil, calling the append built-in function works.
For example,

var s1 []string
fmt.Println(append(s1, "foo")) // [foo]

Consequently, if a function returns a slice, we shouldn’t do as in other languages and
return a non-nil collection for defensive reasons. Because a nil slice doesn’t require
any allocation, we should favor returning a nil slice instead of an empty slice. Let’s
look at this function, which returns a slice of strings:

func f() []string {
var s []string
if foo() {

s = append(s, "foo")
}
if bar() {

s = append(s, "bar")
}
return s

}

If both foo and bar are false, we get an empty slice. To prevent allocating an empty
slice for no particular reason, we should favor option 1 (var s []string). We can use
option 4 (make([]string, 0)) with a zero-length string, but doing so doesn’t bring
any value compared to option 1; and it requires an allocation.

 However, in the case where we have to produce a slice with a known length, we should
use option 4, s := make([]string, length), as this example shows:

func intsToStrings(ints []int) []string {
s := make([]string, len(ints))
for i, v := range ints {

s[i] = strconv.Itoa(v)
}
return s

}



733.6 #22: Being confused about nil vs. empty slices
As discussed in mistake #21, “Inefficient slice initialization,” we need to set the length
(or capacity) in such a scenario to avoid extra allocations and copies. Now, two
options remain from the example that looks at different ways to initialize a slice:

 Option 2: s := []string(nil)
 Option 3: s := []string{}

Option 2 isn’t the most widely used. But it can be helpful as syntactic sugar because we
can pass a nil slice in a single line—for example, using append:

s := append([]int(nil), 42)

If we had used option 1 (var s []string), it would have required two lines of code.
This is probably not the most important readability optimization of all time, but it’s
still worth knowing.

NOTE In mistake #24, “Not making slice copies correctly,” we will see one
rationale to append to a nil slice.

Now, let’s look at option 3: s := []string{}. This form is recommended to create a
slice with initial elements:

s := []string{"foo", "bar", "baz"}

However, if we don’t need to create a slice with initial elements, we shouldn’t use this
option. It brings the same benefits as option 1 (var s []string), except that the slice
isn’t nil; hence, it requires an allocation. Therefore, option 3 should be avoided with-
out initial elements.

NOTE Some linters can catch option 3 without initial values and recommend
changing it to option 1. However, we should remember that this also changes
the semantics from a non-nil to a nil slice.

We should also mention that some libraries distinguish between nil and empty slices.
This is the case, for example, with the encoding/json package. The following examples
marshal two structs, one containing a nil slice and the second a non-nil, empty slice:

var s1 []float32
customer1 := customer{
ID: "foo",
Operations: s1,

}
b, _ := json.Marshal(customer1)
fmt.Println(string(b))

s2 := make([]float32, 0)
customer2 := customer{
ID: "bar",
Operations: s2,

}
b, _ = json.Marshal(customer2)
fmt.Println(string(b))

Nil slice

Non-nil, 
empty slice
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Running this example, notice that the marshaling results for these two structs are
different:

{"ID":"foo","Operations":null}
{"ID":"bar","Operations":[]}

Here, a nil slice is marshaled as a null element, whereas a non-nil, empty slice is mar-
shaled as an empty array. If we work in the context of strict JSON clients that differen-
tiate between null and [], it’s essential to keep this distinction in mind.

 The encoding/json package isn’t the only package from the standard library to
make this distinction. For example, reflect.DeepEqual returns false if we compare
a nil and a non-nil empty slice, which is something to remember in the context of unit
tests, for example. In any case, while working with the standard library or external
libraries, we should ensure that when using one version or another, our code doesn’t
lead to unexpected results.

 To summarize, in Go, there is a distinction between nil and empty slices. A nil slice
equals nil, whereas an empty slice has a length of zero. A nil slice is empty, but an
empty slice isn’t necessarily nil. Meanwhile, a nil slice doesn’t require any allocation.
We have seen throughout this section how to initialize a slice depending on the con-
text by using

 var s []string if we aren’t sure about the final length and the slice can be
empty

 []string(nil) as syntactic sugar to create a nil and empty slice
 make([]string, length) if the future length is known

The last option, []string{}, should be avoided if we initialize the slice without ele-
ments. Finally, let’s check whether the libraries we use make the distinctions between
nil and empty slices to prevent unexpected behaviors.

 In the next section, we continue this discussion and see the best way to check for
an empty slice after having called a function. 

3.7 #23: Not properly checking if a slice is empty
We saw in the previous section that there is a distinction between nil and empty slices.
Having these notions in mind, what’s the idiomatic way to check if a slice contains ele-
ments? Not having a clear answer can lead to subtle bugs.

 In this example, we call a getOperations function that returns a slice of float32.
We want to call a handle function only if the slice contains elements. Here’s a first
(erroneous) version:

func handleOperations(id string) {
operations := getOperations(id)
if operations != nil {

handle(operations)
}

}

Checks if the 
operations slice is nil
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func getOperations(id string) []float32 {
operations := make([]float32, 0)

if id == "" {
return operations

}

// Add elements to operations

return operations
}

We determine whether the slice has elements by checking if the operations slice isn’t
nil. But there’s a problem with this code: getOperations never returns a nil slice;
instead, it returns an empty slice. Therefore, the operations != nil check will always
be true.

 What do we do in this situation? One approach might be to modify getOperations
to return a nil slice if id is empty:

func getOperations(id string) []float32 {
operations := make([]float32, 0)

if id == "" {
return nil

}

// Add elements to operations

return operations
}

Instead of returning operations if id is empty, we return nil. This way, the check we
implement about testing the slice nullity matches. However, this approach doesn’t
work in all situations—we’re not always in a context where we can change the callee.
For example, if we use an external library, we won’t create a pull request just to
change empty into nil slices.

 How then can we check whether a slice is empty or nil? The solution is to check the
length:

func handleOperations(id string) {
operations := getOperations(id)
if len(operations) != 0 {

handle(operations)
}

}

We mentioned in the previous section that an empty slice has, by definition, a length
of zero. Meanwhile, nil slices are always empty. Therefore, by checking the length of
the slice, we cover all the scenarios:

 If the slice is nil, len(operations) != 0 is false.
 If the slice isn’t nil but empty, len(operations) != 0 is also false.

Initializes the 
operations slice

Returns operations if the 
provided id is empty

Returns nil instead 
of operations

Checks the 
slice length
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Hence, checking the length is the best option to follow as we can’t always control the
approach taken by the functions we call. Meanwhile, as the Go wiki states, when
designing interfaces, we should avoid distinguishing nil and empty slices, which leads
to subtle programming errors. When returning slices, it should make neither a seman-
tic nor a technical difference if we return a nil or empty slice. Both should mean the
same thing for the callers. This principle is the same with maps. To check if a map is
empty, check its length, not whether it’s nil.

 In the next section, we see how to make slice copies correctly. 

3.8 #24: Not making slice copies correctly
The copy built-in function allows copying elements from a source slice into a destina-
tion slice. Although it is a handy built-in function, Go developers sometimes misun-
derstand it. Let’s look at a common mistake that results in copying the wrong number
of elements.

 In the following example, we create a slice and copy its elements to another slice.
What should be the output of this code?

src := []int{0, 1, 2}
var dst []int
copy(dst, src)
fmt.Println(dst)

If we run this example, it prints [], not [0 1 2]. What did we miss?
 To use copy effectively, it’s essential to understand that the number of elements

copied to the destination slice corresponds to the minimum between:

 The source slice’s length
 The destination slice’s length

In the previous example, src is a three-length slice, but dst is a zero-length slice
because it is initialized to its zero value. Therefore, the copy function copies the mini-
mum number of elements (between 3 and 0): 0 in this case. The resulting slice is then
empty.

 If we want to perform a complete copy, the destination slice must have a length
greater than or equal to the source slice’s length. Here, we set up a length based on
the source slice:

src := []int{0, 1, 2}
dst := make([]int, len(src))
copy(dst, src)
fmt.Println(dst)

Because dst is now a slice initialized with a length equal to 3, it copies three elements.
This time, if we run the code, it prints [0 1 2].

 

Creates a dst slice but 
with a given length
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NOTE Another common mistake is to invert the order of the arguments
when calling copy. Remember that the destination is the former argument,
whereas the source is the latter.

Let’s also mention that using the copy built-in function isn’t the only way to copy slice
elements. There are different alternatives, the best known being probably the follow-
ing, which uses append:

src := []int{0, 1, 2}
dst := append([]int(nil), src...)

We append the elements from the source slice to a nil slice. Hence, this code creates a
three-length, three-capacity slice copy. This alternative has the advantage of being
done in a single line. However, using copy is more idiomatic and, therefore, easier to
understand, even though it takes an extra line.

 Copying elements from one slice to another is a reasonably frequent operation.
When using copy, we must recall that the number of elements copied to the destina-
tion corresponds to the minimum between the two slices’ lengths. Also bear in mind
that other alternatives exist to copy a slice, so we shouldn’t be surprised if we find
them in a codebase.

 Let’s continue discussing slices with a common mistake when using append. 

3.9 #25: Unexpected side effects using slice append
This section discusses a common mistake when using append, which may have unex-
pected side effects in some situations. In the following example, we initialize an s1
slice, create s2 by slicing s1, and create s3 by appending an element to s2:

s1 := []int{1, 2, 3}
s2 := s1[1:2]
s3 := append(s2, 10)

We initialize an s1 slice containing three elements,
and s2 is created from slicing s1. Then we call
append on s3. What should be the state of these
three slices at the end of this code? Can you guess?

 Following the second line, after s2 is created, fig-
ure 3.10 shows the state of both slices in memory. s1
is a three-length, three-capacity slice, and s2 is a
one-length, two-capacity slice, both backed by the
same array we already mentioned. Adding an ele-
ment using append checks whether the slice is full
(length == capacity). If it is not full, the append func-
tion adds the element by updating the backing array
and returning a slice having a length incremented
by 1.
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Figure 3.10 Both slices are 
backed by the same array but 
with a different length and 
capacity.
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 In this example, s2 isn’t full; it can accept one
more element. Figure 3.11 shows the final state
of these three slices.

 In the backing array, we updated the last ele-
ment to store 10. Therefore, if we print all the
slices, we get this output:

s1=[1 2 10], s2=[2], s3=[2 10]

The s1 slice’s content was modified, even though
we did not update s1[2] or s2[1] directly. We
should keep this in mind to avoid unintended
consequences.

 Let’s see one impact of this principle by pass-
ing the result of a slicing operation to a function.
In the following, we initialize a slice with three elements and call a function with only
the first two elements:

func main() {
s := []int{1, 2, 3}

f(s[:2])
// Use s

}

func f(s []int) {
// Update s

}

In this implementation, if f updates the first two elements, the changes are visible to
the slice in main. However, if f calls append, it updates the third element of the slice,
even though we pass only two elements. For example,

func main() {
s := []int{1, 2, 3}

f(s[:2])
fmt.Println(s) // [1 2 10]

}

func f(s []int) {
_ = append(s, 10)

}

If we want to protect the third element for defensive reasons, meaning to ensure that f
doesn’t update it, we have two options.

 The first is to pass a copy of the slice and then construct the resulting slice:

func main() {
s := []int{1, 2, 3}
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Figure 3.11 All the slices are backed 
by the same array.
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sCopy := make([]int, 2)
copy(sCopy, s)

f(sCopy)
result := append(sCopy, s[2])
// Use result

}

func f(s []int) {
// Update s

}

Because we pass a copy to f, even if this function calls append, it will not lead to a side
effect outside of the range of the first two elements. The downside of this option is
that it makes the code more complex to read and adds an extra copy, which can be a
problem if the slice is large.

 The second option can be used to limit the range of potential side effects to the
first two elements only. This option involves the so-called full slice expression:
s[low:high:max]. This statement creates a slice similar to the one created with
s[low:high], except that the resulting slice’s capacity is equal to max - low. Here’s an
example when calling f:

func main() {
s := []int{1, 2, 3}
f(s[:2:2])
// Use s

}

func f(s []int) {
// Update s

}

Here, the slice passed to f isn’t s[:2] but s[:2:2].
Hence, the slice’s capacity is 2 – 0 = 2, as figure 3.12
shows.

 When passing s[:2:2], we can limit the range of
effects to the first two elements. Doing so also pre-
vents us from having to perform a slice copy.

 When using slicing, we must remember that we
can face a situation leading to unintended side
effects. If the resulting slice has a length smaller than
its capacity, append can mutate the original slice. If we
want to restrict the range of possible side effects, we
can use either a slice copy or the full slice expression,
which prevents us from doing a copy.

 In the next section, we continue discussing slices
but in the context of potential memory leaks. 

Copies the first two 
elements of s into sCopy

Appends s[2] to sCopy to 
construct the resulting slice

Passes a subslice using 
the full slice expression
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Figure 3.12 s[0:2] creates a 
two-length, three-capacity slice, 
whereas s[0:2:2] creates a 
two-length, two-capacity slice.
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3.10 #26: Slices and memory leaks
This section shows that slicing an existing slice or array can lead to memory leaks in
some conditions. We discuss two cases: one where the capacity is leaking and another
that’s related to pointers.

3.10.1 Leaking capacity

For the first case, leaking capacity, let’s imagine implementing a custom binary proto-
col. A message can contain 1 million bytes, and the first 5 bytes represent the message
type. In our code, we consume these messages, and for auditing purposes, we want to
store the latest 1,000 message types in memory. This is the skeleton of our function:

func consumeMessages() {
for {

msg := receiveMessage()
// Do something with msg
storeMessageType(getMessageType(msg))

}
}

func getMessageType(msg []byte) []byte {
return msg[:5]

}

The getMessageType function computes the message type by slicing the input slice.
We test this implementation, and everything is fine. However, when we deploy our
application, we notice that our application consumes about 1 GB of memory. How is
that possible?

 The slicing operation on msg using msg[:5] creates a five-length slice. However, its
capacity remains the same as the initial slice. The remaining elements are still allo-
cated in memory, even if eventually msg is not referenced. Let’s look at an example
with a large message length of 1 million bytes, as shown in figure 3.13.

Figure 3.13 After a new loop iteration, msg is no longer used. 
However, its backing array will still be used by msg[:5].

Receives a new []byte 
slice assigned to msg

Stores the latest 1,000 
message types in memory

Computes the message 
type by slicing msg
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The backing array of the slice still contains 1 million bytes after the slicing operation.
Hence, if we keep 1,000 messages in memory, instead of storing about 5 KB, we hold
about 1 GB.

 What can we do to solve this issue? We can make a slice copy instead of slicing msg:

func getMessageType(msg []byte) []byte {
msgType := make([]byte, 5)
copy(msgType, msg)
return msgType

}

Because we perform a copy, msgType is a five-length, five-capacity slice regardless of
the size of the message received. Hence, we only store 5 bytes per message type.

As a rule of thumb, remember that slicing a large slice or array can lead to potential
high memory consumption. The remaining space won’t be reclaimed by the GC, and
we can keep a large backing array despite using only a few elements. Using a slice copy
is the solution to prevent such a case. 

3.10.2 Slice and pointers

We have seen that slicing can cause a leak because of the slice capacity. But what about
the elements, which are still part of the backing array but outside the length range?
Does the GC collect them?

Full slice expressions and capacity leakage
What about using the full slice expression to solve this issue? Let’s look at this
example:

func getMessageType(msg []byte) []byte {
return msg[:5:5]

}

Here, getMessageType returns a shrunken version of the initial slice: a five-length,
five-capacity slice. But would the GC be able to reclaim the inaccessible space from
byte 5? The Go specification doesn’t officially specify the behavior. However, by using
runtime.Memstats, we can record statistics about the memory allocator, such as
the number of bytes allocated on the heap:

func printAlloc() {
var m runtime.MemStats
runtime.ReadMemStats(&m)
fmt.Printf("%d KB\n", m.Alloc/1024)

}

If we call this function following a call to getMessageType and runtime.GC() to
force running a garbage collection, the inaccessible space isn’t reclaimed. The whole
backing array still lives in memory. Therefore, using the full slice expression isn’t a
valid option (unless a future update of Go tackles this).
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 Let’s examine this question using a Foo struct containing a byte slice:

type Foo struct {
v []byte

}

We want to check the memory allocations after each step as follows:

1 Allocate a slice of 1,000 Foo elements.
2 Iterate over each Foo element, and for each one, allocate 1 MB for the v slice.
3 Call keepFirstTwoElementsOnly, which returns only the first two elements

using slicing, and then call a GC.

We want to see how memory behaves following the call to keepFirstTwoElementsOnly
and a garbage collection. Here’s the scenario in Go (we reuse the printAlloc func-
tion mentioned previously):

func main() {
foos := make([]Foo, 1_000)
printAlloc()

for i := 0; i < len(foos); i++ {
foos[i] = Foo{

v: make([]byte, 1024*1024),
}

}
printAlloc()

two := keepFirstTwoElementsOnly(foos)
runtime.GC()
printAlloc()
runtime.KeepAlive(two)

}

func keepFirstTwoElementsOnly(foos []Foo) []Foo {
return foos[:2]

}

In this example, we allocate the foos slice, allocate a slice of 1 MB for each element,
and then call keepFirstTwoElementsOnly and a GC. In the end, we use runtime
.KeepAlive to keep a reference to the two variable after the garbage collection so that
it won’t be collected.

 We may expect the GC to collect the 998 remaining Foo elements and the data
allocated for the slice because these elements can no longer be accessed. However,
this isn’t the case. For example, the code can output the following:

83 KB
1024072 KB
1024072 KB

The first output allocates about 83 KB of data. Indeed, we allocated 1,000 zero values
of Foo. The second result allocates 1 MB per slice, which increases memory. However,

Allocates a slice of 
1,000 elements

For each element, 
allocates a slice of 1 MB

Keeps only the 
first two elements

Runs the GC to force 
cleaning the heap

Keeps a reference to 
the two variable

After the slicing 
operation
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notice that the GC did not collect the remaining 998 elements after the last step.
What’s the reason?

 It’s essential to keep this rule in mind when working with slices: if the element is a
pointer or a struct with pointer fields, the elements won’t be reclaimed by the GC. In
our example, because Foo contains a slice (and a slice is a pointer on top of a backing
array), the remaining 998 Foo elements and their slice aren’t reclaimed. Therefore,
even though these 998 elements can’t be accessed, they stay in memory as long as the
variable returned by keepFirstTwoElementsOnly is referenced.

 What are the options to ensure that we don’t leak the remaining Foo elements?
The first option, again, is to create a copy of the slice:

func keepFirstTwoElementsOnly(foos []Foo) []Foo {
res := make([]Foo, 2)
copy(res, foos)
return res

}

Because we copy the first two elements of the slice, the GC knows that the 998 ele-
ments won’t be referenced anymore and can now be collected.

 There’s a second option if we want to keep the underlying capacity of 1,000 ele-
ments, which is to mark the slices of the remaining elements explicitly as nil:

func keepFirstTwoElementsOnly(foos []Foo) []Foo {
for i := 2; i < len(foos); i++ {

foos[i].v = nil
}
return foos[:2]

}

Here, we return a 2-length, 1,000-capacity slice, but we set the slices of the remaining
elements to nil. Hence, the GC can collect the 998 backing arrays.

 Which option is the best? If we
don’t want to keep the capacity at
1,000 elements, the first option is
probably the best. However, the deci-
sion can also depend on the propor-
tion of the elements. Figure 3.14
provides a visual example of the
options we can choose, assuming a
slice containing n elements where we
want to keep i elements.

 The first option creates a copy of i elements. Hence, it must iterate from element
0 to i. The second option sets the remaining slices to nil, so it must iterate from ele-
ment i to n. If performance is important and i is closer to n than 0, we may consider
the second option. This requires iterating over fewer elements (at least, it’s probably
worth benchmarking the two options).

0 1 i – 1... i ... n

Option 1
Iterate and copy elements
from 0 to i – 1.

Option 2
Set to nil the slices from
elements i to n.

Figure 3.14 Option 1 iterates until i, whereas 
option 2 iterates from i.
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 In this section, we saw two potential memory leak problems. The first was about
slicing an existing slice or array to preserve the capacity. If we handle large slices and
reslice them to keep only a fraction, a lot of memory will remain allocated but unused.
The second problem is that when we use the slicing operation with pointers or structs
with pointer fields, we need to know that the GC won’t reclaim these elements. In that
case, the two options are to either perform a copy or explicitly mark the remaining
elements or their fields to nil.

 Now, let’s discuss maps in the context of initializations. 

3.11 #27: Inefficient map initialization
This section discusses an issue similar to one we saw with slice initialization, but using
maps. But first, we need to know the basics regarding how maps are implemented in
Go to understand why tweaking map initialization is important.

3.11.1 Concepts

A map provides an unordered collection of key-value pairs in which all the keys are dis-
tinct. In Go, a map is based on the hash table data structure. Internally, a hash table is
an array of buckets, and each bucket is a pointer to an array of key-value pairs, as fig-
ure 3.15 illustrates.

 An array of four elements backs the hash table in figure 3.15. If we examine the
array index, we notice one bucket consisting of a single key-value pair (element):
"two"/2. Each bucket has a fixed size of eight elements.

 Each operation (read, update, insert, delete) is done by associating a key to an
array index. This step relies on a hash function. This function is stable because we
want it to return the same bucket, given the same key, consistently. In the previous

Hash table representation: map[string]int

0

1

2

3

Key Value

"two" 2

Array

Figure 3.15 A hash table example 
with a focus on bucket 0
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example, hash("two") returns 0; hence, the element is stored in the bucket refer-
enced by the array index 0.

 If we insert another element, and hashing the key returns the same index, Go adds
another element to the same bucket. Figure 3.16 shows this result.

In the case of insertion into a bucket that is already full (bucket overflow), Go creates
another bucket of eight elements and links the previous bucket to it. Figure 3.17 pro-
vides this result.

Figure 3.17 In case of a bucket overflow, Go allocates a new bucket and links the previous bucket to it.

Hash table representation: map[string]int

0

1
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3

Key Value

"two" 2

"six" 6

Array

Figure 3.16 hash("six") 
returns 0; hence, the element is 
stored in the same bucket.
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Regarding reads, updates, and deletes, Go must calculate the corresponding array
index. Then Go iterates sequentially over all the keys until it finds the provided one.
Therefore, the worst-case time complexity for these three operations is O(p), where p
is the total number of elements in the buckets (one bucket by default, multiple buck-
ets in case of overflows).

 Let’s now discuss why initializing a map efficiently is important.

3.11.2 Initialization

To understand the problems related to inefficient map initialization, let’s create a
map[string]int type containing three elements:

m := map[string]int{
"1": 1,
"2": 2,
"3": 3,

}

Internally, this map is backed by an array consisting of a single entry: hence, a single
bucket. What happens if we add 1 million elements? In this case, a single entry won’t
be enough because finding a key would mean, in the worst case, going over thousands
of buckets. This is why a map should be able to grow automatically to cope with the
number of elements.

 When a map grows, it doubles its number of buckets. What are the conditions for a
map to grow?

 The average number of items in the buckets (called the load factor) is greater
than a constant value. This constant equals 6.5 (but it may change in future ver-
sions because it’s internal to Go).

 Too many buckets have overflowed (containing more than eight elements).

When a map grows, all the keys are dispatched again to all the buckets. This is why, in
the worst-case scenario, inserting a key can be an O(n) operation, with n being the
total number of elements in the map.

 We saw that when using slices, if we knew up front the number of elements to be
added to the slice, we could initialize it with a given size or capacity. This avoids having
to keep repeating the costly slice growth operation. The idea is similar for maps.
Indeed, we can use the make built-in function to provide an initial size when creating a
map. For example, if we want to initialize a map that will contain 1 million elements, it
can be done this way:

m := make(map[string]int, 1_000_000)

With a map, we can give the built-in function make only an initial size and not a capac-
ity, as with slices: hence, a single argument.

 By specifying a size, we provide a hint about the number of elements expected to
go into the map. Internally, the map is created with an appropriate number of buckets
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to store 1 million elements. This saves a lot of computation time because the map
won’t have to create buckets on the fly and handle rebalancing buckets.

 Also, specifying a size n doesn’t mean making a map with a maximum number of n
elements. We can still add more than n elements if needed. Instead, it means asking
the Go runtime to allocate a map with room for at least n elements, which is helpful if
we already know the size up front.

 To understand why specifying a size is important, let’s run two benchmarks. The
first inserts 1 million elements in a map without setting an initial size, whereas we ini-
tialize the second map with a size:

BenchmarkMapWithoutSize-4 6 227413490 ns/op
BenchmarkMapWithSize-4 13 91174193 ns/op

The second version, with an initial size, is about 60% faster. By providing a size, we
prevent the map from growing to cope with the inserted elements.

 Therefore, just like with slices, if we know up front the number of elements a map
will contain, we should create it by providing an initial size. Doing this avoids potential
map growth, which is quite heavy computation-wise because it requires reallocating
enough space and rebalancing all the elements.

 Let’s continue our discussion about maps and look at a common mistake that leads
to memory leaks. 

3.12 #28: Maps and memory leaks
When working with maps in Go, we need to understand some important characteris-
tics of how a map grows and shrinks. Let’s delve into this to prevent an issue that can
cause memory leaks.

 First, to view a concrete example of this problem, let’s design a scenario where we
will work with the following map:

m := make(map[int][128]byte)

Each value of m is an array of 128 bytes. We will do the following:

1 Allocate an empty map.
2 Add 1 million elements.
3 Remove all the elements, and run a GC.

After each step, we want to print the size of the heap (using MB this time). This shows
us how this example behaves memory-wise:

n := 1_000_000
m := make(map[int][128]byte)
printAlloc()

for i := 0; i < n; i++ {
m[i] = randBytes()

}

Adds 1 million 
elements



88 CHAPTER 3 Data types
printAlloc()

for i := 0; i < n; i++ {
delete(m, i)

}

runtime.GC()
printAlloc()
runtime.KeepAlive(m)

We allocate an empty map, add 1 million elements, remove 1 million elements, and
then run a GC. We also make sure to keep a reference to the map using runtime
.KeepAlive so that the map isn’t collected as well. Let’s run this example:

0 MB
461 MB
293 MB

What can we observe? At first, the heap size is minimal. Then it grows significantly
after having added 1 million elements to the map. But if we expected the heap size to
decrease after removing all the elements, this isn’t how maps work in Go. In the end,
even though the GC has collected all the elements, the heap size is still 293 MB. So the
memory shrunk, but not as we might have expected. What’s the rationale?

 We discussed in the previous section that a map is composed of eight-element
buckets. Under the hood, a Go map is a pointer to a runtime.hmap struct. This struct
contains multiple fields, including a B field, giving the number of buckets in the map:

type hmap struct {
B uint8 // log_2 of # of buckets

// (can hold up to loadFactor * 2^B items)
// ...

}

After adding 1 million elements, the value of B equals 18, which means 2^18 = 262,144
buckets. When we remove 1 million elements, what’s the value of B? Still 18. Hence,
the map still contains the same number of buckets.

 The reason is that the number of buckets in a map cannot shrink. Therefore, remov-
ing elements from a map doesn’t impact the number of existing buckets; it just zeroes
the slots in the buckets. A map can only grow and have more buckets; it never shrinks.

 In the previous example, we went from 461 MB to 293 MB because the elements
were collected, but running the GC didn’t impact the map itself. Even the number of
extra buckets (the buckets created because of overflows) remains the same.

 Let’s take a step back and discuss when the fact that a map cannot shrink can be a
problem. Imagine building a cache using map[int][128]byte. This map holds per
customer ID (the int), a sequence of 128 bytes. Now, suppose we want to save the last

Deletes 1 million 
elements

Triggers a 
manual GC

Keeps a reference to m so 
that the map isn’t collected

After m is 
allocated After we add 

1 million elements After we remove 1  
million elements
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1,000 customers. The map size will remain constant, so we shouldn’t worry about the
fact that a map cannot shrink.

 However, let’s say we want to store one hour of data. Meanwhile, our company has
decided to have a big promotion for Black Friday: in one hour, we may have millions
of customers connected to our system. But a few days after Black Friday, our map will
contain the same number of buckets as during the peak time. This explains why we
can experience high memory consumption that doesn’t significantly decrease in such
a scenario.

 What are the solutions if we don’t want to manually restart our service to clean the
amount of memory consumed by the map? One solution could be to re-create a copy
of the current map at a regular pace. For example, every hour, we can build a new
map, copy all the elements, and release the previous one. The main drawback of this
option is that following the copy and until the next garbage collection, we may con-
sume twice the current memory for a short period.

 Another solution would be to change the map type to store an array pointer:
map[int]*[128]byte. It doesn’t solve the fact that we will have a significant number of
buckets; however, each bucket entry will reserve the size of a pointer for the value
instead of 128 bytes (8 bytes on 64-bit systems and 4 bytes on 32-bit systems).

 Coming back to the original scenario, let’s compare the memory consumption for
each map type following each step. The following table shows the comparison.

As we can see, after removing all the elements, the amount of required memory is sig-
nificantly less with a map[int]*[128]byte type. Also, in this case, the amount of
required memory is less significant during peak times due to some optimizations to
reduce the memory consumed.

NOTE If a key or a value is over 128 bytes, Go won’t store it directly in the
map bucket. Instead, Go stores a pointer to reference the key or the value.

As we have seen, adding n elements to a map and then deleting all the elements
means keeping the same number of buckets in memory. So, we must remember that
because a Go map can only grow in size, so does its memory consumption. There is no
automated strategy to shrink it. If this leads to high memory consumption, we can try
different options such as forcing Go to re-create the map or using pointers to check if
it can be optimized.

 For the last section of this chapter, let’s discuss comparing values in Go. 

Step map[int][128]byte map[int]*[128]byte

Allocate an empty map. 0 MB 0 MB

Add 1 million elements. 461 MB 182 MB

Remove all the elements and run a GC. 293 MB 38 MB
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3.13 #29: Comparing values incorrectly
Comparing values is a common operation in software development. We frequently
implement comparisons: writing a function to compare two objects, testing to com-
pare a value against an expectation, and so on. Our first instinct might be to use the
== operator everywhere. But as we will see in this section, this shouldn’t always be the
case. So when is it appropriate to use ==, and what are the alternatives?

 To answer these questions, let’s start with a concrete example. We create a basic
customer struct and use == to compare two instances. What should be the output of
this code, in your opinion?

type customer struct {
id string

}

func main() {
cust1 := customer{id: "x"}
cust2 := customer{id: "x"}
fmt.Println(cust1 == cust2)

}

Comparing these two customer structs is a valid operation in Go, and it will print
true. Now, what happens if we make a slight modification to the customer struct to
add a slice field?

type customer struct {
id string
operations []float64

}

func main() {
cust1 := customer{id: "x", operations: []float64{1.}}
cust2 := customer{id: "x", operations: []float64{1.}}
fmt.Println(cust1 == cust2)

}

We might expect this code to print true as well. However, it doesn’t even compile:

invalid operation:
cust1 == cust2 (struct containing []float64 cannot be compared)

The problem relates to how the == and != operators work. These operators don’t work
with slices or maps. Hence, because the customer struct contains a slice, it doesn’t
compile.

 It’s essential to understand how to use == and != to make comparisons effectively.
We can use these operators on operands that are comparable :

 Booleans—Compare whether two Booleans are equal.
 Numerics (int, float, and complex types)—Compare whether two numerics are

equal.

New field
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 Strings—Compare whether two strings are equal.
 Channels—Compare whether two channels were created by the same call to

make or if both are nil.
 Interfaces—Compare whether two interfaces have identical dynamic types and

equal dynamic values or if both are nil.
 Pointers—Compare whether two pointers point to the same value in memory or

if both are nil.
 Structs and arrays—Compare whether they are composed of similar types.

NOTE We can also use the ?, >=, <, and > operators with numeric types to
compare values and with strings to compare their lexical order.

In the last example, our code failed to compile as the struct was composed on a non-
comparable type (a slice).

 We also need to know the possible issues of using == and != with any types. For
example, comparing two integers assigned to any types is allowed:

var a any = 3
var b any = 3
fmt.Println(a == b)

This code prints:

true

But what if we initialize two customer types (the latest version containing a slice field)
and assign the values to any types? Here’s an example:

var cust1 any = customer{id: "x", operations: []float64{1.}}
var cust2 any = customer{id: "x", operations: []float64{1.}}
fmt.Println(cust1 == cust2)

This code compiles. But as both types can’t be compared because the customer struct
contains a slice field, it leads to an error at run time:

panic: runtime error: comparing uncomparable type main.customer

With these behaviors in mind, what are the options if we have to compare two slices,
two maps, or two structs containing noncomparable types? If we stick with the stan-
dard library, one option is to use run-time reflection with the reflect package.

 Reflection is a form of metaprogramming, and it refers to the ability of an applica-
tion to introspect and modify its structure and behavior. For example, in Go, we can
use reflect.DeepEqual. This function reports whether two elements are deeply equal
by recursively traversing two values. The elements it accepts are basic types plus arrays,
structs, slices, maps, pointers, interfaces, and functions.

NOTE reflect.DeepEqual has a specific behavior depending on the type we
provide. Before using it, read the documentation carefully.
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Let’s rerun the first example, adding reflect.DeepEqual:

cust1 := customer{id: "x", operations: []float64{1.}}
cust2 := customer{id: "x", operations: []float64{1.}}
fmt.Println(reflect.DeepEqual(cust1, cust2))

Even though the customer struct contains noncomparable types (slice), it operates as
expected, printing true.

 However, there are two things to keep in mind when using reflect.DeepEqual.
First, it makes the distinction between an empty and a nil collection, as discussed in
mistake #22, “Being confused about nil vs. empty slices.” Is this a problem? Not neces-
sarily; it depends on our use case. For example, if we want to compare the results of
two unmarshaling operations (such as from JSON to a Go struct), we may want this
difference to be raised. But it’s worth keeping this behavior in mind to use
reflect.DeepEqual effectively.

 The other catch is something pretty standard in most languages. Because this func-
tion uses reflection, which introspects values at run time to discover how they are
formed, it has a performance penalty. Doing a few benchmarks locally with structs of
different sizes, on average, reflect.DeepEqual is about 100 times slower than ==. This
might be a reason to favor using it in the context of testing instead of at run time.

 If performance is a crucial factor, another option might be to implement our own
comparison method. Here’s an example that compares two customer structs and
returns a Boolean:

func (a customer) equal(b customer) bool {
if a.id != b.id {

return false
}
if len(a.operations) != len(b.operations) {

return false
}
for i := 0; i < len(a.operations); i++ {

if a.operations[i] != b.operations[i] {
return false

}
}
return true

}

In this code, we build our comparison method with custom checks on the different
fields of the customer struct. Running a local benchmark on a slice composed of 100
elements shows that our custom equal method is about 96 times faster than
reflect.DeepEqual.

 In general, we should remember that the == operator is pretty limited. For exam-
ple, it doesn’t work with slices and maps. In most cases, using reflect.DeepEqual is a
solution, but the main catch is the performance penalty. In the context of unit tests,
some other options are possible, such as using external libraries with go-cmp (https://
github.com/google/go-cmp) or testify (https://github.com/stretchr/testify).

Compares 
the id fields

Checks the length 
of both slices

Compares each 
element of both slices

https://github.com/google/go-cmp
https://github.com/google/go-cmp
https://github.com/stretchr/testify
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However, if performance is crucial at run time, implementing our custom method
might be the best solution.

 One additional note: we must remember that the standard library has some exist-
ing comparison methods. For example, we can use the optimized bytes.Compare
function to compare two slices of bytes. Before implementing a custom method, we
need to make sure we don’t reinvent the wheel. 

Summary
 When reading existing code, bear in mind that integer literals starting with 0

are octal numbers. Also, to improve readability, make octal integers explicit by
prefixing them with 0o.

 Because integer overflows and underflows are handled silently in Go, you can
implement your own functions to catch them.

 Making floating-point comparisons within a given delta can ensure that your
code is portable.

 When performing addition or subtraction, group the operations with a similar
order of magnitude to favor accuracy. Also, perform multiplication and division
before addition and subtraction.

 Understanding the difference between slice length and capacity should be part
of a Go developer’s core knowledge. The slice length is the number of available
elements in the slice, whereas the slice capacity is the number of elements in
the backing array.

 When creating a slice, initialize it with a given length or capacity if its length is
already known. This reduces the number of allocations and improves perfor-
mance. The same logic goes for maps, and you need to initialize their size.

 Using copy or the full slice expression is a way to prevent append from creating
conflicts if two different functions use slices backed by the same array. However,
only a slice copy prevents memory leaks if you want to shrink a large slice.

 To copy one slice to another using the copy built-in function, remember that
the number of copied elements corresponds to the minimum between the two
slice’s lengths.

 Working with a slice of pointers or structs with pointer fields, you can avoid
memory leaks by marking as nil the elements excluded by a slicing operation.

 To prevent common confusions such as when using the encoding/json or the
reflect package, you need to understand the difference between nil and
empty slices. Both are zero-length, zero-capacity slices, but only a nil slice
doesn’t require allocation.

 To check if a slice doesn’t contain any element, check its length. This check
works regardless of whether the slice is nil or empty. The same goes for maps.

 To design unambiguous APIs, you shouldn’t distinguish between nil and empty
slices.
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 A map can always grow in memory, but it never shrinks. Hence, if it leads to
some memory issues, you can try different options, such as forcing Go to re-
create the map or using pointers.

 To compare types in Go, you can use the == and != operators if two types are
comparable: Booleans, numerals, strings, pointers, channels, and structs are
composed entirely of comparable types. Otherwise, you can either use
reflect.DeepEqual and pay the price of reflection or use custom implementa-
tions and libraries.



Control structures
Control structures in Go are similar to those in C or Java but differ from them in
significant ways. For example, there is no do or while loop in Go, only a general-
ized for. This chapter delves into the most common mistakes related to control
structures, with a strong focus on the range loop, which is a common source of mis-
understanding.

4.1 #30: Ignoring the fact that elements are copied in 
range loops
A range loop is a convenient way to iterate over various data structures. We don’t
have to handle an index and the termination state. Go developers may forget or be

This chapter covers
 How a range loop assigns the element values and 

evaluates the provided expression

 Dealing with range loops and pointers

 Preventing common map iteration and loop- 
breaking mistakes

 Using defer inside a loop
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unaware of how a range loop assigns values, leading to common mistakes. First, let’s
remind ourselves how to use a range loop; then we’ll look at how values are assigned.

4.1.1 Concepts

A range loop allows iterating over different data structures:

 String
 Array
 Pointer to an array
 Slice
 Map
 Receiving channel

Compared to a classic for loop, a range loop is a convenient way to iterate over all the
elements of one of these data structures, thanks to its concise syntax. It’s also less
error-prone because we don’t have to handle the condition expression and iteration
variable manually, which may avoid mistakes such as off-by-one errors. Here is an
example with an iteration over a slice of strings:

s := []string{"a", "b", "c"}
for i, v := range s {

fmt.Printf("index=%d, value=%s\n", i, v)
}

This code loops over each element of the slice. In each iteration, as we iterate over a
slice, range produces a pair of values: an index and an element value, assigned to i
and v, respectively. In general, range produces two values for each data structure
except a receiving channel, for which it produces a single element (the value).

 In some cases, we may only be interested in the element value, not the index.
Because not using a local variable would lead to a compilation error, we can instead
use the blank identifier to replace the index variable, like so:

s := []string{"a", "b", "c"}
for _, v := range s {

fmt.Printf("value=%s\n", v)
}

Thanks to the blank identifier, we iterate over each element by ignoring the index and
assigning only the element value to v.

 If we’re not interested in the value, we can omit the second element:

for i := range s {}

Now that we’ve refreshed our minds on using a range loop, let’s see what kind of value
is returned during an iteration. 

4.1.2 Value copy

Understanding how the value is handled during each iteration is critical for using a
range loop effectively. Let’s see how it works with a concrete example.
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 We create an account struct containing a single balance field:

type account struct {
balance float32

}

Next, we create a slice of account structs and iterate over each element using a range
loop. During each iteration, we increment the balance of each account:

accounts := []account{
{balance: 100.},
{balance: 200.},
{balance: 300.},

}
for _, a := range accounts {

a.balance += 1000
}

Following this code, which of the following two choices do you think shows the slice’s
content?

 [{100} {200} {300}]

 [{1100} {1200} {1300}]

The answer is [{100} {200} {300}]. In this example, the range loop does not affect
the slice’s content. Let’s see why.

 In Go, everything we assign is a copy:

 If we assign the result of a function returning a struct, it performs a copy of that
struct.

 If we assign the result of a function returning a pointer, it performs a copy of the
memory address (an address is 64 bits long on a 64-bit architecture).

It’s crucial to keep this in mind to avoid common mistakes, including those related to
range loops. Indeed, when a range loop iterates over a data structure, it performs a
copy of each element to the value variable (the second item).

 Coming back to our example, iterating over each account element results in a
struct copy being assigned to the value variable a. Therefore, incrementing the bal-
ance with a.balance += 1000 mutates only the value variable (a), not an element in
the slice.

 So, what if we want to update the slice elements? There are two main options. The
first option is to access the element using the slice index. This can be achieved with
either a classic for loop or a range loop using the index instead of the value variable:

for i := range accounts {
accounts[i].balance += 1000

}

for i := 0; i < len(accounts); i++ {
accounts[i].balance += 1000

}

Uses the index variable to 
access the element of the slice

Uses the traditional 
for loop
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Both iterations have the same effect: updating the elements in the accounts slice.
 Which one should we favor? It depends on the context. If we want to go over each

element, the first loop is shorter to write and read. But if we need to control which ele-
ment we want to update (such as one out of two), we should instead use the second
loop.

In general, we should remember that the value element in a range loop is a copy.
Therefore, if the value is a struct we need to mutate, we will only update the copy, not
the element itself, unless the value or field we modify is a pointer. The favored options
are to access the element via the index using a range loop or a classic for loop.

 In the next section, we keep working with range loops and see how the provided
expression is evaluated. 

4.2 #31: Ignoring how arguments are evaluated 
in range loops
The range loop syntax requires an expression. For example, in for i, v := range exp,
exp is the expression. As we have seen, it can be a string, an array, a pointer to an
array, a slice, a map, or a channel. Now, let’s discuss the following question: how is this
expression evaluated? When using a range loop, this is an essential point to avoid
common mistakes.

 Let’s look at the following example, which appends an element to a slice we iterate
over. Do you believe the loop will terminate?

Updating slice elements: A third option
Another option is to keep using the range loop and access the value but modify the
slice type to a slice of account pointers:

accounts := []*account{
{balance: 100.},
{balance: 200.},
{balance: 300.},

}
for _, a := range accounts {

a.balance += 1000
}

In this case, as we mentioned, the a variable is a copy of the account pointer stored
in the slice. But as both pointers reference the same struct, the a.balance += 1000
statement updates the slice element.

However, this option has two main downsides. First, it requires updating the slice
type, which may not always be possible. Second, if performance is important, we
should note that iterating over a slice of pointers may be less efficient for a CPU
because of the lack of predictability (we will discuss this point in mistake #91, “Not
understanding CPU caches”).

Updates the slice 
type to []*account

Updates the slice 
elements directly
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s := []int{0, 1, 2}
for range s {

s = append(s, 10)
}

To understand this question, we should know that
when using a range loop, the provided expression is
evaluated only once, before the beginning of the
loop. In this context, “evaluated” means the provided
expression is copied to a temporary variable, and
then range iterates over this variable. In this exam-
ple, when the s expression is evaluated, the result is a
slice copy, as shown in figure 4.1.

 The range loop uses this temporary variable. The
original slice s is also updated during each iteration.
Hence, after three iterations, the state is as shown in
figure 4.2.

Each step results in appending a new element. However, after three steps, we have
gone over all the elements. Indeed, the temporary slice used by range remains a
three-length slice. Hence, the loop completes after three iterations.

 The behavior is different with a classic for loop:

s := []int{0, 1, 2}
for i := 0; i < len(s); i++ {

s = append(s, 10)
}

In this example, the loop never ends. The len(s) expression is evaluated during each
iteration, and because we keep adding elements, we will never reach a termination
state. It’s essential to keep this difference in mind to use Go loops accurately.

 Coming back to the range operator, we should know that the behavior we
described (expression evaluated only once) also applies to all the data types provided.

0 1 2ptr

len
3

cap
3

s

ptr

len
3

cap
3

range copy

Figure 4.1 s is copied to a 
temporary variable used by range.

0 1 2ptr

len
6

cap
6

s

ptr

len
3

cap
3

range copy

10 10 10

Figure 4.2 The temporary variable remains a 
three-length slice; hence, the iteration completes.
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As an example, let’s look at the implication of this behavior with two other types:
channels and arrays.

4.2.1 Channels

Let’s see a concrete example based on iterating over a channel using a range loop. We
create two goroutines, both sending elements to two distinct channels. Then, in the
parent goroutine, we implement a consumer on one channel using a range loop that
tries to switch to the other channel during the iteration:

ch1 := make(chan int, 3)
go func() {

ch1 <- 0
ch1 <- 1
ch1 <- 2
close(ch1)

}()

ch2 := make(chan int, 3)
go func() {

ch2 <- 10
ch2 <- 11
ch2 <- 12
close(ch2)

}()

ch := ch1
for v := range ch {

fmt.Println(v)
ch = ch2

}

In this example, the same logic applies regarding how the range expression is evalu-
ated. The expression provided to range is a ch channel pointing to ch1. Hence, range
evaluates ch, performs a copy to a temporary variable, and iterates over elements from
this channel. Despite the ch = ch2 statement, range keeps iterating over ch1, not ch2:

0
1
2

The ch = ch2 statement isn’t without effect, though. Because we assigned ch to the
second variable, if we call close(ch) following this code, it will close the second chan-
nel, not the first.

 Let’s now see the impact of the range operator evaluating each expression only
once when used with an array. 

4.2.2 Array

What’s the impact of using a range loop with an array? Because the range expression
is evaluated before the beginning of the loop, what is assigned to the temporary loop

Creates a first channel that will 
contain elements 0, 1, and 2

Creates a second channel that will 
contain elements 10, 11, and 12

Assigns the first 
channel to ch Creates a channel consumer 

by iterating over ch

Assigns the second 
channel to ch
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variable is a copy of the array. Let’s see this principle in action with the following
example that updates a specific array index during the iteration:

a := [3]int{0, 1, 2}
for i, v := range a {

a[2] = 10
if i == 2 {

fmt.Println(v)
}

}

This code updates the last index to 10. However, if we run this code, it does not print
10; it prints 2, instead, as figure 4.3 shows.

As we mentioned, the range operator creates a copy of the array. Meanwhile, the loop
doesn’t update the copy; it updates the original array: a. Therefore, the value of v
during the last iteration is 2, not 10.

 If we want to print the actual value of the last element, we can do so in two ways:

 By accessing the element from its index:

a := [3]int{0, 1, 2}
for i := range a {

a[2] = 10
if i == 2 {

fmt.Println(a[2])
}

}

Creates an array 
of three elements Iterates over 

the array

Updates the 
last index

Prints the content 
of the last index

0 1 2

Array copy

End of first iteration

0 1 2

a

Before iterations

0 1 2 0 1 10

0 1 2 0 1 10

0 1 2 0 1 10

End of second iteration

End of third iteration

Print 2

Array range iteration example

Figure 4.3 range iterates over 
the array copy (left) while the loop 
modifies a (right).

Accesses a[2] instead of 
the range value variable
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Because we access the original array, this code prints 2 instead of 10.

 Using an array pointer:

a := [3]int{0, 1, 2}
for i, v := range &a {

a[2] = 10
if i == 2 {

fmt.Println(v)
}

}

We assign a copy of the array pointer to the temporary variable used by range.
But because both pointers reference the same array, accessing v also returns 10.

Both options are valid. However, the second option doesn’t lead to copying the whole
array, which may be something to keep in mind in case the array is significantly large.

 In summary, the range loop evaluates the provided expression only once, before
the beginning of the loop, by doing a copy (regardless of the type). We should
remember this behavior to avoid common mistakes that might, for example, lead us
to access the wrong element.

 In the next section, we see how to avoid common mistakes using range loops with
pointers. 

4.3 #32: Ignoring the impact of using pointer elements in 
range loops
This section looks at a specific mistake when using a range loop with pointer ele-
ments. If we’re not cautious enough, it can lead us to an issue where we reference the
wrong elements. Let’s examine this problem and how to fix it.

 Before we begin, let’s clarify the rationale for using a slice or map of pointer ele-
ments. There are three main cases:

 In terms of semantics, storing data using pointer semantics implies sharing the
element. For example, the following method holds the logic to insert an ele-
ment into a cache:

type Store struct {
m map[string]*Foo

}

func (s Store) Put(id string, foo *Foo) {
s.m[id] = foo
// ...

}

Here, using the pointer semantics implies that the Foo element is shared by
both the caller of Put and the Store struct.

 Sometimes we already manipulate pointers. Hence, it can be handy to store
pointers directly in our collection instead of values.

Ranges over &a 
instead of a
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 If we store large structs, and these structs are frequently mutated, we can use
pointers instead to avoid a copy and an insertion for each mutation:

func updateMapValue(mapValue map[string]LargeStruct, id string) {
value := mapValue[id]
value.foo = "bar"
mapValue[id] = value

}

func updateMapPointer(mapPointer map[string]*LargeStruct, id string) {
mapPointer[id].foo = "bar"

}

Because updateMapPointer accepts a map of pointers, the mutation of the foo
field can be done in a single step.

Now it’s time to discuss the common mistake with pointer elements in range loops.
We will consider the following two structs:

 A Customer struct representing a customer
 A Store that holds a map of Customer pointers

type Customer struct {
ID string
Balance float64

}

type Store struct {
m map[string]*Customer

}

The following method iterates over a slice of Customer elements and stores them in
the m map:

func (s *Store) storeCustomers(customers []Customer) {
for _, customer := range customers {

s.m[customer.ID] = &customer
}

}

In this example, we iterate over the input slice using the range operator and store
Customer pointers in the map. But does this method do what we expect?

 Let’s give it a try by calling it with a slice of three different Customer structs:

s.storeCustomers([]Customer{
{ID: "1", Balance: 10},
{ID: "2", Balance: -10},
{ID: "3", Balance: 0},

})

Here’s the result of this code if we print the map:

key=1, value=&main.Customer{ID:"3", Balance:0}
key=2, value=&main.Customer{ID:"3", Balance:0}
key=3, value=&main.Customer{ID:"3", Balance:0}

Copies

Inserts

Mutates the map 
element directly

Stores the customer 
pointer in the map
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As we can see, instead of storing three different Customer structs, all the elements
stored in the map reference the same Customer struct: 3. What have we done wrong?

 Iterating over the customers slice using the range loop, regardless of the number
of elements, creates a single customer variable with a fixed address. We can verify this
by printing the pointer address during each iteration:

func (s *Store) storeCustomers(customers []Customer) {
for _, customer := range customers {

fmt.Printf("%p\n", &customer)
s.m[customer.ID] = &customer

}
}

0xc000096020
0xc000096020
0xc000096020

Why is this important? Let’s examine each iteration:

 During the first iteration, customer references the first element: Customer 1.
We store a pointer to a customer struct.

 During the second iteration, customer now references another element: Cus-
tomer 2. We also store a pointer to a customer struct.

 Finally, during the last iteration, customer references the last element: Cus-
tomer 3. Again, the same pointer is stored in the map.

At the end of the iterations, we have stored the same pointer in the map three times
(see figure 4.4). This pointer’s last assignment is a reference to the slice’s last element:
Customer 3. This is why all the map elements reference the same Customer.

Figure 4.4 The customer variable has a constant address, so we store in the map the same pointer.

So, how do we fix this problem? There are two main solutions. The first is similar to
what we saw in mistake #1, “Unintended variable shadowing.” It requires creating a
local variable:

func (s *Store) storeCustomers(customers []Customer) {
for _, customer := range customers {

current := customer

Prints the customer 
address

Customer 1

Slice elements

Customer 2

Customer 3

First iteration
Second iteration

Third iteration

0xc000096020

customer variable

Map

1

2

3

0xc000096020

0xc000096020

0xc000096020

Range iteration

Key Value

Creates a local 
current variable
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s.m[current.ID] = &current
}

}

In this example, we don’t store a pointer referencing customer; instead, we store a
pointer referencing current. current is a variable referencing a unique Customer
during each iteration. Therefore, following the loop, we have stored different point-
ers referencing different Customer structs in the map. The other solution is to store a
pointer referencing each element using the slice index:

func (s *Store) storeCustomers(customers []Customer) {
for i := range customers {

customer := &customers[i]
s.m[customer.ID] = customer

}
}

In this solution, customer is now a pointer. Because it’s initialized during each itera-
tion, it has a unique address. Therefore, we store different pointers in the maps.

 When iterating over a data structure using a range loop, we must recall that all the
values are assigned to a unique variable with a single unique address. Therefore, if we
store a pointer referencing this variable during each iteration, we will end up in a situ-
ation where we store the same pointer referencing the same element: the latest one.
We can overcome this issue by forcing the creation of a local variable in the loop’s
scope or creating a pointer referencing a slice element via its index. Both solutions
are fine. Also note that we took a slice data structure as an input, but the problem
would be similar with a map.

 In the next section, we see common mistakes related to map iteration. 

4.4 #33: Making wrong assumptions during map iterations
Iterating over a map is a common source of misunderstanding and mistakes, mostly
because developers make wrong assumptions. In this section, we discuss two different
cases:

 Ordering
 Map update during an iteration

We will see two common mistakes based on wrong assumptions while iterating over a
map.

4.4.1 Ordering

Regarding ordering, we need to understand a few fundamental behaviors of the map
data structure:

 It doesn’t keep the data sorted by key (a map isn’t based on a binary tree).
 It doesn’t preserve the order in which the data was added. For example, if we

insert pair A before pair B, we shouldn’t make any assumptions based on this
insertion order.

Stores this pointer 
in the map

Assigns to customer a 
pointer of the i element

Stores the 
customer pointer



106 CHAPTER 4 Control structures
Furthermore, when iterating over a map, we shouldn’t make any ordering assump-
tions at all. Let’s examine the implications of this statement.

 We will consider the map shown in figure 4.5, consisting of four buckets (the ele-
ments represent the key). Each index of the backing array references a given bucket.

Figure 4.5 A map with four buckets

Now, let’s iterate over this map using a range loop and print all the keys:

for k := range m {
fmt.Print(k)

}

We mentioned that the data isn’t sorted by key. Hence, we can’t expect this code to
print acdeyz. Meanwhile, we said the map doesn’t preserve the insertion order.
Hence, we also can’t expect the code to print ayzcde.

 But can we at least expect the code to print the keys in the order in which they are
currently stored in the map, aczdey? No, not even this. In Go, the iteration order over
a map is not specified. There is also no guarantee that the order will be the same from
one iteration to the next. We should keep these map behaviors in mind so we don’t
base our code on wrong assumptions.

 We can confirm all of these statements by running the previous loop twice:

zdyaec
czyade

As we can see, the order is different from one iteration to another.

NOTE Although there is no guarantee about the iteration order, the iteration
distribution isn’t uniform. It’s why the official Go specification states that the
iteration is unspecified, not random.

So why does Go have such a surprising way to iterate over a map? It was a conscious
choice by the language designers. They wanted to add some form of randomness to
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Array index
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2
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insert y
insert z
insert c
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Steps
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make sure developers never rely on any ordering assumptions while working with
maps (see http://mng.bz/M2JW).

 Hence, as Go developers, we should never make assumptions regarding ordering
while iterating over a map. However, let’s note that using packages from the standard
library or external libraries can lead to different behaviors. For example, when the
encoding/json package marshals a map into JSON, it reorders the data alphabetically
by keys, regardless of the insertion order. But this isn’t a property of the Go map itself.
If ordering is necessary, we should rely on other data structures such as a binary heap
(the GoDS library at https://github.com/emirpasic/gods contains helpful data struc-
ture implementations).

 Let’s now look at the second mistake related to updating a map while iterating
over it. 

4.4.2 Map insert during iteration

In Go, updating a map (inserting or deleting an element) during an iteration is
allowed; it doesn’t lead to a compilation error or a run-time error. However, there’s
another aspect we should consider when adding an entry in a map during an itera-
tion, to avoid non-deterministic results.

 Let’s check the following example that iterates on a map[int]bool. If the pair value
is true, we add another element. Can you guess what the output of this code will be?

m := map[int]bool{
0: true,
1: false,
2: true,

}

for k, v := range m {
if v {

m[10+k] = true
}

}

fmt.Println(m)

The result of this code is unpredictable. Here are some examples of results if we run
this code multiple times:

map[0:true 1:false 2:true 10:true 12:true 20:true 22:true 30:true]
map[0:true 1:false 2:true 10:true 12:true 20:true 22:true 30:true 32:true]
map[0:true 1:false 2:true 10:true 12:true 20:true]

To understand the reason, we have to read what the Go specification says about a new
map entry during an iteration:

If a map entry is created during iteration, it may be produced during the iteration or
skipped. The choice may vary for each entry created and from one iteration to the next.

Hence, when an element is added to a map during an iteration, it may be produced
during a follow-up iteration, or it may not. As Go developers, we don’t have any way to

https://github.com/emirpasic/gods
http://mng.bz/M2JW
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enforce the behavior. It also may vary from one iteration to another, which is why we
got a different result three times.

 It’s essential to keep this behavior in mind to ensure that our code doesn’t pro-
duce unpredictable outputs. If we want to update a map while iterating over it and
make sure the added entries aren’t part of the iteration, one solution is to work on a
copy of the map, like so:

m := map[int]bool{
0: true,
1: false,
2: true,

}
m2 := copyMap(m)

for k, v := range m {
m2[k] = v
if v {

m2[10+k] = true
}

}

fmt.Println(m2)

In this example, we disassociate the map being read from the map being updated.
Indeed, we keep iterating over m, but the updates are done on m2. This new version
creates predictable and repeatable output:

map[0:true 1:false 2:true 10:true 12:true]

To summarize, when we work with a map, we shouldn’t rely on the following:

 The data being ordered by keys
 Preservation of the insertion order
 A deterministic iteration order
 An element being produced during the same iteration in which it’s added

Keeping these behaviors in mind should help us avoid common mistakes based on
wrong assumptions.

 In the next section, we see a mistake that is made fairly frequently while breaking
loops. 

4.5 #34: Ignoring how the break statement works
A break statement is commonly used to terminate the execution of a loop. When
loops are used in conjunction with switch or select, developers frequently make the
mistake of breaking the wrong statement.

 Let’s take a look at the following example. We implement a switch inside a for
loop. If the loop index has the value 2, we want to break the loop:

for i := 0; i < 5; i++ {
fmt.Printf("%d ", i)

switch i {

Creates a copy of 
the initial map

Updates m2 
instead of m
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default:
case 2:

break
}

}

This code may look right at first glance; however, it doesn’t do what we expect. The
break statement doesn’t terminate the for loop: it terminates the switch statement,
instead. Hence, instead of iterating from 0 to 2, this code iterates from 0 to 4: 0 1 2 3 4.

 One essential rule to keep in mind is that a break statement terminates the execu-
tion of the innermost for, switch, or select statement. In the previous example, it
terminates the switch statement.

 So how can we write code that breaks the loop instead of the switch statement?
The most idiomatic way is to use a label:

loop:
for i := 0; i < 5; i++ {

fmt.Printf("%d ", i)

switch i {
default:
case 2:

break loop
}

}

Here, we associate the loop label with the for loop. Then, because we provide the
loop label to the break statement, it breaks the loop, not the switch. Therefore, this
new version will print 0 1 2, as we expected.

Is a break with a label just like goto?
Some developers may challenge whether a break with a label is idiomatic and see it
as a fancy goto statement. However, this isn’t the case, and such code is used in
the standard library. For example, we see this in the net/http package while reading
lines from a buffer:

readlines:
for {

line, err := rw.Body.ReadString('\n')
switch {
case err == io.EOF:

break readlines
case err != nil:

t.Fatalf("unexpected error reading from CGI: %v", err)
}
// ...

}

This example uses an expressive label with readlines to emphasize the loop’s goal.
Hence, we should consider breaking a statement using labels an idiomatic approach
in Go.

If i equals 2,
call break.

Defines a 
loop label

Terminates the loop attached to 
the loop label, not the switch
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Breaking the wrong statement can also occur with a select inside a loop. In the fol-
lowing code, we want to use select with two cases and break the loop if the context
cancels:

for {
select {
case <-ch:

// Do something
case <-ctx.Done():

break
}

}

Here the innermost for, switch, or select statement is the select statement, not the
for loop. So, the loop repeats. Again, to break the loop itself, we can use a label:

loop:
for {

select {
case <-ch:

// Do something
case <-ctx.Done():

break loop
}

}

Now, as expected, the break statement breaks the loop, not select.

NOTE We can also use continue with a label to go to the next iteration of the
labeled loop.

We should remain cautious while using a switch or select statement inside a loop.
When using break, we should always make sure we know which statement it will affect.
As we have seen, using labels is the idiomatic solution to enforce breaking a specific
statement.

 In the last section of this chapter, we keep discussing loops, but this time in con-
junction with the defer keyword. 

4.6 #35: Using defer inside a loop
The defer statement delays a call’s execution until the surrounding function returns.
It’s mainly used to reduce boilerplate code. For example, if a resource has to be closed
eventually, we can use defer to avoid repeating the closure calls before every single
return. However, one common mistake is to be unaware of the consequences of using
defer inside a loop. Let’s look into this problem.

 We will implement a function that opens a set of files where the file paths are
received via a channel. Hence, we have to iterate over this channel, open the files, and
handle the closure. Here’s our first version:

func readFiles(ch <-chan string) error {
for path := range ch {

Breaks if the 
context cancels

Defines a 
loop label

Terminates the loop attached to 
the loop label, not the select

Iterates over 
the channel
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file, err := os.Open(path)
if err != nil {

return err
}

defer file.Close()

// Do something with file
}
return nil

}

NOTE We will discuss how to handle defer errors in mistake #54, “Not han-
dling defer errors.”

There is a significant problem with this implementation. We have to recall that defer
schedules a function call when the surrounding function returns. In this case, the defer
calls are executed not during each loop iteration but when the readFiles function
returns. If readFiles doesn’t return, the file descriptors will be kept open forever,
causing leaks.

 What are the options to fix this problem? One might be to get rid of defer and
handle the file closure manually. But if we did that, we would have to abandon a con-
venient feature of the Go toolset just because we were in a loop. So, what are the
options if we want to keep using defer? We have to create another surrounding func-
tion around defer that is called during each iteration.

 For example, we can implement a readFile function holding the logic for each
new file path received:

func readFiles(ch <-chan string) error {
for path := range ch {

if err := readFile(path); err != nil {
return err

}
}
return nil

}

func readFile(path string) error {
file, err := os.Open(path)
if err != nil {

return err
}

defer file.Close()

// Do something with file
return nil

}

In this implementation, the defer function is called when readFile returns, meaning
at the end of each iteration. Therefore, we do not keep file descriptors open until the
parent readFiles function returns.

Opens 
the file

Defers the call 
to file.Close()

Calls the readFile function 
that contains the main logic

Keeps the 
call to defer
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 Another approach could be to make the readFile function a closure:

func readFiles(ch <-chan string) error {
for path := range ch {

err := func() error {
// ...
defer file.Close()
// ...

}()
if err != nil {

return err
}

}
return nil

}

But intrinsically, this remains the same solution: adding another surrounding function
to execute the defer calls during each iteration. The plain old function has the advan-
tage of probably being a bit clearer, and we can also write a specific unit test for it.

 When using defer, we must remember that it schedules a function call when the
surrounding function returns. Hence, calling defer within a loop will stack all the
calls: they won’t be executed during each iteration, which may cause memory leaks if
the loop doesn’t terminate, for example. The most convenient approach to solving
this problem is introducing another function to be called during each iteration. But if
performance is crucial, one downside is the overhead added by the function call. If we
have such a case and we want to prevent this overhead, we should get rid of defer and
handle the defer call manually before looping. 

Summary
 The value element in a range loop is a copy. Therefore, to mutate a struct, for

example, access it via its index or via a classic for loop (unless the element or
the field you want to modify is a pointer).

 Understanding that the expression passed to the range operator is evaluated
only once before the beginning of the loop can help you avoid common mis-
takes such as inefficient assignment in channel or slice iteration.

 Using a local variable or accessing an element using an index, you can prevent
mistakes while copying pointers inside a loop.

 To ensure predictable outputs when using maps, remember that a map data
structure
– Doesn’t order the data by keys
– Doesn’t preserve the insertion order
– Doesn’t have a deterministic iteration order
– Doesn’t guarantee that an element added during an iteration will be pro-

duced during this iteration
 Using break or continue with a label enforces breaking a specific statement.

This can be helpful with switch or select statements inside loops.
 Extracting loop logic inside a function leads to executing a defer statement at

the end of each iteration.

Runs the 
provided closure



Strings
In Go, a string is an immutable data structure holding the following:

 A pointer to an immutable byte sequence
 The total number of bytes in this sequence

We will see in this chapter that Go has a pretty unique way to deal with strings. Go
introduces a concept called runes; this concept is essential to understand and may
confuse newcomers. Once we know how strings are managed, we can avoid com-
mon mistakes while iterating on a string. We will also look at common mistakes
made by Go developers while using or producing strings. In addition, we will see

This chapter covers
 Understanding the fundamental concept of the 

rune in Go

 Preventing common mistakes with string iteration 
and trimming

 Avoiding inefficient code due to string 
concatenations or useless conversions

 Avoiding memory leaks with substrings
113



114 CHAPTER 5 Strings
that sometimes we can work directly with []byte, avoiding extra allocations. Finally,
we will discuss how to avoid a common mistake that can create leaks from substrings.
The primary goal of this chapter is to help you understand how strings work in Go by
presenting common string mistakes.

5.1 #36: Not understanding the concept of a rune
We couldn’t start this chapter about strings without discussing the concept of the rune
in Go. As you will see in the following sections, this concept is key to thoroughly
understanding how strings are handled and avoiding common mistakes. But before
delving into Go runes, we need to make sure we are aligned about some fundamental
programming concepts.

 We should understand the distinction between a charset and an encoding:

 A charset, as the name suggests, is a set of characters. For example, the Unicode
charset contains 2^21 characters.

 An encoding is the translation of a character’s list in binary. For example, UTF-
8 is an encoding standard capable of encoding all the Unicode characters in a
variable number of bytes (from 1 to 4 bytes).

We mentioned characters to simplify the charset definition. But in Unicode, we use
the concept of a code point to refer to an item represented by a single value. For exam-
ple, the 汉 character is identified by the U+6C49 code point. Using UTF-8, 汉 is
encoded using three bytes: 0xE6, 0xB1, and 0x89. Why is this important? Because in
Go, a rune is a Unicode code point.

 Meanwhile, we mentioned that UTF-8 encodes characters into 1 to 4 bytes, hence,
up to 32 bits. This is why in Go, a rune is an alias of int32:

type rune = int32

Another thing to highlight about UTF-8: some people believe that Go strings are
always UTF-8, but this isn’t true. Let’s consider the following example:

s := "hello"

We assign a string literal (a string constant) to s. In Go, a source code is encoded in
UTF-8. So, all string literals are encoded into a sequence of bytes using UTF-8. How-
ever, a string is a sequence of arbitrary bytes; it’s not necessarily based on UTF-8.
Hence, when we manipulate a variable that wasn’t initialized from a string literal (for
example, reading from the filesystem), we can’t necessarily assume that it uses the
UTF-8 encoding.

NOTE golang.org/x, a repository that provides extensions to the standard
library, contains packages to work with UTF-16 and UTF-32.

Let’s get back to the hello example. We have a string composed of five characters: h,
e, l, l, and o.

golang.org/x
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 These simple characters are encoded using a single byte each. This is why getting
the length of s returns 5:

s := "hello"
fmt.Println(len(s)) // 5

But a character isn’t always encoded into a single byte. Coming back to the 汉 charac-
ter, we mentioned that with UTF-8, this character is encoded into three bytes. We can
validate this with the following example:

s := "汉"
fmt.Println(len(s)) // 3

Instead of printing 1, this example prints 3. Indeed, the len built-in function applied
on a string doesn’t return the number of characters; it returns the number of bytes.

 Conversely, we can create a string from a list of bytes. We mentioned that the 汉
character was encoded using three bytes, 0xE6, 0xB1, and 0x89:

s := string([]byte{0xE6, 0xB1, 0x89})
fmt.Printf("%s\n", s)

Here, we build a string composed of these three bytes. When we print the string,
instead of printing three characters, the code prints a single one: 汉.

 In summary:

 A charset is a set of characters, whereas an encoding describes how to translate
a charset into binary.

 In Go, a string references an immutable slice of arbitrary bytes.
 Go source code is encoded using UTF-8. Hence, all string literals are UTF-8

strings. But because a string can contain arbitrary bytes, if it’s obtained from
somewhere else (not the source code), it isn’t guaranteed to be based on the
UTF-8 encoding.

 A rune corresponds to the concept of a Unicode code point, meaning an item
represented by a single value.

 Using UTF-8, a Unicode code point can be encoded into 1 to 4 bytes.
 Using len on a string in Go returns the number of bytes, not the number of runes.

Having these concepts in mind is essential because runes as everywhere in Go. Let’s
see a concrete application of this knowledge involving a common mistake related to
string iteration. 

5.2 #37: Inaccurate string iteration
Iterating on a string is a common operation for developers. Perhaps we want to per-
form an operation for each rune in the string or implement a custom function to
search for a specific substring. In both cases, we have to iterate on the different runes
of a string. But it’s easy to get confused about how iteration works.
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 Let’s look at a concrete example. Here, we want to print the different runes in a
string and their corresponding positions:

s := "hêllo"
for i := range s {

fmt.Printf("position %d: %c\n", i, s[i])
}
fmt.Printf("len=%d\n", len(s))

We use the range operator to iterate over s, and then we want to print each rune
using its index in the string. Here’s the output:

position 0: h
position 1: Ã
position 3: l
position 4: l
position 5: o
len=6

This code doesn’t do what we want. Let’s highlight three points:

 The second rune is Ã in the output instead of ê.
 We jumped from position 1 to position 3: what is at position 2?
 len returns a count of 6, whereas s contains only 5 runes.

Let’s start with the last observation. We already mentioned that len returns the num-
ber of bytes in a string, not the number of runes. Because we assigned a string literal
to s, s is a UTF-8 string. Meanwhile, the special character ê isn’t encoded in a single
byte; it requires 2 bytes. Therefore, calling len(s) returns 6.

Let’s get back to the iteration to understand the remaining surprises:

for i := range s {
fmt.Printf("position %d: %c\n", i, s[i])

}

We have to recognize that in this example, we don’t iterate over each rune; instead, we
iterate over each starting index of a rune, as shown in figure 5.1.

 Printing s[i] doesn’t print the ith rune; it prints the UTF-8 representation of the
byte at index i. Hence, we printed hÃllo instead of hêllo. So how do we fix the code
if we want to print all the different runes? There are two main options.

Calculating the number of runes in a string
What if we want to get the number of runes in a string, not the number of bytes? How
we can do this depends on the encoding.

In the previous example, because we assigned a string literal to s, we can use the
unicode/utf8 package:

fmt.Println(utf8.RuneCountInString(s)) // 5

The string literal contains 
a special rune: ê.
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We have to use the value element of the range operator:

s := "hêllo"
for i, r := range s {

fmt.Printf("position %d: %c\n", i, r)
}

Instead of printing the rune using s[i], we use the r variable. Using a range loop on
a string returns two variables, the starting index of a rune and the rune itself:

position 0: h
position 1: ê
position 3: l
position 4: l
position 5: o

The other approach is to convert the string into a slice of runes and iterate over it:

s := "hêllo"
runes := []rune(s)
for i, r := range runes {

fmt.Printf("position %d: %c\n", i, r)
}

position 0: h
position 1: ê
position 2: l
position 3: l
position 4: o

Here, we convert s into a slice of runes using []rune(s). Then we iterate over this
slice and use the value element of the range operator to print all the runes. The only
difference has to do with the position: instead of printing the starting index of the
rune’s byte sequence, the code prints the rune’s index directly.

 Note that this solution introduces a run-time overhead compared to the previous
one. Indeed, converting a string into a slice of runes requires allocating an additional
slice and converting the bytes into runes: an O(n) time complexity with n the number
of bytes in the string. Therefore, if we want to iterate over all the runes, we should use
the first solution.

 However, if we want to access the ith rune of a string with the first option, we don’t
have access to the rune index; rather, we know the starting index of a rune in the byte
sequence. Hence, we should favor the second option in most cases:

h

0 1 2 3 4 5

Ã l l o

h ê l l o

68 c3 aa 6c 6c 6f

s

[]byte(s)

i

s[i]
Figure 5.1 Printing s[i] prints the UTF-8 representation 
of each byte at index i.



118 CHAPTER 5 Strings
s := "hêllo"
r := []rune(s)[4]
fmt.Printf("%c\n", r) // o

This code prints the fourth rune by first converting the string into a rune slice.

In summary, if we want to iterate over a string’s runes, we can use the range loop on
the string directly. But we have to recall that the index corresponds not to the rune
index but rather to the starting index of the byte sequence of the rune. Because a
rune can be composed of multiple bytes, if we want to access the rune itself, we should
use the value variable of range, not the index in the string. Meanwhile, if we are inter-
ested in getting the ith rune of a string, we should convert the string into a slice of
runes in most cases.

 In the next section, we look at a common source of confusion when using trim
functions in the strings package. 

5.3 #38: Misusing trim functions
One common mistake made by Go developers when using the strings package is to
mix TrimRight and TrimSuffix. Both functions serve a similar purpose, and it can be
fairly easy to confuse them. Let’s take a look.

 In the following example, we use TrimRight. What should be the output of this code?

fmt.Println(strings.TrimRight("123oxo", "xo"))

The answer is 123. Is that what you expected? If not, you were probably expecting the
result of TrimSuffix, instead. Let’s review both functions.

   TrimRight removes all the trailing runes contained in a given set. In our example,
we passed as a set xo, which contains two runes: x and o. Figure 5.2 shows the logic.

A possible optimization to access a specific rune
One optimization is possible if a string is composed of single-byte runes: for example,
if the string contains the letters A to Z and a to z. We can access the ith rune without
converting the whole string into a slice of runes by accessing the byte directly using
s[i]:

s := "hello"
fmt.Printf("%c\n", rune(s[4])) // o

123oxo
o is part of the set, remove 

x is part of the set, remove 

o is part of the set, remove 

3 is not  part of the set, stop 

123ox

123o

123 Figure 5.2 TrimRight iterates backward 
until it finds a rune that is not part of the set.
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TrimRight iterates backward over each rune. If a rune is part of the provided set, the
function removes it. If not, the function stops its iteration and returns the remaining
string. This is why our example returns 123.

 On the other hand, TrimSuffix returns a string without a provided trailing suffix:

fmt.Println(strings.TrimSuffix("123oxo", "xo"))

Because 123oxo ends with xo, this code prints 123o. Also, removing the trailing suffix
isn’t a repeating operation, so TrimSuffix("123xoxo", "xo") returns 123xo.

 The principle is the same for the left-hand side of a string with TrimLeft and
TrimPrefix:

fmt.Println(strings.TrimLeft("oxo123", "ox")) // 123
fmt.Println(strings.TrimPrefix("oxo123", "ox")) /// o123

strings.TrimLeft removes all the leading runes contained in a set and hence prints
123. TrimPrefix removes the provided leading prefix, printing o123.

 One last note related to this topic: Trim applies both TrimLeft and TrimRight on a
string. So, it removes all the leading and trailing runes contained in a set:

fmt.Println(strings.Trim("oxo123oxo", "ox")) // 123

In summary, we have to make sure we understand the difference between TrimRight/
TrimLeft, and TrimSuffix/TrimPrefix:

 TrimRight/TrimLeft removes the trailing/leading runes in a set.
 TrimSuffix/TrimPrefix removes a given suffix/prefix.

In the next section, we will delve into string concatenation. 

5.4 #39: Under-optimized string concatenation
When it comes to concatenating strings, there are two main approaches in Go, and
one of them can be really inefficient in some conditions. Let’s examine this topic to
understand which option we should favor and when.

 Let’s write a concat function that concatenates all the string elements of a slice
using the += operator:

func concat(values []string) string {
s := ""
for _, value := range values {

s += value
}
return s

}

During each iteration, the += operator concatenates s with the value string. At first
sight, this function may not look wrong. But with this implementation, we forget one
of the core characteristics of a string: its immutability. Therefore, each iteration
doesn’t update s; it reallocates a new string in memory, which significantly impacts the
performance of this function.
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 Fortunately, there is a solution to deal with this problem, using the strings pack-
age and the Builder struct:

func concat(values []string) string {
sb := strings.Builder{}
for _, value := range values {

_, _ = sb.WriteString(value)
}
return sb.String()

}

First, we created a strings.Builder struct using its zero value. During each iteration,
we constructed the resulting string by calling the WriteString method that appends
the content of value to its internal buffer, hence minimizing memory copying.

 Note that WriteString returns an error as the second output, but we purposely
ignore it. Indeed, this method will never return a non-nil error. So what’s the purpose
of this method returning an error as part of its signature? strings.Builder imple-
ments the io.StringWriter interface, which contains a single method: Write-
String(s string) (n int, err error). Hence, to comply with this interface,
WriteString must return an error.

NOTE We will discuss ignoring errors idiomatically in mistake #53, “Not han-
dling an error.”

Using strings.Builder, we can also append

 A byte slice using Write
 A single byte using WriteByte
 A single rune using WriteRune

Internally, strings.Builder holds a byte slice. Each call to WriteString results in a
call to append on this slice. There are two impacts. First, this struct shouldn’t be used
concurrently, as the calls to append would lead to race conditions. The second impact
is something that we saw in mistake #21, “Inefficient slice initialization”: if the future
length of a slice is already known, we should preallocate it. For that purpose,
strings.Builder exposes a method Grow(n int) to guarantee space for another n
bytes.

 Let’s write another version of the concat method by calling Grow with the total
number of bytes:

func concat(values []string) string {
total := 0
for i := 0; i < len(values); i++ {

total += len(values[i])
}

sb := strings.Builder{}
sb.Grow(total)
for _, value := range values {

_, _ = sb.WriteString(value)

Creates a 
strings.Builder

Appends 
a string

Returns the 
resulted string

Iterates over each string to compute 
the total number of bytes

Calls Grow 
with this total
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}
return sb.String()

}

Before the iteration, we compute the total number of bytes the final string will contain
and assign the result to total. Note that we’re not interested in the number of runes
but the number of bytes, so we use the len function. Then we call Grow to guarantee
space for total bytes before iterating over the strings.

 Let’s run a benchmark to compare the three versions (v1 using +=; v2 using
strings.Builder{} without preallocation; and v3 using strings.Builder{} with pre-
allocation). The input slice contains 1,000 strings, and each string contains 1,000 bytes:

BenchmarkConcatV1-4 16 72291485 ns/op
BenchmarkConcatV2-4 1188 878962 ns/op
BenchmarkConcatV3-4 5922 190340 ns/op

As we can see, the latest version is by far the most efficient: 99% faster than v1 and
78% faster than v2. We may ask ourselves, how can iterating twice on the input slice
make the code faster? The answer lies in mistake #21, “Inefficient slice initialization”:
if a slice isn’t allocated with a given length or capacity, the slice will keep growing each
time it becomes full, resulting in additional allocations and copies. Hence, iterating
twice is the most efficient option in this case.

 strings.Builder is the recommended solution to concatenate a list of strings.
Usually, this solution should be used within a loop. Indeed, if we just have to concate-
nate a few strings (such as a name and a surname), using strings.Builder is not rec-
ommended as doing so will make the code a bit less readable than using the +=
operator or fmt.Sprintf.

 As a general rule, we can remember that performance-wise, the strings.Builder
solution is faster from the moment we have to concatenate more than about five
strings. Even though this exact number depends on many factors, such as the size of
the concatenated strings and the machine, this can be a rule of thumb to help us
decide when to choose one solution over the other. Also, we shouldn’t forget that if
the number of bytes of the future string is known in advance, we should use the Grow
method to preallocate the internal byte slice.

 Next, we will discuss the bytes package and why it may prevent useless string con-
versions. 

5.5 #40: Useless string conversions
When choosing to work with a string or a []byte, most programmers tend to favor
strings for convenience. But most I/O is actually done with []byte. For example,
io.Reader, io.Writer, and io.ReadAll work with []byte, not strings. Hence, work-
ing with strings means extra conversions, although the bytes package contains many
of the same operations as the strings package.

 Let’s see an example of what we shouldn’t do. We will implement a getBytes func-
tion that takes an io.Reader as an input, reads from it, and calls a sanitize function.
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The sanitization will be done by trimming all the leading and trailing white spaces.
Here’s the skeleton of getBytes:

func getBytes(reader io.Reader) ([]byte, error) {
b, err := io.ReadAll(reader)
if err != nil {

return nil, err
}
// Call sanitize

}

We call ReadAll and assign the byte slice to b. How can we implement the sanitize
function? One option might be to create a sanitize(string) string function using
the strings package:

func sanitize(s string) string {
return strings.TrimSpace(s)

}

Now, back to getBytes: as we manipulate a []byte, we must first convert it to a string
before calling sanitize. Then we have to convert the results back into a []byte
because getBytes returns a byte slice:

return []byte(sanitize(string(b))), nil

What’s the problem with this implementation? We have to pay the extra price of con-
verting a []byte into a string and then converting a string into a []byte. Memory-
wise, each of these conversions requires an extra allocation. Indeed, even though a
string is backed by a []byte, converting a []byte into a string requires a copy of the
byte slice. It means a new memory allocation and a copy of all the bytes.

So, how should we implement the sanitize function? Instead of accepting and
returning a string, we should manipulate a byte slice:

func sanitize(b []byte) []byte {
return bytes.TrimSpace(b)

}

String immutability
We can use the following code to test the fact that creating a string from a []byte
leads to a copy:

b := []byte{'a', 'b', 'c'}
s := string(b)
b[1] = 'x'
fmt.Println(s)

Running this code prints abc, not axc. Indeed, in Go, a string is immutable.

b is a 
[]byte.
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The bytes package also has a TrimSpace function to trim all the leading and trail-
ing white spaces. Then, calling the sanitize function doesn’t require any extra
conversions:

return sanitize(b), nil

As we mentioned, most I/O is done with []byte, not strings. When we’re wondering
whether we should work with strings or []byte, let’s recall that working with []byte
isn’t necessarily less convenient. Indeed, all the exported functions of the strings
package also have alternatives in the bytes package: Split, Count, Contains, Index,
and so on. Hence, whether we’re doing I/O or not, we should first check whether we
could implement a whole workflow using bytes instead of strings and avoid the price
of additional conversions.

 The last section of this chapter discusses how the substring operation can some-
times lead to memory leak situations. 

5.6 #41: Substrings and memory leaks
In mistake #26, “Slices and memory leaks,” we saw how slicing a slice or array may lead
to memory leak situations. This principle also applies to string and substring opera-
tions. First, we will see how substrings are handled in Go to prevent memory leaks.

 To extract a subset of a string, we can use the following syntax:

s1 := "Hello, World!"
s2 := s1[:5] // Hello

s2 is constructed as a substring of s1. This example creates a string from the first five
bytes, not the first five runes. Hence, we shouldn’t use this syntax in the case of runes
encoded with multiple bytes. Instead, we should convert the input string into a []rune
type first:

s1 := "Hêllo, World!"
s2 := string([]rune(s1)[:5]) // Hêllo

Now that we have refreshed our minds regarding the substring operation, let’s look at
a concrete problem to illustrate possible memory leaks.

 We will receive log messages as strings. Each log will first be formatted with a uni-
versally unique identifier (UUID; 36 characters) followed by the message itself. We
want to store these UUIDs in memory: for example, to keep a cache of the latest n
UUIDs. We should also note that these log messages can potentially be quite heavy
(up to thousands of bytes). Here is our implementation:

func (s store) handleLog(log string) error {
if len(log) < 36 {

return errors.New("log is not correctly formatted")
}
uuid := log[:36]
s.store(uuid)
// Do something

}
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To extract the UUID, we use a substring operation with log[:36] as we know that the
UUID is encoded on 36 bytes. Then we pass this uuid variable to the store method
that will store it in memory. Is this solution problematic? Yes, it is.

 When doing a substring operation, the Go specification doesn’t specify whether
the resulting string and the one involved in the substring operation should share the
same data. However, the standard Go compiler does let them share the same backing
array, which is probably the best solution memory-wise and performance-wise as it pre-
vents a new allocation and a copy.

 We mentioned that log messages can be quite heavy. log[:36] will create a new
string referencing the same backing array. Therefore, each uuid string that we store in
memory will contain not just 36 bytes but the number of bytes in the initial log string:
potentially, thousands of bytes.

 How can we fix this? By making a deep copy of the substring so that the internal
byte slice of uuid references a new backing array of only 36 bytes:

func (s store) handleLog(log string) error {
if len(log) < 36 {

return errors.New("log is not correctly formatted")
}
uuid := string([]byte(log[:36]))
s.store(uuid)
// Do something

}

The copy is performed by converting the substring into a []byte first and then into a
string again. By doing this, we prevent a memory leak from occurring. The uuid string
is backed by an array consisting of only 36 bytes.

 Note that some IDEs or linters may warn that the string([]byte(s)) conversions
aren’t necessary. For example, GoLand, the Go JetBrains IDE, warns about a redun-
dant type conversion. This is true in the sense that we convert a string into a string,
but this operation has an actual effect. As discussed, it prevents the new string from
being backed by the same array as uuid. We need to be aware that the warnings raised
by IDEs or linters may sometimes be inaccurate.

NOTE Because a string is mostly a pointer, calling a function to pass a string
doesn’t result in a deep copy of the bytes. The copied string will still reference
the same backing array.

As of Go 1.18, the standard library also includes a solution with strings.Clone that
returns a fresh copy of a string:

uuid := strings.Clone(log[:36])

Calling strings.Clone makes a copy of log[:36] into a new allocation, preventing a
memory leak.

 We need to keep two things in mind while using the substring operation in Go.
First, the interval provided is based on the number of bytes, not the number of runes.

Performs a []byte and 
then a string conversion
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Second, a substring operation may lead to a memory leak as the resulting substring
will share the same backing array as the initial string. The solutions to prevent this
case from happening are to perform a string copy manually or to use strings.Clone
from Go 1.18. 

Summary
 Understanding that a rune corresponds to the concept of a Unicode code point

and that it can be composed of multiple bytes should be part of the Go devel-
oper’s core knowledge to work accurately with strings.

 Iterating on a string with the range operator iterates on the runes with the
index corresponding to the starting index of the rune’s byte sequence. To
access a specific rune index (such as the third rune), convert the string into a
[]rune.

 strings.TrimRight/strings.TrimLeft removes all the trailing/leading runes
contained in a given set, whereas strings.TrimSuffix/strings.TrimPrefix
returns a string without a provided suffix/prefix.

 Concatenating a list of strings should be done with strings.Builder to prevent
allocating a new string during each iteration.

 Remembering that the bytes package offers the same operations as the
strings package can help avoid extra byte/string conversions.

 Using copies instead of substrings can prevent memory leaks, as the string
returned by a substring operation will be backed by the same byte array.



Functions and methods
A function wraps a sequence of statements into a unit that can be called elsewhere.
It can take some input(s) and produces some output(s). On the other hand, a
method is a function attached to a given type. The attached type is called a receiver
and can be a pointer or a value. We start this chapter by discussing how to choose
one receiver type or the other, as this is usually a source of debate. Then we discuss
named parameters, when to use them, and why they can sometimes lead to mis-
takes. We also discuss common mistakes when designing a function or returning
specific values such as a nil receiver.

This chapter covers
 When to use value or pointer receivers

 When to use named result parameters and their 
potential side effects

 Avoiding a common mistake while returning a nil 
receiver

 Why using functions that accept a filename isn’t a 
best practice

 Handling defer arguments
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6.1 #42: Not knowing which type of receiver to use
Choosing a receiver type for a method isn’t always straightforward. When should we
use value receivers? When should we use pointer receivers? In this section, we look at
the conditions to make the right decision.

 In chapter 12, we will thoroughly discuss values versus pointers. So, this section will
only scratch the surface in terms of performance. Also, in many contexts, using a value
or pointer receiver should be dictated not by performance but rather by other condi-
tions that we will discuss. But first, let’s refresh our memories about how receivers work.

 In Go, we can attach either a value or a pointer receiver to a method. With a value
receiver, Go makes a copy of the value and passes it to the method. Any changes to the
object remain local to the method. The original object remains unchanged.

 As an illustration, the following example mutates a value receiver:

type customer struct {
balance float64

}

func (c customer) add(v float64) {
c.balance += v

}

func main() {
c := customer{balance: 100.}
c.add(50.)
fmt.Printf("balance: %.2f\n", c.balance)

}

Because we use a value receiver, incrementing the balance in the add method doesn’t
mutate the balance field of the original customer struct:

100.00

On the other hand, with a pointer receiver, Go passes the address of an object to the
method. Intrinsically, it remains a copy, but we only copy a pointer, not the object
itself (passing by reference doesn’t exist in Go). Any modifications to the receiver are
done on the original object. Here is the same example, but now the receiver is a
pointer:

type customer struct {
balance float64

}

func (c *customer) add(operation float64) {
c.balance += operation

}

func main() {
c := customer{balance: 100.0}
c.add(50.0)
fmt.Printf("balance: %.2f\n", c.balance)

}

Value receiver

The customer balance 
remains unchanged.

Pointer receiver

The customer balance 
is updated.
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Because we use a pointer receiver, incrementing the balance mutates the balance
field of the original customer struct:

150.00

Choosing between value and pointer receivers isn’t always straightforward. Let’s dis-
cuss some of the conditions to help us choose.

 A receiver must be a pointer

 If the method needs to mutate the receiver. This rule is also valid if the receiver
is a slice and a method needs to append elements:

type slice []int

func (s *slice) add(element int) {
*s = append(*s, element)

}

 If the method receiver contains a field that cannot be copied: for example, a
type part of the sync package (we will discuss this point in mistake #74, “Copy-
ing a sync type”).

A receiver should be a pointer

 If the receiver is a large object. Using a pointer can make the call more effi-
cient, as doing so prevents making an extensive copy. When in doubt about how
large is large, benchmarking can be the solution; it’s pretty much impossible to
state a specific size, because it depends on many factors.

A receiver must be a value

 If we have to enforce a receiver’s immutability.
 If the receiver is a map, function, or channel. Otherwise, a compilation error

occurs.

A receiver should be a value

 If the receiver is a slice that doesn’t have to be mutated.
 If the receiver is a small array or struct that is naturally a value type without

mutable fields, such as time.Time.
 If the receiver is a basic type such as int, float64, or string.

One case needs more discussion. Let’s say that we design a different customer struct.
Its mutable fields aren’t part of the struct directly but are inside another struct:

type customer struct {
data *data

}

type data struct {
balance float64

}

balance isn’t part of the customer struct directly 
but is in a struct referenced by a pointer field.
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func (c customer) add(operation float64) {
c.data.balance += operation

}

func main() {
c := customer{data: &data{

balance: 100,
}}
c.add(50.)
fmt.Printf("balance: %.2f\n", c.data.balance)

}

Even though the receiver is a value, calling add changes the actual balance in the end:

150.00

In this case, we don’t need the receiver to be a pointer to mutate balance. However,
for clarity, we may favor using a pointer receiver to highlight that customer as a whole
object is mutable.

We should now have a good understanding of whether to use value or pointer receiv-
ers. Of course, it’s impossible to be exhaustive, as there will always be edge cases, but
this section’s goal was to provide guidance to cover most cases. By default, we can
choose to go with a value receiver unless there’s a good reason not to do so. In doubt,
we should use a pointer receiver.

 In the next section, we discuss named result parameters: what they are and when
to use them. 

6.2 #43: Never using named result parameters
Named result parameters are an infrequently used option in Go. This section looks at
when it’s considered appropriate to use named result parameters to make our API
more convenient. But first, let’s refresh our memory about how they work.

Mixing receiver types
Are we allowed to mix receiver types, such as a struct containing multiple methods,
some of which have pointer receivers and others of which have value receivers? The
consensus tends toward forbidding it. However, there are some counterexamples in
the standard library, for example, time.Time.

The designers wanted to enforce that a time.Time struct is immutable. Hence, most
methods such as After, IsZero, and UTC have a value receiver. But to comply with
existing interfaces such as encoding.TextUnmarshaler, time.Time has to imple-
ment the UnmarshalBinary([]byte) error method, which mutates the receiver
given a byte slice. Thus, this method has a pointer receiver.

Consequently, mixing receiver types should be avoided in general but is not forbidden
in 100% of cases.

Uses a value 
receiver
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 When we return parameters in a function or a method, we can attach names to
these parameters and use them as regular variables. When a result parameter is
named, it’s initialized to its zero value when the function/method begins. With
named result parameters, we can also call a naked return statement (without argu-
ments). In that case, the current values of the result parameters are used as the
returned values.

 Here’s an example that uses a named result parameter b:

func f(a int) (b int) {
b = a
return

}

In this example, we attach a name to the result parameter: b. When we call return
without arguments, it returns the current value of b.

 When is it recommended that we use named result parameters? First, let’s consider
the following interface, which contains a method to get the coordinates from a given
address:

type locator interface {
getCoordinates(address string) (float32, float32, error)

}

Because this interface is unexported, documentation isn’t mandatory. Just by reading
this code, can you guess what these two float32 results are? Perhaps they are a lati-
tude and a longitude, but in which order? Depending on the conventions, latitude
isn’t always the first element. Therefore, we have to check the implementation to
understand the results.

 In that case, we should probably use named result parameters to make the code
easier to read:

type locator interface {
getCoordinates(address string) (lat, lng float32, err error)

}

With this new version, we can understand the meaning of the method signature by
looking at the interface: latitude first, longitude second.

 Now, let’s pursue the question of when to use named result parameters with the
method implementation. Should we also use named result parameters as part of the
implementation itself?

func (l loc) getCoordinates(address string) (
lat, lng float32, err error) {
// ...

}

In this specific case, having an expressive method signature can also help code read-
ers. Hence, we probably want to use named result parameters as well.

Names the int 
result parameter b

Returns the 
current value of b
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NOTE If we need to return multiple results of the same type, we can also
think about creating an ad hoc struct with meaningful field names. However,
this isn’t always possible: for example, when satisfying an existing interface
that we can’t update.

Next, let’s consider another function signature that allows us to store a Customer type
in a database:

func StoreCustomer(customer Customer) (err error) {
// ...

}

Here, naming the error parameter err isn’t helpful and doesn’t help readers. In this
case, we should favor not using named result parameters.

 So, when to use named result parameters depends on the context. In most cases, if
it’s not clear whether using them makes our code more readable, we shouldn’t use
named result parameters.

 Also note that having the result parameters already initialized can be quite handy
in some contexts, even though they don’t necessarily help readability. The following
example proposed in Effective Go (https://go.dev/doc/effective_go) is inspired by the
io.ReadFull function:

func ReadFull(r io.Reader, buf []byte) (n int, err error) {
for len(buf) > 0 && err == nil {

var nr int
nr, err = r.Read(buf)
n += nr
buf = buf[nr:]

}
return

}

In this example, having named result parameters doesn’t really increase readability.
However, because both n and err are initialized to their zero value, the implementa-
tion is shorter. On the other hand, this function can be slightly confusing for readers
at first sight. Again, it’s a question of finding the right balance.

 One note regarding naked returns (returns without arguments): they are consid-
ered acceptable in short functions; otherwise, they can harm readability because the
reader must remember the outputs throughout the entire function. We should also be
consistent within the scope of a function, using either only naked returns or only
returns with arguments.

 So what are the rules regarding named result parameters? In most cases, using
named result parameters in the context of an interface definition can increase read-
ability without leading to any side effects. But there’s no strict rule in the context of a
method implementation. In some cases, named result parameters can also increase
readability: for example, if two parameters have the same type. In other cases, they can
also be used for convenience. Therefore, we should use named result parameters
sparingly when there’s a clear benefit.

https://go.dev/doc/effective_go
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NOTE In mistake #54, “Not handling defer errors,” we will discuss another
use case for using named result parameters in the context of defer calls.

Furthermore, if we’re not careful enough, using named result parameters can lead to
side effects and unintended consequences, as we see in the next section. 

6.3 #44: Unintended side effects with named 
result parameters
We mentioned why named result parameters can be useful in some situations. But as
these result parameters are initialized to their zero value, using them can sometimes
lead to subtle bugs if we’re not careful enough. This section illustrates such a case.

 Let’s enhance our previous example of a method that returns the latitude and lon-
gitude from a given address. Because we return two float32s, we decide to use named
result parameters to make the latitude and longitude explicit. This function will first
validate the given address and then get the coordinates. In between, it will perform a
check on the input context to make sure it wasn’t canceled and that its deadline
hasn’t passed.

NOTE We will delve into the concept of context in Go in mistake #60, “Misun-
derstanding Go contexts.” If you’re not familiar with contexts, briefly, a con-
text can carry a cancellation signal or a deadline. We can check those by
calling the Err method and testing that the returned error isn’t nil.

Here’s the new implementation of the getCoordinates method. Can you spot what’s
wrong with this code?

func (l loc) getCoordinates(ctx context.Context, address string) (
lat, lng float32, err error) {
isValid := l.validateAddress(address)
if !isValid {

return 0, 0, errors.New("invalid address")
}

if ctx.Err() != nil {
return 0, 0, err

}

// Get and return coordinates
}

The error might not be obvious at first glance. Here, the error returned in the if
ctx.Err() != nil scope is err. But we haven’t assigned any value to the err variable.
It’s still assigned to the zero value of an error type: nil. Hence, this code will always
return a nil error.

 Furthermore, this code compiles because err was initialized to its zero value due to
named result parameters. Without attaching a name, we would have gotten the follow-
ing compilation error:

Unresolved reference 'err'

Validates 
the address

Checks whether the 
context was canceled or 
the deadline has passed
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One possible fix is to assign ctx.Err() to err like so:

if err := ctx.Err(); err != nil {
return 0, 0, err

}

We keep returning err, but we first assign it to the result of ctx.Err(). Note that err
in this example shadows the result variable.

We conclude this discussion by emphasizing that named result parameters can
improve code readability in some cases (such as returning the same type multiple
times) and be quite handy in others. But we must recall that each parameter is initial-
ized to its zero value. As we have seen in this section, this can lead to subtle bugs that
aren’t always straightforward to spot while reading code. Therefore, let’s remain cau-
tious when using named result parameters, to avoid potential side effects.

 In the next section, we discuss a common mistake made by Go developers when a
function returns an interface. 

6.4 #45: Returning a nil receiver
In this section, we discuss the impact of returning an interface and why doing so may
lead to errors in some conditions. This mistake is probably one of the most wide-
spread in Go because it may be considered counterintuitive, at least before we’ve
made it.

 Let’s consider the following example. We will work on a Customer struct and
implement a Validate method to perform sanity checks. Instead of returning the first
error, we want to return a list of errors. To do that, we will create a custom error type
to convey multiple errors:

type MultiError struct {
errs []string

}

func (m *MultiError) Add(err error) {
m.errs = append(m.errs, err.Error())

}

Using a naked return statement
Another option is to use a naked return statement:

if err = ctx.Err(); err != nil {
return

}

However, doing so would break the rule stating that we shouldn’t mix naked returns
and returns with arguments. In this case, we should probably stick with the first
option. Remember that using named result parameters doesn’t necessarily mean
using naked returns. Sometimes we can just use named result parameters to make
a signature clearer.

Adds an error
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func (m *MultiError) Error() string {
return strings.Join(m.errs, ";")

}

MultiError satisfies the error interface because it implements Error() string.
Meanwhile, it exposes an Add method to append an error. Using this struct, we can
implement a Customer.Validate method in the following manner to check the cus-
tomer’s age and name. If the sanity checks are OK, we want to return a nil error:

func (c Customer) Validate() error {
var m *MultiError

if c.Age < 0 {
m = &MultiError{}
m.Add(errors.New("age is negative"))

}
if c.Name == "" {

if m == nil {
m = &MultiError{}

}
m.Add(errors.New("name is nil"))

}

return m
}

In this implementation, m is initialized to the zero value of *MultiError: hence, nil.
When a sanity check fails, we allocate a new MultiError if needed and then append
an error. In the end, we return m, which can be either a nil pointer or a pointer to a
MultiError struct, depending on the checks.

 Now, let’s test this implementation by running a case with a valid Customer:

customer := Customer{Age: 33, Name: "John"}
if err := customer.Validate(); err != nil {

log.Fatalf("customer is invalid: %v", err)
}

Here is the output:

2021/05/08 13:47:28 customer is invalid: <nil>

This result may be pretty surprising. The Customer was valid, yet the err != nil con-
dition was true, and logging the error printed <nil>. So, what’s the issue?

 In Go, we have to know that a pointer receiver can be nil. Let’s experiment by cre-
ating a dummy type and calling a method with a nil pointer receiver:

type Foo struct{}

func (foo *Foo) Bar() string {
return "bar"

}

Implements the 
error interface

Instantiates an 
empty *MultiError

Appends an error if 
the age is negative

Appends an error 
if the name is nil
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func main() {
var foo *Foo
fmt.Println(foo.Bar())

}

foo is initialized to the zero value of a pointer: nil. But this code compiles, and it
prints bar if we run it. A nil pointer is a valid receiver.

 But why is this the case? In Go, a method is just syntactic sugar for a function whose
first parameter is the receiver. Hence, the Bar method we’ve seen is similar to this
function:

func Bar(foo *Foo) string {
return "bar"

}

We know that passing a nil pointer to a function is valid. Therefore, using a nil pointer
as a receiver is also valid.

 Let’s get back to our initial example:

func (c Customer) Validate() error {
var m *MultiError

if c.Age < 0 {
// ...

}
if c.Name == "" {

// ...
}

return m
}

m is initialized to the zero value of a pointer: nil. Then, if all the checks are valid, the
argument provided to the return statement isn’t nil directly but a nil pointer.
Because a nil pointer is a valid receiver, converting the result into an interface won’t
yield a nil value. In other words, the caller of Validate will always get a non-nil error.

 To make this point clear, let’s remember that
in Go, an interface is a dispatch wrapper. Here,
the wrappee is nil (the MultiError pointer),
whereas the wrapper isn’t (the error interface);
see figure 6.1.

 Therefore, regardless of the Customer pro-
vided, the caller of this function will always receive
a non-nil error. Understanding this behavior is
imperative, because it’s a widespread Go mistake.

 So, what should we do to fix this example? The easiest solution is to return m only if
it’s not nil:

func (c Customer) Validate() error {
var m *MultiError

foo is nil.

error

*MultiError Nil

Not nil

Figure 6.1 The error wrapper isn’t 
nil.
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if c.Age < 0 {
// ...

}
if c.Name == "" {

// ...
}

if m != nil {
return m

}
return nil

}

At the end of the method, we check whether m is not nil. If that is true, we return m;
otherwise, we return nil explicitly. Hence, in the case of a valid Customer, we return a
nil interface, not a nil receiver converted into a non-nil interface.

 We’ve seen in this section that in Go, having a nil receiver is allowed, and an inter-
face converted from a nil pointer isn’t a nil interface. For that reason, when we have
to return an interface, we should return not a nil pointer but a nil value directly. Gen-
erally, having a nil pointer isn’t a desirable state and means a probable bug.

 We saw an example with errors throughout this section because this is the most
common case leading to this error. But this problem isn’t only tied to errors: it can
happen with any interface implemented using pointer receivers.

 The next section discusses a common design mistake when using a filename as a
function input. 

6.5 #46: Using a filename as a function input
When creating a new function that needs to read a file, passing a filename isn’t consid-
ered a best practice and can have negative effects, such as making unit tests harder to
write. Let’s delve into this problem and understand how to overcome it.

 Suppose we want to implement a function to count the number of empty lines in a
file. One way to implement this function would be to accept a filename and use
bufio.NewScanner to scan and check every line:

func countEmptyLinesInFile(filename string) (int, error) {
file, err := os.Open(filename)
if err != nil {

return 0, err
}
// Handle file closure

scanner := bufio.NewScanner(file)
for scanner.Scan() {

// ...
}

}

We open a file from the filename. Then we use bufio.NewScanner to scan every line
(by default, it splits the input per line).

Returns m only if there 
was at least one error

Otherwise, 
returns nil

Opens 
filename

Creates a scanner from the *os.File 
variable that will split the input per line

Iterates over 
each line
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 This function will do what we expect it to do. Indeed, as long as the provided file-
name is valid, we will read from it and return the number of empty lines. So what’s the
problem?

 Let’s say we want to implement unit tests to cover the following cases:

 A nominal case
 An empty file
 A file containing only empty lines

Each unit test will require creating a file in our Go project. The more complex the func-
tion is, the more cases we may want to add, and the more files we will create. We may
have to create dozens of files in some cases, which can quickly become unmanageable.

 Furthermore, this function isn’t reusable. For example, if we had to implement the
same logic but count the number of empty lines with an HTTP request, we would have
to duplicate the main logic:

func countEmptyLinesInHTTPRequest(request http.Request) (int, error) {
scanner := bufio.NewScanner(request.Body)
// Copy the same logic

}

One way to overcome these limitations might be to make the function accept a
*bufio.Scanner (the output returned by bufio.NewScanner). Both functions have
the same logic from the moment we create the scanner variable, so this approach
would work. But in Go, the idiomatic way is to start from the reader’s abstraction.

 Let’s write a new version of the countEmptyLines function that receives an
io.Reader abstraction instead:

func countEmptyLines(reader io.Reader) (int, error) {

scanner := bufio.NewScanner(reader)
for scanner.Scan() {

// ...
}

}

Because bufio.NewScanner accepts an io.Reader, we can directly pass the reader
variable.

 What are the benefits of this approach? First, this function abstracts the data
source. Is it a file? An HTTP request? A socket input? It’s not important for the func-
tion. Because *os.File and the Body field of http.Request implement io.Reader, we
can reuse the same function regardless of the input type.

 Another benefit is related to testing. We mentioned that creating one file per test
case could quickly become cumbersome. Now that countEmptyLines accepts an
io.Reader, we can implement unit tests by creating an io.Reader from a string:

func TestCountEmptyLines(t *testing.T) {
emptyLines, err := countEmptyLines(strings.NewReader(

`foo
bar

Accepts an io.Reader 
as the input

Creates a *bufio.Scanner from 
an io.Reader, not an *os.File

Passes an io.Reader
 from a string
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baz
`))

// Test logic
}

In this test, we create an io.Reader using strings.NewReader from a string literal
directly. Therefore, we don’t have to create one file per test case. Each test case can be
self-contained, improving the test readability and maintainability as we don’t have to
open another file to see the content.

 Accepting a filename as a function input to read from a file should, in most cases,
be considered a code smell (except in specific functions such as os.Open). As we’ve
seen, it makes unit tests more complex because we may have to create multiple files. It
also reduces the reusability of a function (although not all functions are meant to be
reused). Using the io.Reader interface abstracts the data source. Regardless of
whether the input is a file, a string, an HTTP request, or a gRPC request, the imple-
mentation can be reused and easily tested.

 In the last section of the chapter, let’s discuss a common mistake related to defer:
how function/method arguments and method receivers are evaluated. 

6.6 #47: Ignoring how defer arguments and 
receivers are evaluated
We mentioned in a previous section that the defer statement delays a call’s execution
until the surrounding function returns. A common mistake made by Go developers is
not understanding how arguments are evaluated. We will delve into this problem with
two subsections: one related to function and method arguments and the second
related to method receivers.

6.6.1 Argument evaluation

To illustrate how arguments are evaluated with defer, let’s work on a concrete exam-
ple. A function needs to call two functions foo and bar. Meanwhile, it has to handle a
status regarding execution:

 StatusSuccess if both foo and bar return no errors
 StatusErrorFoo if foo returns an error
 StatusErrorBar if bar returns an error

We will use this status for multiple actions: for example, to notify another goroutine
and to increment counters. To avoid repeating these calls before every return state-
ment, we will use defer. Here’s our first implementation:

const (
StatusSuccess = "success"
StatusErrorFoo = "error_foo"
StatusErrorBar = "error_bar"

)
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func f() error {
var status string
defer notify(status)
defer incrementCounter(status)

if err := foo(); err != nil {
status = StatusErrorFoo
return err

}

if err := bar(); err != nil {
status = StatusErrorBar
return err

}

status = StatusSuccess
return nil

}

First we declare a status variable. Then we defer the calls to notify and increment-
Counter using defer. Throughout this function, and depending on the execution
path, we update status accordingly.

 However, if we give this function a try, we see that regardless of the execution path,
notify and incrementCounter are always called with the same status: an empty string.
How is this possible?

 We need to understand something crucial about argument evaluation in a defer
function: the arguments are evaluated right away, not once the surrounding function
returns. In our example, we call notify(status) and incrementCounter(status) as
defer functions. Therefore, Go will delay these calls to be executed once f returns with
the current value of status at the stage we used defer, hence passing an empty string.
How can we solve this problem if we want to keep using defer? There are two leading
solutions.

 The first solution is to pass a string pointer to the defer functions:

func f() error {
var status string
defer notify(&status)
defer incrementCounter(&status)

// The rest of the function is unchanged
if err := foo(); err != nil {

status = StatusErrorFoo
return err

}

if err := bar(); err != nil {
status = StatusErrorBar
return err

}

Defers the call to notify
Defers the call to 
incrementCounter

Sets the status 
to error foo

Sets the status 
to error bar

Sets the status 
to success

Passes a string 
pointer to notify

Passes a string pointer 
to incrementCounter
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status = StatusSuccess
return nil

}

We keep updating status depending on the cases, but now notify and increment-
Counter receive a string pointer. Why does this approach work?

 Using defer evaluates the arguments right away: here, the address of status. Yes,
status itself is modified throughout the function, but its address remains constant,
regardless of the assignments. Hence, if notify or incrementCounter uses the value
referenced by the string pointer, it will work as expected. But this solution requires
changing the signature of the two functions, which may not always be possible.

 There’s another solution: calling a closure as a defer statement. As a reminder, a
closure is an anonymous function value that references variables from outside its
body. The arguments passed to a defer function are evaluated right away. But we must
know that the variables referenced by a defer closure are evaluated during the closure
execution (hence, when the surrounding function returns).

 Here is an example to clarify how defer closures work. A closure references two
variables, one as a function argument and the second as a variable outside its body:

func main() {
i := 0
j := 0
defer func(i int) {

fmt.Println(i, j)
}(i)
i++
j++

}

Here, the closure uses i and j variables. i is passed as a function argument, so it’s eval-
uated immediately. Conversely, j references a variable outside of the closure body, so
it’s evaluated when the closure is executed. If we run this example, it will print 0 1.

 Therefore, we can use a closure to implement a new version of our function:

func f() error {
var status string
defer func() {

notify(status)
incrementCounter(status)

}()

// The rest of the function is unchanged
}

Here, we wrap the calls to both notify and incrementCounter within a closure. This
closure references the status variable from outside its body. Therefore, status is
evaluated once the closure is executed, not when we call defer. This solution also
works and doesn’t require notify and incrementCounter to change their signature.

Calls as a defer function 
a closure that accepts 
an integer as an input

i is the function input, and 
j is an external variable.

Passes i to the closure 
(evaluated right away)

Calls a closure as 
the defer function

Calls notify within the 
closure and reference status

Calls incrementCounter 
within the closure and 
reference status
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 Now, what about using defer on a method with a pointer or value receiver? Let’s
look at these questions. 

6.6.2 Pointer and value receivers

In mistake #42, “Not knowing which type of receiver to use,” we said that a receiver
can be either a value or a pointer. The same logic related to argument evaluation
applies when we use defer on a method: the receiver is also evaluated immediately.
Let’s understand the impact with both receiver types.

 First, here’s an example that calls a method on a value receiver using defer but
mutates this receiver afterward:

func main() {
s := Struct{id: "foo"}
defer s.print()
s.id = "bar"

}

type Struct struct {
id string

}

func (s Struct) print() {
fmt.Println(s.id)

}

We defer the call to the print method. As with arguments, calling defer makes the
receiver be evaluated immediately. Hence, defer delays the method’s execution with a
struct that contains an id field equal to foo. Therefore, this example prints foo.

 Conversely, if the pointer is a receiver, the potential changes to the receiver after
the call to defer are visible:

func main() {
s := &Struct{id: "foo"}
defer s.print()
s.id = "bar"

}

type Struct struct {
id string

}

func (s *Struct) print() {
fmt.Println(s.id)

}

The s receiver is also evaluated immediately. However, calling the method leads to
copying the pointer receiver. Hence, the changes made to the struct referenced by the
pointer are visible. This example prints bar.

 In summary, when we call defer on a function or method, the call’s arguments are
evaluated immediately. If we want to mutate the arguments provided to defer

s is evaluated 
immediately.

Updates s.id 
(not visible)

foo

s is a pointer, so it is evaluated immediately 
but may reference another variable when 
the defer method is executed.

Updates s.id 
(visible)

bar
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afterward, we can use pointers or closures. For a method, the receiver is also evaluated
immediately; hence, the behavior depends on whether the receiver is a value or a
pointer. 

Summary
 The decision whether to use a value or a pointer receiver should be made based

on factors such as the type, whether it has to be mutated, whether it contains a
field that can’t be copied, and how large the object is. When in doubt, use a
pointer receiver.

 Using named result parameters can be an efficient way to improve the readabil-
ity of a function/method, especially if multiple result parameters have the same
type. In some cases, this approach can also be convenient because named result
parameters are initialized to their zero value. But be cautious about potential
side effects.

 When returning an interface, be cautious about returning not a nil pointer but
an explicit nil value. Otherwise, unintended consequences may result because
the caller will receive a non-nil value.

 Designing functions to receive io.Reader types instead of filenames improves
the reusability of a function and makes testing easier.

 Passing a pointer to a defer function and wrapping a call inside a closure are
two possible solutions to overcome the immediate evaluation of arguments and
receivers.



Error management
Error management is a fundamental aspect of building robust and observable
applications, and it should be as important as any other part of a codebase. In Go,
error management doesn’t rely on the traditional try/catch mechanism as most
programming languages do. Instead, errors are returned as normal return values.

 This chapter will cover the most common mistakes related to errors.

7.1 #48: Panicking
It’s pretty common for Go newcomers to be somewhat confused about error han-
dling. In Go, errors are usually managed by functions or methods that return an

This chapter covers
 Understanding when to panic

 Knowing when to wrap an error

 Comparing error types and error values efficiently 
since Go 1.13

 Handling errors idiomatically

 Understanding how to ignore an error

 Handling errors in defer calls
143



144 CHAPTER 7 Error management
error type as the last parameter. But some developers may find this approach surpris-
ing and be tempted to reproduce exception handling in languages such as Java or
Python using panic and recover. So, let’s refresh our minds about the concept of
panic and discuss when it’s considered appropriate or not to panic.

 In Go, panic is a built-in function that stops the ordinary flow:

func main() {
fmt.Println("a")
panic("foo")
fmt.Println("b")

}

This code prints a and then stops before printing b:

a
panic: foo

goroutine 1 [running]:
main.main()

main.go:7 +0xb3

Once a panic is triggered, it continues up the call stack until either the current gorou-
tine has returned or panic is caught with recover:

func main() {
defer func() {

if r := recover(); r != nil {
fmt.Println("recover", r)

}
}()

f()
}

func f() {
fmt.Println("a")
panic("foo")
fmt.Println("b")

}

In the f function, once panic is called, it stops the current execution of the function
and goes up the call stack: main. In main, because the panic is caught with recover, it
doesn’t stop the goroutine:

a
recover foo

Note that calling recover() to capture a goroutine panicking is only useful inside a
defer function; otherwise, the function would return nil and have no other effect. This
is because defer functions are also executed when the surrounding function panics.

 Now, let’s tackle this question: when is it appropriate to panic? In Go, panic is used
to signal genuinely exceptional conditions, such as a programmer error. For example,

Calls recover within 
a defer closure

Calls f, which panics. This panic is 
caught by the previous recover.
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if we look at the net/http package, we notice that in the WriteHeader method, there
is a call to a checkWriteHeaderCode function to check whether the status code is valid:

func checkWriteHeaderCode(code int) {
if code < 100 || code > 999 {

panic(fmt.Sprintf("invalid WriteHeader code %v", code))
}

}

This function panics if the status code is invalid, which is a pure programmer error.
 Another example based on a programmer error can be found in the database/

sql package while registering a database driver:

func Register(name string, driver driver.Driver) {
driversMu.Lock()
defer driversMu.Unlock()
if driver == nil {

panic("sql: Register driver is nil")
}
if _, dup := drivers[name]; dup {

panic("sql: Register called twice for driver " + name)
}
drivers[name] = driver

}

This function panics if the driver is nil (driver.Driver is an interface) or has already
been registered. Both cases would again be considered programmer errors. Also, in
most cases (for example, with go-sql-driver/mysql [https://github.com/go-sql
-driver/mysql], the most popular MySQL driver for Go), Register is called via an init
function, which limits error handling. For all these reasons, the designers made the
function panic in case of an error.

 Another use case in which to panic is when our application requires a dependency
but fails to initialize it. For example, let’s imagine that we expose a service to create
new customer accounts. At some stage, this service needs to validate the provided
email address. To implement this, we decide to use a regular expression.

 In Go, the regexp package exposes two functions to create a regular expression
from a string: Compile and MustCompile. The former returns a *regexp.Regexp and
an error, whereas the latter returns only a *regexp.Regexp but panics in case of an
error. In this case, the regular expression is a mandatory dependency. Indeed, if we
fail to compile it, we will never be able to validate any email input. Hence, we may
favor using MustCompile and panicking in case of an error.

 Panicking in Go should be used sparingly. We have seen two prominent cases, one
to signal a programmer error and another where our application fails to create a man-
datory dependency. Hence, there are exceptional conditions that lead us to stop the
application. In most other cases, error management should be done with a function
that returns a proper error type as the last return argument.

 Let’s now start our discussion of errors. In the next section, we see when to wrap an
error. 

Panics if the 
driver is nil

Panics if the driver is
already registered

https://github.com/go-sql-driver/mysql
https://github.com/go-sql-driver/mysql
https://github.com/go-sql-driver/mysql
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7.2 #49: Ignoring when to wrap an error
Since Go 1.13, the %w directive allows us to wrap errors conveniently. But some devel-
opers may be confused about when to wrap an error (or not). So, let’s remind our-
selves what error wrapping is and then when to use it.

 Error wrapping is about wrapping or packing an error inside a wrapper container
that also makes the source error available (see figure 7.1). In general, the two main
use cases for error wrapping are the following:

 Adding additional context to an error
 Marking an error as a specific error

Regarding adding context, let’s consider the following example. We receive a request
from a specific user to access a database resource, but we get a “permission denied”
error during the query. For debugging purposes, if the error is eventually logged, we
want to add extra context. In this case, we can wrap the error to indicate who the user
is and what resource is being accessed, as shown in figure 7.2.

Now let’s say that instead of adding context, we want to mark the error. For example,
we want to implement an HTTP handler that checks whether all the errors received
while calling functions are of a Forbidden type so we can return a 403 status code. In
that case, we can wrap this error inside Forbidden (see figure 7.3).

In both cases, the source error remains available. Hence, a caller can also handle an
error by unwrapping it and checking the source error. Also note that sometimes we
want to combine both approaches: adding context and marking an error.

Wrapper

Wrap errorError Error

Figure 7.1 Wrap the error inside a wrapper.

When user X tried to
access resource Y

Wrap errorPermission
denied Permission

denied Figure 7.2 Adding additional context 
to the “permission denied” error

Forbidden

Wrap errorPermission
denied Permission

denied
Figure 7.3 Marking the error Forbidden
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 Now that we have clarified the main use cases in which to wrap an error, let’s see
different ways in Go to return an error we receive. We will consider the following
piece of code and explore different options inside the if err != nil block:

func Foo() error {
err := bar()
if err != nil {

// ?
}
// ...

}

The first option is to return this error directly. If we don’t want to mark the error and
there’s no helpful context we want to add, this approach is fine:

if err != nil {
return err

}

Figure 7.4 shows that we return the same error returned by bar.
 Before Go 1.13, to wrap an error, the

only option without using an external
library was to create a custom error type:

type BarError struct {
Err error

}

func (b BarError) Error() string {
return "bar failed:" + b.Err.Error()

}

Then, instead of returning err directly, we wrapped the error into a BarError (see fig-
ure 7.5):

if err != nil {
return BarError{Err: err}

}

The benefit of this option is its flexibility. Because BarError is a custom struct, we can
add any additional context if needed. However, being obliged to create a specific
error type can quickly become cumbersome if we want to repeat this operation.

How do we 
return the error?

Return errorBar error Bar error

Figure 7.4 We can return the error directly.

Wrap errorBar error

BarError

Bar error

Figure 7.5 Wrapping the error 
inside BarError
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 To overcome this situation, Go 1.13 introduced the %w directive:

if err != nil {
return fmt.Errorf("bar failed: %w", err)

}

This code wraps the source error to add additional context without having to create
another error type, as shown in figure 7.6.

Because the source error remains available, a client can unwrap the parent error and
then check whether the source error was of a specific type or value (we discuss these
points in the following sections).

 The last option we will discuss is to use the %v directive, instead:

if err != nil {
return fmt.Errorf("bar failed: %v", err)

}

The difference is that the error itself isn’t wrapped. We transform it into another error
to add context, and the source error is no longer available, as shown in figure 7.7.

The information about the source of the problem remains available. However, a caller
can’t unwrap this error and check whether the source was bar error. So, in a sense,
this option is more restrictive than %w. Should we prevent that, since the %w directive
has been released? Not necessarily.

 Wrapping an error makes the source error available for callers. Hence, it means
introducing potential coupling. For example, imagine that we use wrapping and the
caller of Foo checks whether the source error is bar error. Now, what if we change
our implementation and use another function that will return another type of error?
It will break the error check made by the caller.

 To make sure our clients don’t rely on something that we consider implementation
details, the error returned should be transformed, not wrapped. In such a case, using
%v instead of %w can be the way to go.

Wrap errorBar error

fmt.wrapError

Bar error

Figure 7.6 Wrap an error 
into a standard error.

Transform errorBar error Failed to call bar:
bar error

Figure 7.7 Converting the error
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 Let’s review all the different options we tackled.

To summarize, when handling an error, we can decide to wrap it. Wrapping is about
adding additional context to an error and/or marking an error as a specific type. If we
need to mark an error, we should create a custom error type. However, if we just want
to add extra context, we should use fmt.Errorf with the %w directive as it doesn’t
require creating a new error type. Yet, error wrapping creates potential coupling as it
makes the source error available for the caller. If we want to prevent it, we shouldn’t use
error wrapping but error transformation, for example, using fmt.Errorf with the %v
directive.

 This section has shown how to wrap an error with the %w directive. But once we
start using it, what’s the impact of checking an error type?

7.3 #50: Checking an error type inaccurately
The previous section introduced a possible way to wrap errors using the %w directive.
However, when we use that approach, it’s also essential to change our way of checking
for a specific error type; otherwise, we may handle errors inaccurately.

 Let’s discuss a concrete example. We will write an HTTP handler to return the
transaction amount from an ID. Our handler will parse the request to get the ID and
retrieve the amount from a database (DB). Our implementation can fail in two cases:

 If the ID is invalid (string length other than five characters)
 If querying the DB fails

In the former case, we want to return StatusBadRequest (400), whereas in the latter,
we want to return ServiceUnavailable (503). To do so, we will create a transient-
Error type to mark that an error is temporary. The parent handler will check the
error type. If the error is a transientError, it will return a 503 status code; otherwise,
it will return a 400 status code.

 Let’s first focus on the error type definition and the function the handler will call:

type transientError struct {
err error

}

Option Extra context
Marking an 

error
Source error available

Returning error directly No No Yes

Custom error type Possible (if the error type 
contains a string field, for 
example)

Yes Possible (if the source error is 
exported or accessible via a 
method)

fmt.Errorf with %w Yes No Yes

fmt.Errorf with %v Yes No No
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func (t transientError) Error() string {
return fmt.Sprintf("transient error: %v", t.err)

}

func getTransactionAmount(transactionID string) (float32, error) {
if len(transactionID) != 5 {

return 0, fmt.Errorf("id is invalid: %s",
transactionID)

}

amount, err := getTransactionAmountFromDB(transactionID)
if err != nil {

return 0, transientError{err: err}
}
return amount, nil

}

getTransactionAmount returns an error using fmt.Errorf if the identifier is invalid.
However, if getting the transaction amount from the DB fails, getTransactionAmount
wraps the error into a transientError type.

 Now, let’s write the HTTP handler that checks the error type to return the appro-
priate HTTP status code:

func handler(w http.ResponseWriter, r *http.Request) {
transactionID := r.URL.Query().Get("transaction")

amount, err := getTransactionAmount(transactionID)
if err != nil {

switch err := err.(type) {
case transientError:

http.Error(w, err.Error(), http.StatusServiceUnavailable)
default:

http.Error(w, err.Error(), http.StatusBadRequest)
}
return

}

// Write response
}

Using a switch on the error type, we return the appropriate HTTP status code: 400 in
the case of a bad request or 503 in the case of a transient error.

 This code is perfectly valid. However, let’s assume that we want to perform a small
refactoring of getTransactionAmount. The transientError will be returned by
getTransactionAmountFromDB instead of getTransactionAmount. getTransaction-
Amount now wraps this error using the %w directive:

func getTransactionAmount(transactionID string) (float32, error) {
// Check transaction ID validity

Creates a custom 
transientError

Returns a simple error if the 
transaction ID is invalid

Returns a transientError 
if we fail to query the DB

Extracts the
transaction ID

Calls 
getTransactionAmount
that contains 
all the logic

Checks the error type and
returns a 503 if the error is a

transient one; otherwise, a 400
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amount, err := getTransactionAmountFromDB(transactionID)
if err != nil {

return 0, fmt.Errorf("failed to get transaction %s: %w",
transactionID, err)

}
return amount, nil

}

func getTransactionAmountFromDB(transactionID string) (float32, error) {
// ...
if err != nil {

return 0, transientError{err: err}
}
// ...

}

If we run this code, it always returns a 400 regardless of the error case, so the case
Transient error will never be hit. How can we explain this behavior?

 Before the refactoring, transientError was returned by getTransactionAmount
(see figure 7.8). After the refactoring, transientError is now returned by get-
TransactionAmountFromDB (figure 7.9).

Figure 7.8 Because getTransactionAmount returned a transientError if the DB failed, the 
case was true.

Figure 7.9 Now getTransactionAmount returns a wrapped error. Hence, case transientError 
is false.

What getTransactionAmount returns isn’t a transientError directly: it’s an error
wrapping transientError. Therefore case transientError is now false.

Wraps the error instead of 
returning a transientError directly

This function now 
returns the transientError.

GetTransactionAmountHandler getTransactionAmount getTransactionAmountFromDB

SQL error

case transientError: true

transientError

SQL error

GetTransactionAmountHandler getTransactionAmount getTransactionAmountFromDB

transientError

SQL error

case transientError: false

Error

transientError

SQL error
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 For that exact purpose, Go 1.13 came with a directive to wrap an error and a way to
check whether the wrapped error is of a certain type with errors.As. This function
recursively unwraps an error and returns true if an error in the chain matches the
expected type.

 Let’s rewrite our implementation of the caller using errors.As:

func handler(w http.ResponseWriter, r *http.Request) {
// Get transaction ID

amount, err := getTransactionAmount(transactionID)
if err != nil {

if errors.As(err, &transientError{}) {
http.Error(w, err.Error(),

http.StatusServiceUnavailable)
} else {

http.Error(w, err.Error(),
http.StatusBadRequest)

}
return

}

// Write response
}

We got rid of the switch case type in this new version, and we now use errors.As.
This function requires the second argument (the target error) to be a pointer. Other-
wise, the function will compile but panic at runtime. Regardless of whether the run-
time error is directly a transientError type or an error wrapping transientError,
errors.As returns true; hence, the handler will return a 503 status code.

 In summary, if we rely on Go 1.13 error wrapping, we must use errors.As to check
whether an error is a specific type. This way, regardless of whether the error is
returned directly by the function we call or wrapped inside an error, errors.As will be
able to recursively unwrap our main error and see if one of the errors is a specific type.

 We have just seen how to compare an error type; now it’s time to compare an error
value. 

7.4 #51: Checking an error value inaccurately
This section is similar to the previous one but with sentinel errors (error values). First,
we will define what a sentinel error conveys. Then, we will see how to compare an
error to a value.

 A sentinel error is an error defined as a global variable:

import "errors"

var ErrFoo = errors.New("foo")

In general, the convention is to start with Err followed by the error type: here, ErrFoo.
A sentinel error conveys an expected error. But what do we mean by an expected error?
Let’s discuss it in the context of an SQL library.

Calls errors.As by 
providing a pointer 
to transientError

Returns a 503 if the 
error is transient

Else returns 
a 400
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 We want to design a Query method that allows us to execute a query to a database.
This method returns a slice of rows. How should we handle the case when no rows are
found? We have two options:

 Return a sentinel value: for example, a nil slice (think about strings.Index,
which returns the sentinel value –1 if a substring isn’t present).

 Return a specific error that a client can check.

Let’s take the second approach: our method can return a specific error if no rows are
found. We can classify this as an expected error, because passing a request that returns
no rows is allowed. Conversely, situations like network issues and connection polling
errors are unexpected errors. It doesn’t mean we don’t want to handle unexpected
errors; it means that semantically, those errors convey a different meaning.

 If we take a look at the standard library, we can find many examples of sentinel errors:

 sql.ErrNoRows—Returned when a query doesn’t return any rows (which was
exactly our case)

 io.EOF—Returned by an io.Reader when no more input is available

That’s the general principle behind sentinel errors. They convey an expected error
that clients will expect to check. Therefore, as general guidelines,

 Expected errors should be designed as error values (sentinel errors): var
ErrFoo = errors.New("foo").

 Unexpected errors should be designed as error types: type BarError struct
{ … }, with BarError implementing the error interface.

Let’s get back to the common mistake. How can we compare an error to a specific
value? By using the == operator:

err := query()
if err != nil {

if err == sql.ErrNoRows {
// ...

} else {
// ...

}
}

Here, we call a query function and get an error. Checking whether the error is an
sql.ErrNoRows is done using the == operator.

 However, just as we discussed in the previous section, a sentinel error can also
be wrapped. If an sql.ErrNoRows is wrapped using fmt.Errorf and the %w directive,
err == sql.ErrNoRows will always be false.

 Again, Go 1.13 provides an answer. We have seen how errors.As is used to check
an error against a type. With error values, we can use its counterpart: errors.Is. Let’s
rewrite the previous example:

err := query()
if err != nil {

Checks error against the 
sql.ErrNoRows variable
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if errors.Is(err, sql.ErrNoRows) {
// ...

} else {
// ...

}
}

Using errors.Is instead of the == operator allows the comparison to work even if the
error is wrapped using %w.

 In summary, if we use error wrapping in our application with the %w directive and
fmt.Errorf, checking an error against a specific value should be done using
errors.Is instead of ==. Thus, even if the sentinel error is wrapped, errors.Is can
recursively unwrap it and compare each error in the chain against the provided value.

 Now it’s time to discuss one of the most important aspects of error handling: not
handling an error twice. 

7.5 #52: Handling an error twice
Handling an error multiple times is a mistake made frequently by developers, not spe-
cifically in Go. Let’s understand why this is a problem and how to handle errors
efficiently.

 To illustrate the problem, let’s write a GetRoute function to get the route from a
pair of sources to a pair of target coordinates. Let’s assume this function will call an
unexported getRoute function that contains the business logic to calculate the best
route. Before calling getRoute, we have to validate the source and target coordinates
using validateCoordinates. We also want the possible errors to be logged. Here’s a
possible implementation:

func GetRoute(srcLat, srcLng, dstLat, dstLng float32) (Route, error) {
err := validateCoordinates(srcLat, srcLng)
if err != nil {

log.Println("failed to validate source coordinates")
return Route{}, err

}

err = validateCoordinates(dstLat, dstLng)
if err != nil {

log.Println("failed to validate target coordinates")
return Route{}, err

}

return getRoute(srcLat, srcLng, dstLat, dstLng)
}

func validateCoordinates(lat, lng float32) error {
if lat > 90.0 || lat < -90.0 {

log.Printf("invalid latitude: %f", lat)
return fmt.Errorf("invalid latitude: %f", lat)

}
if lng > 180.0 || lng < -180.0 {

log.Printf("invalid longitude: %f", lng)

Logs and returns 
the error

Logs and returns 
the error

Logs and returns 
the error

Logs and returns 
the error
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return fmt.Errorf("invalid longitude: %f", lng)
}
return nil

}

What’s the problem with this code? First, in validateCoordinates, it is cumbersome
to repeat the invalid latitude or invalid longitude error messages in both log-
ging and the error returned. Also, if we run the code with an invalid latitude, for
example, it will log the following lines:

2021/06/01 20:35:12 invalid latitude: 200.000000
2021/06/01 20:35:12 failed to validate source coordinates

Having two log lines for a single error is a problem. Why? Because it makes debugging
harder. For example, if this function is called multiple times concurrently, the two
messages may not be one after the other in the logs, making the debugging process
more complex.

 As a rule of thumb, an error should be handled only once. Logging an error is
handling an error, and so is returning an error. Hence, we should either log or return
an error, never both.

 Let’s rewrite our implementation to handle errors only once:

func GetRoute(srcLat, srcLng, dstLat, dstLng float32) (Route, error) {
err := validateCoordinates(srcLat, srcLng)
if err != nil {

return Route{}, err
}

err = validateCoordinates(dstLat, dstLng)
if err != nil {

return Route{}, err
}

return getRoute(srcLat, srcLng, dstLat, dstLng)
}

func validateCoordinates(lat, lng float32) error {
if lat > 90.0 || lat < -90.0 {

return fmt.Errorf("invalid latitude: %f", lat)
}
if lng > 180.0 || lng < -180.0 {

return fmt.Errorf("invalid longitude: %f", lng)
}
return nil

}

In this version, each error is handled only once by being returned directly. Then,
assuming the caller of GetRoute is handling the possible errors with logging, the code
will output the following message in case of an invalid latitude:

2021/06/01 20:35:12 invalid latitude: 200.000000

Only returns 
an error

Only returns 
an error

Only returns 
an error

Only returns 
an error
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Is this new Go version of the code perfect? Not really. For example, the first imple-
mentation led to two logs in case of an invalid latitude. Still, we knew which call to
validateCoordinates was failing: either the source or the target coordinates. Here,
we lose this information, so we need to add additional context to the error.

 Let’s rewrite the latest version of our code using Go 1.13 error wrapping (we omit
validateCoordinates as it remains unchanged):

func GetRoute(srcLat, srcLng, dstLat, dstLng float32) (Route, error) {
err := validateCoordinates(srcLat, srcLng)
if err != nil {

return Route{},
fmt.Errorf("failed to validate source coordinates: %w",

err)
}

err = validateCoordinates(dstLat, dstLng)
if err != nil {

return Route{},
fmt.Errorf("failed to validate target coordinates: %w",

err)
}

return getRoute(srcLat, srcLng, dstLat, dstLng)
}

Each error returned by validateCoordinates is now wrapped to provide additional
context for the error: whether it’s related to the source or target coordinates. So if we
run this new version, here’s what the caller logs in case of an invalid source latitude:

2021/06/01 20:35:12 failed to validate source coordinates:
invalid latitude: 200.000000

With this version, we have covered all the different cases: a single log, without losing
any valuable information. In addition, each error is handled only once, which simpli-
fies our code by, for example, avoiding repeating error messages.

 Handling an error should be done only once. As we have seen, logging an error is
handling an error. Hence, we should either log or return an error. By doing this, we
simplify our code and gain better insights into the error situation. Using error wrap-
ping is the most convenient approach as it allows us to propagate the source error and
add context to an error.

 In the next section, we see the appropriate way to ignore an error in Go. 

7.6 #53: Not handling an error
In some cases, we may want to ignore an error returned by a function. There should
be only one way to do this in Go; let’s understand why.

 We will consider the following example, where we call a notify function that
returns a single error argument. We’re not interested in this error, so we purposely
omit any error handling:

Returns a 
wrapper error

Returns a 
wrapper error
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func f() {
// ...
notify()

}

func notify() error {
// ...

}

Because we want to ignore the error, in this example, we just call notify without
assigning its output to a classic err variable. There’s nothing wrong with this code
from a functional standpoint: it compiles and runs as expected.

 However, from a maintainability perspective, the code can lead to some issues.
Let’s consider a new reader looking at it. This reader notices that notify returns an
error but that the error isn’t handled by the parent function. How can they guess
whether or not handling the error was intentional? How can they know whether the
previous developer forgot to handle it or did it purposely?

 For these reasons, when we want to ignore an error in Go, there’s only one way to
write it:

_ = notify()

Instead of not assigning the error to a variable, we assign it to the blank identifier. In
terms of compilation and run time, this approach doesn’t change anything compared
to the first piece of code. But this new version makes explicit that we aren’t interested
in the error.

 A comment can also accompany such code, but not a comment like the following
that mentions ignoring the error:

// Ignore the error
_ = notify()

This comment just duplicates what the code does and should be avoided. But it may
be a good idea to write a comment that indicates the rationale for why the error is
ignored, like this:

// At-most once delivery.
// Hence, it's accepted to miss some of them in case of errors.
_ = notify()

Ignoring an error in Go should be the exception. In many cases, we may still favor log-
ging them, even at a low log level. But if we are sure that an error can and should be
ignored, we must do so explicitly by assigning it to the blank identifier. This way, a
future reader will understand that we ignored the error intentionally.

 The last section of this chapter discusses how to handle errors returned by defer
functions. 

Error handling 
is omitted.
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7.7 #54: Not handling defer errors
Not handling errors in defer statements is a mistake that’s frequently made by Go
developers. Let’s understand what the problem is and the possible solutions.

 In the following example, we will implement a function to query a DB to get the
balance given a customer ID. We will use database/sql and the Query method.

NOTE We won’t delve too deep here into how this package works; we do that
in mistake #78, “Common SQL mistakes.”

Here’s a possible implementation (we focus on the query itself, not the parsing of the
results):

const query = "..."

func getBalance(db *sql.DB, clientID string) (
float32, error) {
rows, err := db.Query(query, clientID)
if err != nil {

return 0, err
}
defer rows.Close()

// Use rows
}

rows is a *sql.Rows type. It implements the Closer interface:

type Closer interface {
Close() error

}

This interface contains a single Close method that returns an error (we will also look
at this topic in mistake #79, “Not closing transient resources”). We mentioned in the
previous section that errors should always be handled. But in this case, the error
returned by the defer call is ignored:

defer rows.Close()

As discussed in the previous section, if we don’t want to handle the error, we should
ignore it explicitly using the blank identifier:

defer func() { _ = rows.Close() }()

This version is more verbose but is better from a maintainability perspective as we
explicitly mark that we are ignoring the error.

 But in such a case, instead of blindly ignoring all errors from defer calls, we
should ask ourselves whether that is the best approach. In this case, calling Close()
returns an error when it fails to free a DB connection from the pool. Hence, ignoring
this error is probably not what we want to do. Most likely, a better option would be to
log a message:

Defers the call 
to rows.Close()
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defer func() {
err := rows.Close()
if err != nil {

log.Printf("failed to close rows: %v", err)
}

}()

Now, if closing rows fails, the code will log a message so we’re aware of it.
 What if, instead of handling the error, we prefer to propagate it to the caller of

getBalance so that they can decide how to handle it?

defer func() {
err := rows.Close()
if err != nil {

return err
}

}()

This implementation doesn’t compile. Indeed, the return statement is associated with
the anonymous func() function, not getBalance.

 If we want to tie the error returned by getBalance to the error caught in the defer
call, we must use named result parameters. Let’s write the first version:

func getBalance(db *sql.DB, clientID string) (
balance float32, err error) {
rows, err := db.Query(query, clientID)
if err != nil {

return 0, err
}
defer func() {

err = rows.Close()
}()

if rows.Next() {
err := rows.Scan(&balance)
if err != nil {

return 0, err
}
return balance, nil

}
// ...

}

Once the rows variable has been correctly created, we defer the call to rows.Close()
in an anonymous function. This function assigns the error to the err variable, which is
initialized using named result parameters.

 This code may look okay, but there’s a problem with it. If rows.Scan returns an
error, rows.Close is executed anyway; but because this call overrides the error
returned by getBalance, instead of returning an error, we may return a nil error if
rows.Close returns successfully. In other words, if the call to db.Query succeeds (the
first line of the function), the error returned by getBalance will always be the one
returned by rows.Close, which isn’t what we want.

Assigns the error to the 
output named parameter



160 CHAPTER 7 Error management
 The logic we need to implement isn’t straightforward:

 If rows.Scan succeeds,
– If rows.Close succeeds, return no error.
– If rows.Close fails, return this error.

And if rows.Scan fails, the logic is a bit more complex because we may have to handle
two errors:

 If rows.Scan fails,
– If rows.Close succeeds, return the error from rows.Scan.
– If rows.Close fails . . . then what?

If both rows.Scan and rows.Close fail, what should we do? There are several options.
For example, we can return a custom error that conveys two errors. Another option,
which we will implement, is to return the rows.Scan error but log the rows.Close
error. Here’s our final implementation of the anonymous function:

defer func() {
closeErr := rows.Close()
if err != nil {

if closeErr != nil {
log.Printf("failed to close rows: %v", err)

}
return

}
err = closeErr

}()

The rows.Close error is assigned to another variable: closeErr. Before assigning it to
err, we check whether err is different from nil. If that’s the case, an error was
already returned by getBalance, so we decide to log err and return the existing error.

 As discussed, errors should always be handled. In the case of errors returned by
defer calls, the very least we should do is ignore them explicitly. If this isn’t enough,
we can handle the error directly by logging it or propagating it up to the caller, as
illustrated in this section. 

Summary
 Using panic is an option to deal with errors in Go. However, it should only be

used sparingly in unrecoverable conditions: for example, to signal a program-
mer error or when you fail to load a mandatory dependency.

 Wrapping an error allows you to mark an error and/or provide additional
context. However, error wrapping creates potential coupling as it makes the
source error available for the caller. If you want to prevent that, don’t use error
wrapping.

 If you use Go 1.13 error wrapping with the %w directive and fmt.Errorf, com-
paring an error against a type or a value has to be done using errors.As or

Assigns the rows.Close 
error to another variable

If err was already not 
nil, we prioritize it.

Otherwise, we 
return closeErr.
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errors.Is, respectively. Otherwise, if the returned error you want to check is
wrapped, it will fail the checks.

 To convey an expected error, use error sentinels (error values). An unexpected
error should be a specific error type.

 In most situations, an error should be handled only once. Logging an error is
handling an error. Therefore, you have to choose between logging or returning
an error. In many cases, error wrapping is the solution as it allows you to pro-
vide additional context to an error and return the source error.

 Ignoring an error, whether during a function call or in a defer function, should
be done explicitly using the blank identifier. Otherwise, future readers may be
confused about whether it was intentional or a miss.

 In many cases, you shouldn’t ignore an error returned by a defer function.
Either handle it directly or propagate it to the caller, depending on the context.
If you want to ignore it, use the blank identifier.



Concurrency:
Foundations
In recent decades, CPU vendors have stopped focusing only on clock speed.
Instead, modern CPUs are designed with multiple cores and hyperthreading (mul-
tiple logical cores on the same physical core). Therefore, to leverage these architec-
tures, concurrency has become critical for software developers. Even though Go
provides simple primitives, this doesn’t necessarily mean that writing concurrent
code has become easy. This chapter discusses fundamental concepts related to con-
currency; chapter 9 will then focus on practice.

This chapter covers
 Understanding concurrency and parallelism

 Why concurrency isn’t always faster

 The impacts of CPU-bound and I/O-bound 
workloads

 Using channels vs. mutexes

 Understanding the differences between data 
races and race conditions

 Working with Go contexts
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8.1 #55: Mixing up concurrency and parallelism
Even after years of concurrent programming, developers may not clearly understand
the differences between concurrency and parallelism. Before delving into Go-specific
topics, it’s first essential to understand these concepts so we share a common vocabu-
lary. This section illustrates with a real-life example: a coffee shop.

 In this coffee shop, one waiter is in charge of accepting orders and preparing them
using a single coffee machine. Customers give their orders and then wait for their cof-
fee (see figure 8.1).

Figure 8.1 A simple coffee shop

If the waiter is having a hard time serving all the customers and the coffee shop wants
to speed up the overall process, one idea might be to have a second waiter and a sec-
ond coffee machine. A customer in the queue would wait for a waiter to be available
(figure 8.2).

Figure 8.2 Duplicating everything in the coffee shop

In this new process, every part of the system is independent. The coffee shop should
serve consumers twice as fast. This is a parallel implementation of a coffee shop.

 If we want to scale, we can keep duplicating waiters and coffee machines over and
over. However, this isn’t the only possible coffee shop design. Another approach

Coffee machineAccept orders
and grind coffee

Customer queue

Coffee machineAccept orders
and grind coffee

Coffee machineAccept orders
and grind coffee

Customer queue
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might be to split the work done by the waiters and have one in charge of accepting
orders and another one who grinds the coffee beans, which are then brewed in a sin-
gle machine. Also, instead of blocking the customer queue until a customer is served,
we could introduce another queue for customers waiting for their orders (think about
Starbucks) (figure 8.3).

With this new design, we don’t make things parallel. But the overall structure is
affected: we split a given role into two roles, and we introduce another queue. Unlike
parallelism, which is about doing the same thing multiple times at once, concurrency is
about structure.

 Assuming one thread represents the waiter accepting orders and another rep-
resents the coffee machine, we have introduced yet another thread to grind the coffee
beans. Each thread is independent but has to coordinate with others. Here, the waiter
thread accepting orders has to communicate which coffee beans to grind. Meanwhile,
the coffee-grinding threads must communicate with the coffee machine thread.

 What if we want to increase throughput by serving more customers per hour?
Because grinding beans takes longer than accepting orders, a possible change could
be to hire another coffee-grinding waiter (figure 8.4).

Coffee machineAccept orders
Customer queue

Grind coffee

Waiting queue

Figure 8.3
Splitting the role 
of the waiters

Coffee machineAccept orders

Grind coffee

Grind coffee

× 2

Customer queue

Waiting queue

Figure 8.4
Hiring another 
waiter to grind 
coffee beans
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Here, the structure remains the same. It is still a three-step design: accept, grind, brew
coffee. Hence, there are no changes in terms of concurrency. But we are back to add-
ing parallelism, here for one particular step: the order preparation.

 Now, let’s assume that the part slowing down the whole process is the coffee
machine. Using a single coffee machine introduces contentions for the coffee-grind-
ing threads as they both wait for a coffee machine thread to be available. What could
be a solution? Adding more coffee machine threads (figure 8.5).

Figure 8.5 Adding more coffee machines

Instead of a single coffee machine, we have increased the level of parallelism by intro-
ducing more machines. Again, the structure hasn’t changed; it remains a three-step
design. But throughput should increase because the level of contention for the coffee-
grinding threads should decrease.

 With this design, we can notice something important: concurrency enables parallelism.
Indeed, concurrency provides a structure to solve a problem with parts that may be
parallelized.

Concurrency is about dealing with lots of things at once. Parallelism is about doing lots
of things at once.

                          —Rob Pike

In summary, concurrency and parallelism are different. Concurrency is about struc-
ture, and we can change a sequential implementation into a concurrent one by

Coffee machineAccept orders

Grind coffee

Grind coffee

Coffee machine

Coffee machine

× 2

× 3

Customer queue

Waiting queue
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introducing different steps that separate concurrent threads can tackle. Meanwhile,
parallelism is about execution, and we can use it at the step level by adding more par-
allel threads. Understanding these two concepts is fundamental to being a proficient
Go developer.

 The next section discusses a prevalent mistake: believing that concurrency is always
the way to go. 

8.2 #56: Thinking concurrency is always faster
A misconception among many developers is believing that a concurrent solution is
always faster than a sequential one. This couldn’t be more wrong. The overall perfor-
mance of a solution depends on many factors, such as the efficiency of our structure
(concurrency), which parts can be tackled in parallel, and the level of contention
among the computation units. This section reminds us about some fundamental
knowledge of concurrency in Go; then we will see a concrete example where a concur-
rent solution isn’t necessarily faster.

8.2.1 Go scheduling

A thread is the smallest unit of processing that an OS can perform. If a process wants
to execute multiple actions simultaneously, it spins up multiple threads. These threads
can be

 Concurrent—Two or more threads can start, run, and complete in overlapping
time periods, like the waiter thread and the coffee machine thread in the previ-
ous section.

 Parallel—The same task can be executed multiple times at once, like multiple
waiter threads.

The OS is responsible for scheduling the thread’s processes optimally so that

 All the threads can consume CPU cycles without being starved for too much
time.

 The workload is distributed as evenly as possible among the different CPU
cores.

NOTE The word thread can also have a different meaning at a CPU level. Each
physical core can be composed of multiple logical cores (the concept of
hyperthreading), and a logical core is also called a thread. In this section,
when we use the word thread, we mean the unit of processing, not a logical
core.

A CPU core executes different threads. When it switches from one thread to another,
it executes an operation called context switching. The active thread consuming CPU
cycles was in an executing state and moves to a runnable state, meaning it’s ready to be
executed pending an available core. Context switching is considered an expensive
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operation because the OS needs to save the current execution state of a thread before
the switch (such as the current register values).

 As Go developers, we can’t create threads directly, but we can create goroutines,
which can be thought of as application-level threads. However, whereas an OS thread
is context-switched on and off a CPU core by the OS, a goroutine is context-switched
on and off an OS thread by the Go runtime. Also, compared to an OS thread, a gorou-
tine has a smaller memory footprint: 2 KB for goroutines from Go 1.4. An OS thread
depends on the OS, but, for example, on Linux/x86-32, the default size is 2 MB (see
http://mng.bz/DgMw). Having a smaller size makes context switching faster.

NOTE Context switching a goroutine versus a thread is about 80% to 90%
faster, depending on the architecture.

Let’s now discuss how the Go scheduler works to overview how goroutines are han-
dled. Internally, the Go scheduler uses the following terminology (see http://mng.bz/
N611):

 G—Goroutine
 M—OS thread (stands for machine)
 P—CPU core (stands for processor)

Each OS thread (M) is assigned to a CPU core (P) by the OS scheduler. Then, each
goroutine (G) runs on an M. The GOMAXPROCS variable defines the limit of Ms in
charge of executing user-level code simultaneously. But if a thread is blocked in a sys-
tem call (for example, I/O), the scheduler can spin up more Ms. As of Go 1.5, GOMAX-
PROCS is by default equal to the number of available CPU cores.

 A goroutine has a simpler lifecycle than an OS thread. It can be doing one of the
following:

 Executing—The goroutine is scheduled on an M and executing its instructions.
 Runnable—The goroutine is waiting to be in an executing state.
 Waiting—The goroutine is stopped and pending something completing, such

as a system call or a synchronization operation (such as acquiring a mutex).

There’s one last stage to understand about the implementation of Go scheduling:
when a goroutine is created but cannot be executed yet; for example, all the other Ms
are already executing a G. In this scenario, what will the Go runtime do about it? The
answer is queuing. The Go runtime handles two kinds of queues: one local queue per
P and a global queue shared among all the Ps.

 Figure 8.6 shows a given scheduling situation on a four-core machine with GOMAX-
PROCS equal to 4. The parts are the logical cores (Ps), goroutines (Gs), OS threads
(Ms), local queues, and global queue.

 First, we can see five Ms, whereas GOMAXPROCS is set to 4. But as we mentioned, if
needed, the Go runtime can create more OS threads than the GOMAXPROCS value.

 

http://mng.bz/DgMw
http://mng.bz/N611
http://mng.bz/N611
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Figure 8.6 An example of the current state of a Go application executed on a four-core machine. 
Goroutines that aren’t in an executing state are either runnable (pending being executed) or waiting 
(pending a blocking operation).

P0, P1, and P3 are currently busy executing Go runtime threads. But P2 is presently
idle as M3 is switched off P2, and there’s no goroutine to be executed. This isn’t a
good situation because six runnable goroutines are pending being executed, some in
the global queue and some in other local queues. How will the Go runtime handle
this situation? Here’s the scheduling implementation in pseudocode (see http://
mng.bz/lxY8):

runtime.schedule() {
// Only 1/61 of the time, check the global runnable queue for a G.
// If not found, check the local queue.
// If not found,
// Try to steal from other Ps.
// If not, check the global runnable queue.
// If not found, poll network.

}

Every sixty-first execution, the Go scheduler will check whether goroutines from the
global queue are available. If not, it will check its local queue. Meanwhile, if both the
global and local queues are empty, the Go scheduler can pick up goroutines from other
local queues. This principle in scheduling is called work stealing, and it allows an underuti-
lized processor to actively look for another processor’s goroutines and steal some.

 One last important thing to mention: prior to Go 1.14, the scheduler was coopera-
tive, which meant a goroutine could be context-switched off a thread only in specific
blocking cases (for example, channel send or receive, I/O, waiting to acquire a
mutex). Since Go 1.14, the Go scheduler is now preemptive: when a goroutine is run-
ning for a specific amount of time (10 ms), it will be marked preemptible and can be
context-switched off to be replaced by another goroutine. This allows a long-running
job to be forced to share CPU time.
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 Now that we understand the fundamentals of scheduling in Go, let’s look at a con-
crete example: implementing a merge sort in a parallel manner. 

8.2.2 Parallel merge sort

First, let’s briefly review how the merge sort algorithm works. Then we will implement
a parallel version. Note that the objective isn’t to implement the most efficient version
but to support a concrete example showing why concurrency isn’t always faster.

 The merge sort algorithm works by breaking a list repeatedly into two sublists until
each sublist consists of a single element and then merging these sublists so that the
result is a sorted list (see figure 8.7). Each split operation splits the list into two sub-
lists, whereas the merge operation merges two sublists into a sorted list.

Figure 8.7 Applying the merge sort algorithm repeatedly breaks each list into two 
sublists. Then the algorithm uses a merge operation such that the resulting list is sorted.

Here is the sequential implementation of this algorithm. We don’t include all of the
code as it’s not the main point of this section:

func sequentialMergesort(s []int) {
if len(s) <= 1 {

return
}
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middle := len(s) / 2
sequentialMergesort(s[:middle])
sequentialMergesort(s[middle:])
merge(s, middle)

}

func merge(s []int, middle int) {
// ...

}

This algorithm has a structure that makes it open to concurrency. Indeed, as each
sequentialMergesort operation works on an independent set of data that doesn’t
need to be fully copied (here, an independent view of the underlying array using slic-
ing), we could distribute this workload among the CPU cores by spinning up each
sequentialMergesort operation in a different goroutine. Let’s write a first parallel
implementation:

func parallelMergesortV1(s []int) {
if len(s) <= 1 {

return
}

middle := len(s) / 2

var wg sync.WaitGroup
wg.Add(2)

go func() {
defer wg.Done()
parallelMergesortV1(s[:middle])

}()

go func() {
defer wg.Done()
parallelMergesortV1(s[middle:])

}()

wg.Wait()
merge(s, middle)

}

In this version, each half of the workload is handled in a separate goroutine. The par-
ent goroutine waits for both parts by using sync.WaitGroup. Hence, we call the Wait
method before the merge operation.

NOTE If you’re not yet familiar with sync.WaitGroup, we will look at it in
more detail in mistake #71, “Misusing sync.WaitGroup.” In a nutshell, it
allows us to wait for n operations to complete: usually goroutines, as in the
previous example.

We now have a parallel version of the merge sort algorithm. Therefore, if we run a
benchmark to compare this version against the sequential one, the parallel version
should be faster, correct? Let’s run it on a four-core machine with 10,000 elements:

First half
Second half

Merges the 
two halves

Spins up the first half of 
the work in a goroutine

Spins up the second half of 
the work in a goroutine

Merges 
the halves
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Benchmark_sequentialMergesort-4 2278993555 ns/op
Benchmark_parallelMergesortV1-4 17525998709 ns/op

Surprisingly, the parallel version is almost an order of magnitude slower. How can we
explain this result? How is it possible that a parallel version that distributes a workload
across four cores is slower than a sequential version running on a single machine?
Let’s analyze the problem.

 If we have a slice of, say, 1,024 elements, the parent goroutine will spin up two gor-
outines, each in charge of handling a half consisting of 512 elements. Each of these
goroutines will spin up two new goroutines in charge of handling 256 elements, then
128, and so on, until we spin up a goroutine to compute a single element.

 If the workload that we want to parallelize is too small, meaning we’re going to
compute it too fast, the benefit of distributing a job across cores is destroyed: the time
it takes to create a goroutine and have the scheduler execute it is much too high com-
pared to directly merging a tiny number of items in the current goroutine. Although
goroutines are lightweight and faster to start than threads, we can still face cases
where a workload is too small.

NOTE We will discuss how to recognize when an execution is poorly paral-
lelized in mistake #98, “Not using Go diagnostics tooling.”

So what can we conclude from this result? Does it mean the merge sort algorithm can-
not be parallelized? Wait, not so fast.

 Let’s try another approach. Because merging a tiny number of elements within a
new goroutine isn’t efficient, let’s define a threshold. This threshold will represent
how many elements a half should contain in order to be handled in a parallel manner.
If the number of elements in the half is fewer than this value, we will handle it sequen-
tially. Here’s a new version:

const max = 2048

func parallelMergesortV2(s []int) {
if len(s) <= 1 {

return
}

if len(s) <= max {
sequentialMergesort(s)

} else {
middle := len(s) / 2

var wg sync.WaitGroup
wg.Add(2)

go func() {
defer wg.Done()
parallelMergesortV2(s[:middle])

}()

go func() {
defer wg.Done()

Defines the threshold

Calls our initial 
sequential version

If bigger than the threshold, 
keeps the parallel version
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parallelMergesortV2(s[middle:])
}()

wg.Wait()
merge(s, middle)

}
}

If the number of elements in the s slice is smaller than max, we call the sequential ver-
sion. Otherwise, we keep calling our parallel implementation. Does this approach
impact the result? Yes, it does:

Benchmark_sequentialMergesort-4 2278993555 ns/op
Benchmark_parallelMergesortV1-4 17525998709 ns/op
Benchmark_parallelMergesortV2-4 1313010260 ns/op

Our v2 parallel implementation is more than 40% faster than the sequential one,
thanks to this idea of defining a threshold to indicate when parallel should be more
efficient than sequential.

NOTE Why did I set the threshold to 2,048? Because it was the optimal value
for this specific workload on my machine. In general, such magic values
should be defined carefully with benchmarks (running on an execution envi-
ronment similar to production). It’s also pretty interesting to note that run-
ning the same algorithm in a programming language that doesn’t implement
the concept of goroutines has an impact on the value. For example, running
the same example in Java using threads means an optimal value closer to
8,192. This tends to illustrate how goroutines are more efficient than threads.

We have seen throughout this chapter the fundamental concepts of scheduling in Go:
the differences between a thread and a goroutine and how the Go runtime schedules
goroutines. Meanwhile, using the parallel merge sort example, we illustrated that con-
currency isn’t always necessarily faster. As we have seen, spinning up goroutines to
handle minimal workloads (merging only a small set of elements) demolishes the ben-
efit we could get from parallelism.

 So, where should we go from here? We must keep in mind that concurrency isn’t
always faster and shouldn’t be considered the default way to go for all problems. First,
it makes things more complex. Also, modern CPUs have become incredibly efficient
at executing sequential code and predictable code. For example, a superscalar proces-
sor can parallelize instruction execution over a single core with high efficiency.

 Does this mean we shouldn’t use concurrency? Of course not. However, it’s essen-
tial to keep these conclusions in mind. If we’re not sure that a parallel version will be
faster, the right approach may be to start with a simple sequential version and build
from there using profiling (mistake #98, “Not using Go diagnostics tooling”) and
benchmarks (mistake #89, “Writing inaccurate benchmarks”), for example. It can be
the only way to ensure that a concurrency is worth it.

 The following section discusses a frequently asked question: when should we use
channels or mutexes?
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8.3 #57: Being puzzled about when to use channels or 
mutexes
Given a concurrency problem, it may not always be clear whether we can implement a
solution using channels or mutexes. Because Go promotes sharing memory by com-
munication, one mistake could be to always force the use of channels, regardless of
the use case. However, we should see the two options as complementary. This section
clarifies when we should favor one option over the other. The goal is not to discuss
every possible use case (that would probably take an entire chapter) but to give gen-
eral guidelines that can help us decide.

 First, a brief reminder about channels in Go: channels are a communication mech-
anism. Internally, a channel is a pipe we can use to send and receive values and that
allows us to connect concurrent goroutines. A channel can be either of the following:

 Unbuffered—The sender goroutine blocks until the receiver goroutine is ready.
 Buffered—The sender goroutine blocks only when the buffer is full.

Let’s get back to our initial problem. When should we use channels or mutexes? We
will use the example in figure 8.8 as a backbone. Our example has three different
goroutines with specific relationships:

 G1 and G2 are parallel goroutines. They may be two goroutines executing the
same function that keeps receiving messages from a channel, or perhaps two
goroutines executing the same HTTP handler at the same time.

 On the other hand, G1 and G3 are concurrent goroutines, as are G2 and G3.
All the goroutines are part of an overall concurrent structure, but G1 and G2
perform the first step, whereas G3 does the next step.

In general, parallel goroutines have to synchronize : for example, when they need to
access or mutate a shared resource such as a slice. Synchronization is enforced with
mutexes but not with any channel types (not with buffered channels). Hence, in gen-
eral, synchronization between parallel goroutines should be achieved via mutexes.

G1

G2

G3Parallel goroutines

Concurrent goroutines

Concurrent goroutines
Figure 8.8 Goroutines G1 and 
G2 are parallel, whereas G2 and 
G3 are concurrent.
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 Conversely, in general, concurrent goroutines have to coordinate and orchestrate. For
example, if G3 needs to aggregate results from both G1 and G2, G1 and G2 need to
signal to G3 that a new intermediate result is available. This coordination falls under
the scope of communication—therefore, channels.

 Regarding concurrent goroutines, there’s also the case where we want to transfer
the ownership of a resource from one step (G1 and G2) to another (G3); for example,
if G1 and G2 are enriching a shared resource and at some point, we consider this job
as complete. Here, we should use channels to signal that a specific resource is ready
and handle the ownership transfer.

 Mutexes and channels have different semantics. Whenever we want to share a state
or access a shared resource, mutexes ensure exclusive access to this resource. Con-
versely, channels are a mechanic for signaling with or without data (chan struct{} or
not). Coordination or ownership transfer should be achieved via channels. It’s import-
ant to know whether goroutines are parallel or concurrent because, in general, we
need mutexes for parallel goroutines and channels for concurrent ones.

 Let’s now discuss a widespread issue regarding concurrency: race problems. 

8.4 #58: Not understanding race problems
Race problems can be among the hardest and most insidious bugs a programmer can
face. As Go developers, we must understand crucial aspects such as data races and race
conditions, their possible impacts, and how to avoid them. We will go through these
topics by first discussing data races versus race conditions and then examining the Go
memory model and why it matters.

8.4.1 Data races vs. race conditions

Let’s first focus on data races. A data race occurs when two or more goroutines simul-
taneously access the same memory location and at least one is writing. Here is an
example where two goroutines increment a shared variable:

i := 0

go func() {
i++

}()

go func() {
i++

}()

If we run this code using the Go race detector (-race option), it warns us that a data
race has occurred:

==================
WARNING: DATA RACE
Write at 0x00c00008e000 by goroutine 7:

main.main.func2()

Increments i
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Previous write at 0x00c00008e000 by goroutine 6:
main.main.func1()

==================

The final value of i is also unpredictable. Sometimes it can be 1, and sometimes 2.
 What’s the issue with this code? The i++ statement can be decomposed into three

operations:

1 Read i.
2 Increment the value.
3 Write back to i.

If the first goroutine executes and completes before the second one, here’s what
happens.

The first goroutine reads, increments, and writes the value 1 back to i. Then the sec-
ond goroutine performs the same set of actions but starts from 1. Hence, the final
result written to i is 2.

 However, there’s no guarantee that the first goroutine will either start or complete
before the second one in the previous example. We can also face the case of an inter-
leaved execution where both goroutines run concurrently and compete to access i.
Here’s another possible scenario.

Goroutine 1 Goroutine 2 Operation i

0

Read <- 0

Increment 0

Write back -> 1

Read <- 1

Increment 1

Write back -> 2

Goroutine 1 Goroutine 2 Operation i

0

Read <- 0

Read <- 0

Increment 0

Increment 0

Write back -> 1

Write back -> 1
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First, both goroutines read from i and get the value 0. Then, both increment it and
write back their local result: 1, which isn’t the expected result.

 This is a possible impact of a data race. If two goroutines simultaneously access the
same memory location with at least one writing to that memory location, the result
can be hazardous. Even worse, in some situations, the memory location may end up
holding a value containing a meaningless combination of bits.

NOTE In mistake #83, “Not enabling the -race flag,” we will see how Go can
help us detect data races.

How can we prevent a data race from happening? Let’s look at some different tech-
niques. The scope here isn’t to present all the possible options (for example, we will
omit atomic.Value) but to show the main ones.

 The first option is to make the increment operation atomic, meaning it’s done in a
single operation. This prevents entangled running operations.

Even if the second goroutine runs before the first one, the result remains 2.
 Atomic operations can be done in Go using the sync/atomic package. Here’s an

example of how we can increment atomically an int64:

var i int64

go func() {
atomic.AddInt64(&i, 1)

}()

go func() {
atomic.AddInt64(&i, 1)

}()

Both goroutines update i atomically. An atomic operation can’t be interrupted, thus
preventing two accesses at the same time. Regardless of the goroutines' execution
order, i will eventually equal 2.

NOTE The sync/atomic package provides primitives for int32, int64,
uint32, and uint64 but not for int. This is why i is an int64 in this example.

Another option is to synchronize the two goroutines with an ad hoc data structure like
a mutex. Mutex stands for mutual exclusion; a mutex ensures that at most one goroutine
accesses a so-called critical section. In Go, the sync package provides a Mutex type:

Goroutine 1 Goroutine 2 Operation i

0

Read and increment <-> 1

Read and increment <-> 2

Increments i 
atomically

Same
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i := 0
mutex := sync.Mutex{}

go func() {
mutex.Lock()
i++
mutex.Unlock()

}()

go func() {
mutex.Lock()
i++
mutex.Unlock()

}()

In this example, incrementing i is the critical section. Regardless of the goroutines'
ordering, this example also produces a deterministic value for i: 2.

 Which approach works best? The boundary is pretty straightforward. As we men-
tioned, the sync/atomic package works only with specific types. If we want something
else (for example, slices, maps, and structs), we can’t rely on sync/atomic.

 Another possible option is to prevent sharing the same memory location and
instead favor communication across the goroutines. For example, we can create a
channel that each goroutine uses to produce the value of the increment:

i := 0
ch := make(chan int)

go func() {
ch <- 1

}()

go func() {
ch <- 1

}()

i += <-ch
i += <-ch

Each goroutine sends a notification via the channel that we should increment i by 1.
The parent goroutine collects the notifications and increments i. Because it’s the only
goroutine writing to i, this solution is also free of data races.

 Let’s sum up what we have seen so far. Data races occur when multiple goroutines
access the same memory location simultaneously (for example, the same variable)
and at least one of them is writing. We have also seen how to prevent this issue with
three synchronization approaches:

 Using atomic operations
 Protecting a critical section with a mutex
 Using communication and channels to ensure that a variable is updated by only

one goroutine

Start of the 
critical section

Increments i
End of the 
critical section

Notifies the goroutine 
to increment by 1

Increments i from what’s 
received from the channel
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With these three approaches, the value of i will eventually be set to 2, regardless of
the execution order of the two goroutines. But depending on the operation we want
to perform, does a data-race-free application necessarily mean a deterministic result?
Let’s explore this question with another example.

 Instead of having two goroutines increment a shared variable, now each one
makes an assignment. We will follow the approach of using a mutex to prevent data
races:

i := 0
mutex := sync.Mutex{}

go func() {
mutex.Lock()
defer mutex.Unlock()
i = 1

}()

go func() {
mutex.Lock()
defer mutex.Unlock()
i = 2

}()

The first goroutine assigns 1 to i, whereas the second one assigns 2.
 Is there a data race in this example? No, there isn’t. Both goroutines access the

same variable, but not at the same time, as the mutex protects it. But is this example
deterministic? No, it isn’t.

 Depending on the execution order, i will eventually equal either 1 or 2. This
example doesn’t lead to a data race. But it has a race condition. A race condition occurs
when the behavior depends on the sequence or the timing of events that can’t be con-
trolled. Here, the timing of events is the goroutines’ execution order.

 Ensuring a specific execution sequence among goroutines is a question of coordi-
nation and orchestration. If we want to ensure that we first go from state 0 to state 1,
and then from state 1 to state 2, we should find a way to guarantee that the goroutines
are executed in order. Channels can be a way to solve this problem. Coordinating and
orchestrating can also ensure that a particular section is accessed by only one gorou-
tine, which can also mean removing the mutex in the previous example.

 In summary, when we work in concurrent applications, it’s essential to understand
that a data race is different from a race condition. A data race occurs when multiple
goroutines simultaneously access the same memory location and at least one of them
is writing. A data race means unexpected behavior. However, a data-race-free applica-
tion doesn’t necessarily mean deterministic results. An application can be free of data
races but still have behavior that depends on uncontrolled events (such as goroutine
execution, how fast a message is published to a channel, or how long a call to a data-
base lasts); this is a race condition. Understanding both concepts is crucial to becom-
ing proficient in designing concurrent applications.

The first goroutine 
assigns 1 to i.

The second goroutine 
assigns 2 to i.
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 Let’s now examine the Go memory model and understand why it matters. 

8.4.2 The Go memory model

The previous section discussed three main techniques to synchronize goroutines:
atomic operations, mutexes, and channels. However, there are some core principles we
should be aware of as Go developers. For example, buffered and unbuffered channels
offer differ guarantees. To avoid unexpected races caused by a lack of understanding of
the core specifications of the language, we have to look at the Go memory model.

 The Go memory model (https://golang.org/ref/mem) is a specification that
defines the conditions under which a read from a variable in one goroutine can be
guaranteed to happen after a write to the same variable in a different goroutine. In
other words, it provides guarantees that developers should keep in mind to avoid data
races and force deterministic output.

 Within a single goroutine, there’s no chance of unsynchronized access. Indeed,
the happens-before order is guaranteed by the order expressed by our program.

 However, within multiple goroutines, we should bear in mind some of these guar-
antees. We will use the notation A < B to denote that event A happens before event B.
Let’s examine these guarantees (some copied from the Go memory model):

 Creating a goroutine happens before the goroutine’s execution begins. There-
fore, reading a variable and then spinning up a new goroutine that writes to this
variable doesn’t lead to a data race:

i := 0
go func() {

i++
}()

 Conversely, the exit of a goroutine isn’t guaranteed to happen before any event.
Thus, the following example has a data race:

i := 0
go func() {

i++
}()
fmt.Println(i)

Again, if we want to prevent the data race from happening, we should synchro-
nize these goroutines.

 A send on a channel happens before the corresponding receive from that chan-
nel completes. In the next example, a parent goroutine increments a variable
before a send, while another goroutine reads it after a channel read:

i := 0
ch := make(chan struct{})
go func() {

<-ch
fmt.Println(i)

https://golang.org/ref/mem
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}()
i++
ch <- struct{}{}

The order is as follows:

variable increment < channel send < channel receive < variable read

By transitivity, we can ensure that accesses to i are synchronized and hence free
from data races.

 Closing a channel happens before a receive of this closure. The next example is
similar to the previous one, except that instead of sending a message, we close
the channel:

i := 0
ch := make(chan struct{})
go func() {

<-ch
fmt.Println(i)

}()
i++
close(ch)

Therefore, this example is also free from data races.

 The last guarantee regarding channels may be counterintuitive at first sight: a
receive from an unbuffered channel happens before the send on that channel
completes.

First, let’s look at an example with a buffered channel instead of an unbuff-
ered channel. We have two goroutines, and the parent sends a message and
reads a variable while the child updates this variable and receives from the
channel:

i := 0
ch := make(chan struct{}, 1)
go func() {

i = 1
<-ch

}()
ch <- struct{}{}
fmt.Println(i)

This example leads to a data race. We can see
in figure 8.9 that both the read and the write
to i may occur simultaneously; therefore, i
isn’t synchronized.

Figure 8.9 If the channel is
buffered, it leads to a data race.

Send

Goroutine 1

Read i

go

Receive

Goroutine 2

Write i 

Goroutine created
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Now, let’s change the channel to an unbuffered one to illustrate the memory
model guarantee:

i := 0
ch := make(chan struct{})
go func() {

i = 1
<-ch

}()
ch <- struct{}{}
fmt.Println(i)

Changing the channel type makes this example
data-race-free (see figure 8.10). Here we can
see the main difference: the write is guaranteed
to happen before the read. Note that the
arrows don’t represent causality (of course, a
receive is caused by a send); they represent the
ordering guarantees of the Go memory model.
Because a receive from an unbuffered channel
happens before a send, the write to i will always
occur before the read.

Throughout this section, we have covered the main guarantees of the Go memory
model. Understanding these guarantees should be part of our core knowledge when
writing concurrent code and can prevent us from making wrong assumptions that can
lead to data races and/or race conditions.

 The following section discusses why it’s important to understand a workload type. 

8.5 #59: Not understanding the concurrency impacts of a 
workload type
This section looks at the impacts of a workload type in a concurrent implementation.
Depending on whether a workload is CPU- or I/O-bound, we may need to tackle the
problem differently. Let’s first define these concepts and then discuss the impacts.

 In programming, the execution time of a workload is limited by one of the
following:

 The speed of the CPU—For example, running a merge sort algorithm. The work-
load is called CPU-bound.

 The speed of I/O—For example, making a REST call or a database query. The
workload is called I/O-bound.

 The amount of available memory—The workload is called memory-bound.

NOTE The last is the rarest nowadays, given that memory has become very
cheap in recent decades. Hence, this section focuses on the two first workload
types: CPU- and I/O-bound.

Makes the channel 
unbuffered

Send

Goroutine 1

Read i 

go

Receive

Goroutine 2

Write i 

Goroutine created

Figure 8.10 If the channel is 
unbuffered, it doesn’t lead to a 
data race.
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Why is it important to classify a workload in the context of a concurrent application?
Let’s understand this alongside one concurrency pattern: worker pooling.

 The following example implements a read function that accepts an io.Reader and
reads 1,024 bytes from it repeatedly. We pass these 1,024 bytes to a task function that
performs some tasks (we will see what kind of tasks later). This task function returns
an integer, and we have to return the sum of all the results. Here’s a sequential imple-
mentation:

func read(r io.Reader) (int, error) {
count := 0
for {

b := make([]byte, 1024)
_, err := r.Read(b)
if err != nil {

if err == io.EOF {
break

}
return 0, err

}
count += task(b)

}
return count, nil

}

This function creates a count variable, reads from the io.Reader input, calls task,
and increments count. Now, what if we want to run all the task functions in a parallel
manner?

 One option is to use the so-called worker-pooling pattern. Doing so involves creating
workers (goroutines) of a fixed size that poll tasks from a common channel (see fig-
ure 8.11).

Figure 8.11 Each goroutine from the fixed pool receives from a shared channel.

Reads 
1,024 bytes

Stops the loop when 
we reach the end

Increments count based on 
the result of the task function
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Read
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Read Counter

G1 G2 ...
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First, we spin up a fixed pool of goroutines (we’ll discuss how many afterward). Then
we create a shared channel to which we publish tasks after each read to the io.Reader.
Each goroutine from the pool receives from this channel, performs its work, and then
atomically updates a shared counter.

 Here is a possible way to write this in Go, with a pool size of 10 goroutines. Each
goroutine atomically updates a shared counter:

func read(r io.Reader) (int, error) {
var count int64
wg := sync.WaitGroup{}
var n = 10

ch := make(chan []byte, n)
wg.Add(n)
for i := 0; i < n; i++ {

go func() {
defer wg.Done()
for b := range ch {

v := task(b)
atomic.AddInt64(&count, int64(v))

}
}()

}

for {
b := make([]byte, 1024)
// Read from r to b
ch <- b

}
close(ch)
wg.Wait()
return int(count), nil

}

In this example, we use n to define the pool size. We create a channel with the same
capacity as the pool and a wait group with a delta of n. This way, we reduce potential
contention in the parent goroutine while publishing messages. We iterate n times to
create a new goroutine that receives from the shared channel. Each message received
is handled by executing task and incrementing the shared counter atomically. After
reading from the channel, each goroutine decrements the wait group.

 In the parent goroutine, we keep reading from io.Reader and publish each task to
the channel. Last but not least, we close the channel and wait for the wait group to com-
plete (meaning all the child goroutines have completed their jobs) before returning.

 Having a fixed number of goroutines limits the downsides we discussed; it narrows
the resources’ impact and prevents an external system from being flooded. Now the
golden question: what should be the value of the pool size? The answer depends on
the workload type.

 If the workload is I/O-bound, the answer mainly depends on the external system.
How many concurrent accesses can the system cope with if we want to maximize
throughput?

Creates a channel with a 
capacity equal to the pool

Adds n
to the

wait
group

Creates a pool of n goroutines

Calls the Done method 
once the goroutine has 
received from the channel

Each goroutine receives 
from the shared channel.

Publishes a new task to the 
channel after every read

Waits for the wait group to 
complete before returning
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 If the workload is CPU-bound, a best practice is to rely on GOMAXPROCS. GOMAXPROCS
is a variable that sets the number of OS threads allocated to running goroutines. By
default, this value is set to the number of logical CPUs.

So, what’s the rationale for mapping the size of the pool to GOMAXPROCS? Let’s take a
concrete example and say that we will run our application on a four-core machine;
thus Go will instantiate four OS threads where goroutines will be executed. At first,
things may not be ideal: we may face a scenario with four CPU cores and four gorou-
tines but only one goroutine being executed, as shown in figure 8.12.

Figure 8.12 At most one goroutine is running.

M0 is currently running a goroutine of the worker pool. Hence, these goroutines start
to receive messages from the channel and execute their jobs. But the three other
goroutines from the pool aren’t yet assigned to an M; hence, they are in a runnable
state. M1, M2, and M3 don’t have any goroutines to run, so they remain off a core.
Thus only one goroutine is running.

 Eventually, given the work-stealing concept we already described, P1 may steal gor-
outines from the local P0 queue. In figure 8.13, P1 stole three goroutines from P0. In

Using runtime.GOMAXPROCS
We can use the runtime.GOMAXPROCS(int) function to update the value of GOMAX-
PROCS. Calling it with 0 as an argument doesn’t change the value; it just returns the
current value:

n := runtime.GOMAXPROCS(0)
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this situation, the Go scheduler may also eventually assign all the goroutines to a dif-
ferent OS thread, but there’s no guarantee about when this should occur. However,
since one of the main goals of the Go scheduler is to optimize resources (here, the dis-
tribution of the goroutines), we should end up in such a scenario given the nature of
the workloads.

Figure 8.13 At most two goroutines are running.

This scenario is still not optimal, because at most two goroutines are running. Let’s say
the machine is running only our application (other than the OS processes), so P2 and
P3 are free. Eventually, the OS should move M2 and M3 as shown in figure 8.14.

Figure 8.14 At most four goroutines are now running.

Here, the OS scheduler decided to move M2 to P2 and M3 to P3. Again, there is no
guarantee about when this situation will happen. But given a machine executing only
our four-thread application, this should be the final picture.

 The situation has changed; it has become optimal. The four goroutines are run-
ning in separate threads and the threads on separate cores. This approach reduces
the amount of context switching at both the goroutine and thread levels.

P0

M0

Local P0 queue

P1

Local P1 queue

P2

Local P2 queue

P3

Local P3 queue

M2

M3

M1

G (runnable)

G (runnable)

G (executing)G (executing)

P0

Local P0 queue

P1

Local P1 queue

P2

Local P2 queue

P3

Local P3 queue

M3
G (executing)

M2
G (executing)

M1
G (executing)

M0
G (executing)



186 CHAPTER 8 Concurrency: Foundations
 This global picture cannot be designed and requested by us (Go developers). How-
ever, as we have seen, we can enable it with favorable conditions in the case of CPU-
bound workloads: having a worker pool based on GOMAXPROCS.

NOTE If, given particular conditions, we want the number of goroutines to be
bound to the number of CPU cores, why not rely on runtime.NumCPU(),
which returns the number of logical CPU cores? As we mentioned, GOMAX-
PROCS can be changed and can be less than the number of CPU cores. In the
case of a CPU-bound workload, if the number of cores is four but we have
only three threads, we should spin up three goroutines, not four. Otherwise, a
thread will share its execution time among two goroutines, increasing the
number of context switches.

When implementing the worker-pooling pattern, we have seen that the optimal num-
ber of goroutines in the pool depends on the workload type. If the workload executed
by the workers is I/O-bound, the value mainly depends on the external system. Con-
versely, if the workload is CPU-bound, the optimal number of goroutines is close to
the number of available threads. Knowing the workload type (I/O or CPU) is crucial
when designing concurrent applications.

 Last but not least, let’s bear in mind that we should validate our assumptions via
benchmarks in most cases. Concurrency isn’t straightforward, and it can be pretty easy
to make hasty assumptions that turn out to be invalid.

 In the last section of this chapter, we discuss a crucial topic that we must under-
stand to be proficient in Go: contexts. 

8.6 #60: Misunderstanding Go contexts
Developers sometimes misunderstand the context.Context type despite it being one
of the key concepts of the language and a foundation of concurrent code in Go. Let’s
look at this concept and be sure we understand why and how to use it efficiently.

 According to the official documentation (https://pkg.go.dev/context):

A Context carries a deadline, a cancellation signal, and other values across API
boundaries.

Let’s examine this definition and understand all the concepts related to a Go context.

8.6.1 Deadline

A deadline refers to a specific point in time determined with one of the following:

 A time.Duration from now (for example, in 250 ms)
 A time.Time (for example, 2023-02-07 00:00:00 UTC)

The semantics of a deadline convey that an ongoing activity should be stopped if this
deadline is met. An activity is, for example, an I/O request or a goroutine waiting to
receive a message from a channel.

 Let’s consider an application that receives flight positions from a radar every four
seconds. Once we receive a position, we want to share it with other applications that

https://pkg.go.dev/context
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are only interested in the latest position. We have at our disposal a publisher inter-
face containing a single method:

type publisher interface {
Publish(ctx context.Context, position flight.Position) error

}

This method accepts a context and a position. We assume that the concrete imple-
mentation calls a function to publish a message to a broker (such as using Sarama to
publish a Kafka message). This function is context aware, meaning it can cancel a
request once the context is canceled.

 Assuming we don’t receive an existing context, what should we provide to the Pub-
lish method for the context argument? We have mentioned that the applications are
interested only in the latest position. Hence, the context that we build should convey
that after 4 seconds, if we haven’t been able to publish a flight position, we should
stop the call to Publish:

type publishHandler struct {
pub publisher

}

func (h publishHandler) publishPosition(position flight.Position) error {
ctx, cancel := context.WithTimeout(context.Background(), 4*time.Second)
defer cancel()
return h.pub.Publish(ctx, position)

}

This code creates a context using the context.WithTimeout function. This function
accepts a timeout and a context. Here, as publishPosition doesn’t receive an exist-
ing context, we create one from an empty context with context.Background. Mean-
while, context.WithTimeout returns two variables: the context created and a
cancellation func() function that will cancel the context once called. Passing the con-
text created to the Publish method should make it return in at most 4 seconds.

 What’s the rationale for calling the cancel function as a defer function? Inter-
nally, context.WithTimeout creates a goroutine that will be retained in memory for 4
seconds or until cancel is called. Therefore, calling cancel as a defer function means
that when we exit the parent function, the context will be canceled, and the goroutine
created will be stopped. It’s a safeguard so that when we return, we don’t leave
retained objects in memory.

 Let’s now move to the second aspect of Go contexts: cancellation signals. 

8.6.2 Cancellation signals

Another use case for Go contexts is to carry a cancellation signal. Let’s imagine that
we want to create an application that calls CreateFileWatcher(ctx context.Context,
filename string) within another goroutine. This function creates a specific file
watcher that keeps reading from a file and catches updates. When the provided con-
text expires or is canceled, this function handles it to close the file descriptor.

Creates the context that will
time out after 4 seconds

Defers the 
cancellation

Passes the created context
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 Finally, when main returns, we want things to be handled gracefully by closing this
file descriptor. Therefore, we need to propagate a signal.

 A possible approach is to use context.WithCancel, which returns a context (first
variable returned) that will cancel once the cancel function (second variable
returned) is called:

func main() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()

go func() {
CreateFileWatcher(ctx, "foo.txt")

}()

// ...
}

When main returns, it calls the cancel function to cancel the context passed to
CreateFileWatcher so that the file descriptor is closed gracefully.

 Next, let’s discuss the last aspects of Go contexts: values. 

8.6.3 Context values

The last use case for Go contexts is to carry a key-value list. Before understanding the
rationale behind it, let’s first see how to use it.

 A context conveying values can be created this way:

ctx := context.WithValue(parentCtx, "key", "value")

Just like context.WithTimeout, context.WithDeadline, and context.WithCancel,
context.WithValue is created from a parent context (here, parentCtx). In this case,
we create a new ctx context containing the same characteristics as parentCtx but also
conveying a key and a value.

 We can access the value using the Value method:

ctx := context.WithValue(context.Background(), "key", "value")
fmt.Println(ctx.Value("key"))

value

The key and values provided are any types. Indeed, for the value, we want to pass any
types. But why should the key be an empty interface as well and not a string, for exam-
ple? That could lead to collisions: two functions from different packages could use the
same string value as a key. Hence, the latter would override the former value. Conse-
quently, a best practice while handling context keys is to create an unexported custom
type:

package provider

type key string

const myCustomKey key = "key"

Creates a 
cancellable 
context

Defers the call 
to cancel

Calls the function using 
the created context
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Ch
th
func f(ctx context.Context) {
ctx = context.WithValue(ctx, myCustomKey, "foo")
// ...

}

The myCustomKey constant is unexported. Hence, there’s no risk that another pack-
age using the same context could override the value that is already set. Even if another
package creates the same myCustomKey based on a key type as well, it will be a differ-
ent key.

 So what’s the point of having a context carrying a key-value list? Because Go con-
texts are generic and mainstream, there are infinite use cases.

 For example, if we use tracing, we may want different subfunctions to share the
same correlation ID. Some developers may consider this ID too invasive to be part of
the function signature. In this regard, we could also decide to include it as part of the
provided context.

 Another example is if we want to implement
an HTTP middleware. If you’re not familiar
with such a concept, a middleware is an inter-
mediate function executed before serving a
request. For example, in figure 8.15, we have
configured two middlewares that must be exe-
cuted before executing the handler itself. If we
want middlewares to communicate, they have to
go through the context handled in the
*http.Request.

 Let’s write an example of a middleware that
marks whether the source host is valid:

type key string

const isValidHostKey key = "isValidHost"

func checkValid(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

validHost := r.Host == "acme"
ctx := context.WithValue(r.Context(), isValidHostKey, validHost)

next.ServeHTTP(w, r.WithContext(ctx))
})

}

First, we define a specific context key called isValidHostKey. Then the checkValid
middleware checks whether the source host is valid. This information is conveyed in a
new context, passed to the next HTTP step using next.ServeHTTP (the next step can
be another HTTP middleware or the final HTTP handler).

 This example has shown how context with values can be used in concrete Go
applications. We have seen in the previous sections how to create a context to carry a

HTTP
handlerRequest

Middleware 2

Middleware 1

Response

Figure 8.15 Before reaching the 
handler, a request goes through the 
configured middleware.

Creates the context key

ecks whether
e host is valid

Creates a new context with
a value to convey whether

the source host is validCalls the next step
with the new context
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deadline, a cancellation signal, and/or values. We can use this context and pass it to
context-aware libraries, meaning libraries exposing functions accepting a context. But
now, suppose we have to create a library, and we want external clients to provide a
context that could be canceled. 

8.6.4 Catching a context cancellation

The context.Context type exports a Done method that returns a receive-only notifica-
tion channel: <-chan struct{}. This channel is closed when the work associated with
the context should be canceled. For example,

 The Done channel related to a context created with context.WithCancel is
closed when the cancel function is called.

 The Done channel related to a context created with context.WithDeadline is
closed when the deadline has expired.

One thing to note is that the internal channel should be closed when a context is can-
celed or has met a deadline, instead of when it receives a specific value, because the
closure of a channel is the only channel action that all the consumer goroutines will
receive. This way, all the consumers will be notified once a context is canceled or a
deadline is reached.

 Furthermore, context.Context exports an Err method that returns nil if the
Done channel isn’t yet closed. Otherwise, it returns a non-nil error explaining why the
Done channel was closed: for example,

 A context.Canceled error if the channel was canceled
 A context.DeadlineExceeded error if the context’s deadline passed

Let’s see a concrete example in which we want to keep receiving messages from a
channel. Meanwhile, our implementation should be context aware and return if the
provided context is done:

func handler(ctx context.Context, ch chan Message) error {
for {

select {
case msg := <-ch:

// Do something with msg
case <-ctx.Done():

return ctx.Err()
}

}
}

We create a for loop and use select with two cases: receiving messages from ch or
receiving a signal that the context is done and we have to stop our job. While dealing
with channels, this is an example of how to make a function context aware.

Keeps receiving 
messages from ch

If the context is done, returns 
the error associated with it
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In summary, to be a proficient Go developer, we have to understand what a context is
and how to use it. In Go, context.Context is everywhere in the standard library and
external libraries. As we mentioned, a context allows us to carry a deadline, a cancella-
tion signal, and/or a list of keys-values. In general, a function that users wait for
should take a context, as doing so allows upstream callers to decide when calling this
function should be aborted.

 When in doubt about which context to use, we should use context.TODO() instead
of passing an empty context with context.Background. context.TODO() returns an
empty context, but semantically, it conveys that the context to be used is either
unclear or not yet available (not yet propagated by a parent, for example).

Implementing a function that receives a context
Within a function that receives a context conveying a possible cancellation or time-
out, the action of receiving or sending a message to a channel shouldn’t be done in
a blocking way. For example, in the following function, we send a message to a chan-
nel and receive one from another channel:

func f(ctx context.Context) error {
// ...
ch1 <- struct{}{}

v := <-ch2
// ...

}

The problem with this function is that if the context is canceled or times out, we may
have to wait until a message is sent or received, without benefit. Instead, we should
use select to either wait for the channel actions to complete or wait for the context
cancellation:

func f(ctx context.Context) error {
// ...
select {
case <-ctx.Done():

return ctx.Err()
case ch1 <- struct{}{}:
}

select {
case <-ctx.Done():

return ctx.Err()
case v := <-ch2:

// ...
}

}

With this new version, if ctx is canceled or times out, we return immediately, without
blocking the channel send or receive.

Receive

Send

Sends a message to ch1 or waits 
for the context to be canceled

Receives a message from ch2 or waits 
for the context to be canceled
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 Finally, let’s note that the available contexts in the standard library are all safe for
concurrent use by multiple goroutines. 

Summary
 Understanding the fundamental differences between concurrency and parallel-

ism is a cornerstone of the Go developer’s knowledge. Concurrency is about
structure, whereas parallelism is about execution.

 To be a proficient developer, you must acknowledge that concurrency isn’t
always faster. Solutions involving parallelization of minimal workloads may not
necessarily be faster than a sequential implementation. Benchmarking sequen-
tial versus concurrent solutions should be the way to validate assumptions.

 Being aware of goroutine interactions can also be helpful when deciding
between channels and mutexes. In general, parallel goroutines require syn-
chronization and hence mutexes. Conversely, concurrent goroutines generally
require coordination and orchestration and hence channels.

 Being proficient in concurrency also means understanding that data races and
race conditions are different concepts. Data races occur when multiple gorou-
tines simultaneously access the same memory location and at least one of them
is writing. Meanwhile, being data-race-free doesn’t necessarily mean determinis-
tic execution. When a behavior depends on the sequence or the timing of
events that can’t be controlled, this is a race condition.

 Understanding the Go memory model and the underlying guarantees in terms
of ordering and synchronization is essential to prevent possible data races and/
or race conditions.

 When creating a certain number of goroutines, consider the workload type.
Creating CPU-bound goroutines means bounding this number close to the
GOMAXPROCS variable (based by default on the number of CPU cores on the host).
Creating I/O-bound goroutines depends on other factors, such as the external
system.

 Go contexts are also one of the cornerstones of concurrency in Go. A context
allows you to carry a deadline, a cancellation signal, and/or a list of keys-values.



Concurrency: Practice
In the previous chapter, we discussed the foundations of concurrency. Now it’s time
to look at practical mistakes made by Go developers when working with the concur-
rency primitives.

9.1 #61: Propagating an inappropriate context
Contexts are omnipresent when working with concurrency in Go, and in many situ-
ations, it may be recommended to propagate them. However, context propagation
can sometimes lead to subtle bugs, preventing subfunctions from being correctly
executed.

This chapter covers
 Preventing common mistakes with goroutines and 

channels

 Understanding the impacts of using standard 
data structures alongside concurrent code

 Using the standard library and some extensions

 Avoiding data races and deadlocks
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 Let’s consider the following example. We expose an HTTP handler that performs
some tasks and returns a response. But just before returning the response, we also
want to send it to a Kafka topic. We don’t want to penalize the HTTP consumer
latency-wise, so we want the publish action to be handled asynchronously within a new
goroutine. We assume that we have at our disposal a publish function that accepts a
context so the action of publishing a message can be interrupted if the context is can-
celed, for example. Here is a possible implementation:

func handler(w http.ResponseWriter, r *http.Request) {
response, err := doSomeTask(r.Context(), r)
if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)
return

}

go func() {
err := publish(r.Context(), response)
// Do something with err

}()

writeResponse(response)
}

First we call a doSomeTask function to get a response variable. It’s used within the
goroutine calling publish and to format the HTTP response. Also, when calling
publish, we propagate the context attached to the HTTP request. Can you guess
what’s wrong with this piece of code?

 We have to know that the context attached to an HTTP request can cancel in dif-
ferent conditions:

 When the client’s connection closes
 In the case of an HTTP/2 request, when the request is canceled
 When the response has been written back to the client

In the first two cases, we probably handle things correctly. For example, if we get a
response from doSomeTask but the client has closed the connection, it’s probably OK
to call publish with a context already canceled so the message isn’t published. But
what about the last case?

 When the response has been written to the client, the context associated with the
request will be canceled. Therefore, we are facing a race condition:

 If the response is written after the Kafka publication, we both return a response
and publish a message successfully.

 However, if the response is written before or during the Kafka publication, the
message shouldn’t be published.

In the latter case, calling publish will return an error because we returned the HTTP
response quickly.

Performs some task to
compute the HTTP response

Creates a goroutine to publish 
the response to Kafka

Writes the 
HTTP response
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 How can we fix this issue? One idea is to not propagate the parent context.
Instead, we would call publish with an empty context:

err := publish(context.Background(), response)

Here, that would work. Regardless of how long it takes to write back the HTTP
response, we can call publish.

 But what if the context contained useful values? For example, if the context con-
tained a correlation ID used for distributed tracing, we could correlate the HTTP
request and the Kafka publication. Ideally, we would like to have a new context that is
detached from the potential parent cancellation but still conveys the values.

 The standard package doesn’t provide an immediate solution to this problem.
Hence, a possible solution is to implement our own Go context similar to the context
provided, except that it doesn’t carry the cancellation signal.

 A context.Context is an interface containing four methods:

type Context interface {
Deadline() (deadline time.Time, ok bool)
Done() <-chan struct{}
Err() error
Value(key any) any

}

The context’s deadline is managed by the Deadline method and the cancellation sig-
nal is managed via the Done and Err methods. When a deadline has passed or the con-
text has been canceled, Done should return a closed channel, whereas Err should
return an error. Finally, the values are carried via the Value method.

 Let’s create a custom context that detaches the cancellation signal from a parent
context:

type detach struct {
ctx context.Context

}

func (d detach) Deadline() (time.Time, bool) {
return time.Time{}, false

}

func (d detach) Done() <-chan struct{} {
return nil

}

func (d detach) Err() error {
return nil

}

func (d detach) Value(key any) any {
return d.ctx.Value(key)

}

Uses an empty context instead 
of the HTTP request context

Custom struct acting as a wrapper 
on top of the initial context

Delegates the get value call 
to the parent context
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Except for the Value method that calls the parent context to retrieve a value, the
other methods return a default value so the context is never considered expired or
canceled.

 Thanks to our custom context, we can now call publish and detach the cancella-
tion signal:

err := publish(detach{ctx: r.Context()}, response)

Now the context passed to publish will never expire or be canceled, but it will carry
the parent context’s values.

 In summary, propagating a context should be done cautiously. We illustrated that
in this section with an example of handling an asynchronous action based on a con-
text associated with an HTTP request. Because the context is canceled once we return
the response, the asynchronous action can also be stopped unexpectedly. Let’s bear in
mind the impacts of propagating a given context and, if necessary, that it is always pos-
sible to create a custom context for a specific action.

 The following section discusses a common concurrency mistake: starting a gorou-
tine without plans to stop it. 

9.2 #62: Starting a goroutine without knowing 
when to stop it
Goroutines are easy and cheap to start—so easy and cheap that we may not necessarily
have a plan for when to stop a new goroutine, which can lead to leaks. Not knowing
when to stop a goroutine is a design issue and a common concurrency mistake in Go.
Let’s understand why and how to prevent it.

 First, let’s quantify what a goroutine leak means. In terms of memory, a goroutine
starts with a minimum stack size of 2 KB, which can grow and shrink as needed (the
maximum stack size is 1 GB on 64-bit and 250 MB on 32-bit). Memory-wise, a gorou-
tine can also hold variable references allocated to the heap. Meanwhile, a goroutine
can hold resources such as HTTP or database connections, open files, and network
sockets that should eventually be closed gracefully. If a goroutine is leaked, these
kinds of resources will also be leaked.

 Let’s look at an example in which the point where a goroutine stops is unclear.
Here, a parent goroutine calls a function that returns a channel and then creates a
new goroutine that will keep receiving messages from this channel:

ch := foo()
go func() {

for v := range ch {
// ...

}
}()

The created goroutine will exit when ch is closed. But do we know exactly when this
channel will be closed? It may not be evident, because ch is created by the foo

Uses detach on top 
of the HTTP context
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function. If the channel is never closed, it’s a leak. So, we should always be cautious
about the exit points of a goroutine and make sure one is eventually reached.

 Let’s discuss a concrete example. We will design an application that needs to watch
some external configuration (for example, using a database connection). Here’s a
first implementation:

func main() {
newWatcher()

// Run the application
}

type watcher struct { /* Some resources */ }

func newWatcher() {
w := watcher{}
go w.watch()

}

We call newWatcher, which creates a watcher struct and spins up a goroutine in charge
of watching the configuration. The problem with this code is that when the main
goroutine exits (perhaps because of an OS signal or because it has a finite workload),
the application is stopped. Hence, the resources created by watcher aren’t closed
gracefully. How can we prevent this from happening?

 One option could be to pass to newWatcher a context that will be canceled when
main returns:

func main() {
ctx, cancel := context.WithCancel(context.Background())
defer cancel()

newWatcher(ctx)

// Run the application
}

func newWatcher(ctx context.Context) {
w := watcher{}
go w.watch(ctx)

}

We propagate the context created to the watch method. When the context is can-
celed, the watcher struct should close its resources. However, can we guarantee that
watch will have time to do so? Absolutely not—and that’s a design flaw.

 The problem is that we used signaling to convey that a goroutine had to be
stopped. We didn’t block the parent goroutine until the resources had been closed.
Let’s make sure we do:

func main() {
w := newWatcher()
defer w.close()

Creates a goroutine that watches 
some external configuration

Passes to newWatcher a context 
that will eventually cancel

Propagates this context

Defers the call to 
the close method
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// Run the application
}

func newWatcher() watcher {
w := watcher{}
go w.watch()
return w

}

func (w watcher) close() {
// Close the resources

}

watcher has a new method: close. Instead of signaling watcher that it’s time to close
its resources, we now call this close method, using defer to guarantee that the
resources are closed before the application exits.

 In summary, let’s be mindful that a goroutine is a resource like any other that must
eventually be closed to free memory or other resources. Starting a goroutine without
knowing when to stop it is a design issue. Whenever a goroutine is started, we should
have a clear plan about when it will stop. Last but not least, if a goroutine creates
resources and its lifetime is bound to the lifetime of the application, it’s probably safer
to wait for this goroutine to complete before exiting the application. This way, we can
ensure that the resources can be freed.

 Let’s now discuss one of the most common mistakes while working in Go: mishan-
dling goroutines and loop variables. 

9.3 #63: Not being careful with goroutines 
and loop variables
Mishandling goroutines and loop variables is probably one of the most common mis-
takes made by Go developers when writing concurrent applications. Let’s look at a
concrete example; then we will define the conditions of such a bug and how to pre-
vent it.

 In the following example, we initialize a slice. Then, within a closure executed as a
new goroutine, we access this element:

s := []int{1, 2, 3}

for _, i := range s {
go func() {

fmt.Print(i)
}()

}

We might expect this code to print 123 in no particular order (as there is no guaran-
tee that the first goroutine created will complete first). However, the output of this
code isn’t deterministic. For example, sometimes it prints 233 and other times 333.
What’s the reason?

Iterates over 
each element

Accesses the 
loop variable
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 In this example, we create new goroutines from a closure. As a reminder, a closure
is a function value that references variables from outside its body: here, the i variable.
We have to know that when a closure goroutine is executed, it doesn’t capture the val-
ues when the goroutine is created. Instead, all the goroutines refer to the exact same
variable. When a goroutine runs, it prints the value of i at the time fmt.Print is exe-
cuted. Hence, i may have been modified since the goroutine was launched.

 Figure 9.1 shows a possible execution when the code prints 233. Over time, the
value of i varies: 1, 2, and then 3. In each iteration, we spin up a new goroutine.
Because there’s no guarantee when each goroutine will start and complete, the result
varies as well. In this example, the first goroutine prints i when it’s equal to 2. Then
the other goroutines print i when the value is already equal to 3. Therefore, this
example prints 233. The behavior of this code isn’t deterministic.

Figure 9.1 The goroutines access an i variable that isn’t fixed but varies over time.

What are the solutions if we want each closure to access the value of i when the gorou-
tine is created? The first option, if we want to keep using a closure, involves creating a
new variable:

for _, i := range s {
val := i
go func() {

fmt.Print(val)
}()

}

Why does this code work? In each iteration, we create a new local val variable. This
variable captures the current value of i before the goroutine is created. Hence, when
each closure goroutine executes the print statement, it does so with the expected
value. This code prints 123 (again, in no particular order).

 i = 1  i = 2 Spin up
goroutine 2  i = 3 Spin up

goroutine 3
Spin up

goroutine 1

Main goroutine

Goroutine 1

Print i  (2)

Goroutine 2

Print i  (3)

Goroutine 3

Print i  (3)

Creates a variable local 
to each iteration
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 The second option no longer relies on a closure and instead uses an actual
function:

for _, i := range s {
go func(val int) {

fmt.Print(val)
}(i)

}

We still execute an anonymous function within a new a goroutine (we don’t run go
f(i), for example), but this time it isn’t a closure. The function doesn’t reference val
as a variable from outside its body; val is now part of the function input. By doing so,
we fix i in each iteration and make our application work as expected.

 We have to be cautious with goroutines and loop variables. If the goroutine is a clo-
sure that accesses an iteration variable declared from outside its body, that’s a prob-
lem. We can fix it either by creating a local variable (for example, as we have seen
using val := i before executing the goroutine) or by making the function no longer
a closure. Both options work, and there isn’t one that we should favor over the other.
Some developers may find the closure approach handier, whereas others may find the
function approach more expressive.

 What happens with a select statement on multiple channels? Let’s find out. 

9.4 #64: Expecting deterministic behavior using select 
and channels
One common mistake made by Go developers while working with channels is to make
wrong assumptions about how select behaves with multiple channels. A false assump-
tion can lead to subtle bugs that may be hard to identify and reproduce.

 Let’s imagine that we want to implement a goroutine that needs to receive from
two channels:

 messageCh for new messages to be processed.
 disconnectCh to receive notifications conveying disconnections. In that case,

we want to return from the parent function.

Of these two channels, we want to prioritize messageCh. For example, if a disconnection
occurs, we want to ensure that we have received all the messages before returning.

 We may decide to handle the prioritization like so:

for {
select {
case v := <-messageCh:

fmt.Println(v)
case <-disconnectCh:

fmt.Println("disconnection, return")
return

}
}

Executes a function that takes 
an integer as an argument

Calls this function and passes 
the current value of i

Uses the select statement to 
receive from multiple channels

Receives new 
messages

Receives 
disconnections
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We use select to receive from multiple channels. Because we want to prioritize
messageCh, we might assume that we should write the messageCh case first and the
disconnectCh case next. But does this code even work? Let’s give it a try by writing a
dummy producer goroutine that sends 10 messages and then sends a disconnection
notification:

for i := 0; i < 10; i++ {
messageCh <- i

}
disconnectCh <- struct{}{}

If we run this example, here is a possible output if messageCh is buffered:

0
1
2
3
4
disconnection, return

Instead of consuming the 10 messages, we only received 5 of them. What’s the reason?
It lies in the specification of the select statement with multiple channels (https://
go.dev/ref/spec):

If one or more of the communications can proceed, a single one that can proceed is chosen
via a uniform pseudo-random selection.

Unlike a switch statement, where the first case with a match wins, the select state-
ment selects randomly if multiple options are possible.

 This behavior might look odd at first, but there’s a good reason for it: to prevent
possible starvation. Suppose the first possible communication chosen is based on the
source order. In that case, we may fall into a situation where, for example, we only
receive from one channel because of a fast sender. To prevent this, the language
designers decided to use a random selection.

 Coming back to our example, even though case v := <-messageCh is first in
source order, if there’s a message in both messageCh and disconnectCh, there is no
guarantee about which case will be chosen. For that reason, the example’s behavior
isn’t deterministic. We may receive 0 messages, or 5, or 10.

 How can we overcome this situation? There are different possibilities if we want to
receive all the messages before returning in case of a disconnection.

 If there’s a single producer goroutine, we have two options:

 Make messageCh an unbuffered channel instead of a buffered channel. Because
the sender goroutine blocks until the receiver goroutine is ready, this approach
guarantees that all the messages from messageCh are received before the dis-
connection from disconnectCh.

 Use a single channel instead of two channels. For example, we can define a
struct that conveys either a new message or a disconnection. Channels

https://go.dev/ref/spec
https://go.dev/ref/spec
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guarantee that the order for the messages sent is the same as for the messages
received, so we can ensure that the disconnection is received last.

If we fall into the case where we have multiple producer goroutines, it may be impossi-
ble to guarantee which one writes first. Hence, whether we have an unbuffered
messageCh channel or a single channel, it will lead to a race condition among the pro-
ducer goroutines. In that case, we can implement the following solution:

1 Receive from either messageCh or disconnectCh.
2 If a disconnection is received

– Read all the existing messages in messageCh, if any.
– Then return.

Here is the solution:

for {
select {
case v := <-messageCh:

fmt.Println(v)
case <-disconnectCh:

for {
select {
case v := <-messageCh:

fmt.Println(v)
default:

fmt.Println("disconnection, return")
return

}
}

}
}

This solution uses an inner for/select with two cases: one on messageCh and a
default case. Using default in a select statement is chosen only if none of the other
cases match. In this case, it means we will return only after we have received all the
remaining messages in messageCh.

 Let’s look at an example of how this code works. We will consider the case where
we have two messages in messageCh and one disconnection in disconnectCh, as
shown in figure 9.2.

Inner for/select
Reads the remaining 
messages

Then 
returns

messageCh

Receiver

12

disconnectCh

select {
  case v := <-messageCh:
  case <-disconnectCh:
}

Figure 9.2
Initial state
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In this situation, as we have said, select chooses one case or the other randomly. Let’s
assume select chooses the second case; see figure 9.3.

Figure 9.3 Receiving the disconnection

So, we receive the disconnection and enter in the inner select (figure 9.4). Here, as
long as messages remain in messageCh, select will always prioritize the first case over
default (figure 9.5).

Figure 9.4 Inner select

Figure 9.5 Receiving the remaining messages
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Receiver
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disconnectCh

select {
  case v := <-messageCh:
  case <-disconnectCh:
}

messageCh

Receiver
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disconnectCh

select {
  case v := <-messageCh:
  default:
}

messageCh

Receiver12

disconnectCh

select {
  case v := <-messageCh:
  default:
}
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Once we have received all the messages from messageCh, select does not block and
chooses the default case (figure 9.6). Hence, we return and stop the goroutine.

Figure 9.6 Default case

This is a way to ensure that we receive all the remaining messages from a channel with
a receiver on multiple channels. Of course, if a messageCh is sent after the goroutine
has returned (for example, if we have multiple producer goroutines), we will miss this
message.

 When using select with multiple channels, we must remember that if multiple
options are possible, the first case in the source order does not automatically win.
Instead, Go selects randomly, so there’s no guarantee about which option will be cho-
sen. To overcome this behavior, in the case of a single producer goroutine, we can use
either unbuffered channels or a single channel. In the case of multiple producer
goroutines, we can use inner selects and default to handle prioritizations.

 The following section discusses a common type of channel: notification channels. 

9.5 #65: Not using notification channels
Channels are a mechanism for communicating across goroutines via signaling. A sig-
nal can be either with or without data. But for Go programmers, it’s not always
straightforward how to tackle the latter case.

 Let’s look at a concrete example. We will create a channel that will notify us when-
ever a certain disconnection occurs. One idea is to handle it as a chan bool:

disconnectCh := make(chan bool)

Now, let’s say we interact with an API that provides us with such a channel. Because it’s
a channel of Booleans, we can receive either true or false messages. It’s probably
clear what true conveys. But what does false mean? Does it mean we haven’t been
disconnected? And in this case, how frequently will we receive such a signal? Does it
mean we have reconnected?

 Should we even expect to receive false? Perhaps we should only expect to receive
true messages. If that’s the case, meaning we don’t need a specific value to convey

messageCh

Receiver

disconnectCh

select {
  case v := <-messageCh:
  default:
}
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some information, we need a channel without data. The idiomatic way to handle it is a
channel of empty structs: chan struct{}.

 In Go, an empty struct is a struct without any fields. Regardless of the architecture,
it occupies zero bytes of storage, as we can verify using unsafe.Sizeof:

var s struct{}
fmt.Println(unsafe.Sizeof(s))

0

NOTE Why not use an empty interface (var i interface{})? Because an
empty interface isn’t free; it occupies 8 bytes on 32-bit architecture and 16
bytes on 64-bit architecture.

An empty struct is a de facto standard to convey an absence of meaning. For example,
if we need a hash set structure (a collection of unique elements), we should use an
empty struct as a value: map[K]struct{}.

 Applied to channels, if we want to create a channel to send notifications without
data, the appropriate way to do so in Go is a chan struct{}. One of the best-known
utilizations of a channel of empty structs comes with Go contexts, which we discuss in
this chapter.

 A channel can be with or without data. If we want to design an idiomatic API in
regard to Go standards, let’s remember that a channel without data should be
expressed with a chan struct{} type. This way, it clarifies for receivers that they
shouldn’t expect any meaning from a message’s content—only the fact that they have
received a message. In Go, such channels are called notification channels.

 The next section discusses how Go behaves with nil channels and its rationale for
using them. 

9.6 #66: Not using nil channels
A common mistake while working with Go and channels is forgetting that nil channels
can sometimes be helpful. So what are nil channels, and why should we care about
them? That is the scope of this section.

 Let’s start with a goroutine that creates a nil channel and waits to receive a mes-
sage. What should this code do?

var ch chan int
<-ch

ch is a chan int type. The zero value of a channel being nil, ch is nil. The goroutine
won’t panic; however, it will block forever.

 The principle is the same if we send a message to a nil channel. This goroutine
blocks forever:

var ch chan int
ch <- 0

Nil channel
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Then what’s the purpose of Go allowing messages to be received from or sent to a nil
channel? We will discuss this question with a concrete example.

 We will implement a func merge(ch1, ch2 <-chan int) <-chan int function to
merge two channels into a single channel. By merging them (see figure 9.7), we mean
each message received in either ch1 or ch2 will be sent to the channel returned.

How can we do this in Go? Let’s first write a naive implementation that spins up a
goroutine and receives from both channels (the resulting channel will be a buffered
channel with one element):

func merge(ch1, ch2 <-chan int) <-chan int {
ch := make(chan int, 1)

go func() {
for v := range ch1 {

ch <- v
}
for v := range ch2 {

ch <- v
}
close(ch)

}()

return ch
}

Within another goroutine, we receive from both channels, and each message ends up
being published in ch.

 The main issue with this first version is that we receive from ch1 and then we receive
from ch2. It means we won’t receive from ch2 until ch1 is closed. This doesn’t fit our
use case, as ch1 may be open forever, so we want to receive from both channels simul-
taneously.

 Let’s write an improved version with concurrent receivers using select:

func merge(ch1, ch2 <-chan int) <-chan int {
ch := make(chan int, 1)

go func() {
for {

select {

Merge

ch1

ch2 Figure 9.7 Merging two 
channels into one

Receives from ch1 and publishes 
to the merged channel

Receives from ch2 and publishes 
to the merged channel

Receives concurrently 
to both ch1 and ch2
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case v := <-ch1:
ch <- v

case v := <-ch2:
ch <- v

}
}
close(ch)

}()

return ch
}

The select statement lets a goroutine wait on multiple operations at the same time.
Because we wrap it inside a for loop, we should repeatedly receive messages from one
or the other channel, correct? But does this code even work?

 One problem is that the close(ch) statement is unreachable. Looping over a
channel using the range operator breaks when the channel is closed. However, the
way we implemented a for/select doesn’t catch when either ch1 or ch2 is closed.
Even worse, if at some point ch1 or ch2 is closed, here’s what a receiver of the merged
channel will receive when logging the value:

received: 0
received: 0
received: 0
received: 0
received: 0
...

So a receiver will repeatedly receive an integer equal to zero. Why? Receiving from a
closed channel is a non-blocking operation:

ch1 := make(chan int)
close(ch1)
fmt.Print(<-ch1, <-ch1)

Whereas we may expect this code to either panic or block, instead it runs and prints
0 0. What we catch here is the closure event, not an actual message. To check whether
we receive a message or a closure signal, we must do it this way:

ch1 := make(chan int)
close(ch1)
v, open := <-ch1
fmt.Print(v, open)

Using the open Boolean, we can now see whether ch1 is still open:

0 false

Meanwhile, we also assign 0 to v because it’s the zero value of an integer.
 Let’s get back to our second solution. We said that it doesn’t work very well if ch1 is

closed; for example, because the select case is case v := <-ch1, we will keep enter-
ing this case and publishing a zero integer to the merged channel.

Assigns to open whether 
or not the channel is open
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 Let’s take a step back and see what the best way would be to deal with this problem
(see figure 9.8). We have to receive from both channels. Then, either

 ch1 is closed first, so we have to receive from ch2 until it is closed.
 ch2 is closed first, so we have to receive from ch1 until it is closed.

Figure 9.8 Handling different cases depending on whether ch1 or ch2 is closed first

How can we implement this in Go? Let’s write a version like what we might do using a
state machine approach and Booleans:

func merge(ch1, ch2 <-chan int) <-chan int {
ch := make(chan int, 1)
ch1Closed := false
ch2Closed := false

go func() {
for {

select {
case v, open := <-ch1:

if !open {
ch1Closed = true
break

}
ch <- v

case v, open := <-ch2:
if !open {

ch2Closed = true
break

}
ch <- v

}

if ch1Closed && ch2Closed {
close(ch)
return

}
}

}()

return ch
}

ch2 is closed

ch1 is closed

Receive from
ch1 and ch2

ch1 is closed

Receive from
ch1 only

ch2 is closed
Receive from

ch2 only

Close ch and
return

Handles if ch1 
is closed

Handles if 
ch2 is closed

Closes and returns if both 
channels are closed
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We define two Booleans ch1Closed and ch2Closed. Once we receive a message from a
channel, we check whether it’s a closure signal. If so, we handle it by marking the
channel as closed (for example, ch1Closed = true). After both channels are closed,
we close the merged channel and stop the goroutine.

 What is the problem with this code, apart from the fact that it’s starting to get com-
plex? There is one major issue: when one of the two channels is closed, the for loop
will act as a busy-waiting loop, meaning it will keep looping even though no new mes-
sage is received in the other channel. We have to keep in mind the behavior of the
select statement in our example. Let’s say ch1 is closed (so we won’t receive any new
messages here); when we reach select again, it will wait for one of these three condi-
tions to happen:

 ch1 is closed.
 ch2 has a new message.
 ch2 is closed.

The first condition, ch1 is closed, will always be valid. Therefore, as long as we don’t
receive a message in ch2 and this channel isn’t closed, we will keep looping over the
first case. This will lead to wasting CPU cycles and must be avoided. Therefore, our
solution isn’t viable.

 We could try to enhance the state machine part and implement sub-for/select
loops within each case. But this would make our code even more complex and harder
to understand.

 It’s the right time to come back to nil channels. As we mentioned, receiving from a
nil channel will block forever. How about using this idea in our solution? Instead of
setting a Boolean after a channel is closed, we will assign this channel to nil. Let’s write
the final version:

func merge(ch1, ch2 <-chan int) <-chan int {
ch := make(chan int, 1)

go func() {
for ch1 != nil || ch2 != nil {

select {
case v, open := <-ch1:

if !open {
ch1 = nil
break

}
ch <- v

case v, open := <-ch2:
if !open {

ch2 = nil
break

}
ch <- v

}
}
close(ch)

}()

Continues if at least 
one channel isn’t nil

Assigns ch1 to a nil 
channel once closed

Assigns ch2 to a nil 
channel once closed
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return ch
}

First, we loop as long as at least one channel is still open. Then, for example, if ch1 is
closed, we assign ch1 to nil. Hence, during the next loop iteration, the select state-
ment will only wait for two conditions:

 ch2 has a new message.
 ch2 is closed.

ch1 is no longer part of the equation as it’s a nil channel. Meanwhile, we keep the
same logic for ch2 and assign it to nil after it’s closed. Finally, when both channels are
closed, we close the merged channel and return. Figure 9.9 shows a model of this
implementation.

Figure 9.9 Receiving from both channels. If one is closed, we assign it to nil so we only receive from 
one channel.

This is the implementation we’ve been waiting for. We cover all the different cases,
and it doesn’t require a busy loop that will waste CPU cycles.

 In summary, we have seen that waiting or sending to a nil channel is a blocking
action, and this behavior isn’t useless. As we have seen throughout the example of
merging two channels, we can use nil channels to implement an elegant state
machine that will remove one case from a select statement. Let’s keep this idea in
mind: nil channels are useful in some conditions and should be part of the Go devel-
oper’s toolset when dealing with concurrent code.

 In the next section, we discuss what size to set when creating a channel. 
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Is ch1 open?
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9.7 #67: Being puzzled about channel size
When we create a channel using the make built-in function, the channel can be either
unbuffered or buffered. Related to this topic, two mistakes happen fairly frequently:
being confused about when to use one or the other; and, if we use a buffered channel,
what size to use. Let’s examine these points.

 First, let’s remember the core concepts. An unbuffered channel is a channel with-
out any capacity. It can be created by either omitting the size or providing a 0 size:

ch1 := make(chan int)
ch2 := make(chan int, 0)

Using an unbuffered channel (sometimes called a synchronous channel), the sender will
block until the receiver receives data from the channel.

 Conversely, a buffered channel has a capacity, and it must be created with a size
greater than or equal to 1:

ch3 := make(chan int, 1)

With a buffered channel, a sender can send messages while the channel isn’t full.
Once the channel is full, it will block until a receiver goroutine receives a message. For
example:

ch3 := make(chan int, 1)
ch3 <-1
ch3 <-2

The first send isn’t blocking, whereas the second one is, as the channel is full at this
stage.

 Let’s take a step back and discuss the fundamental differences between these two
channel types. Channels are a concurrency abstraction to enable communication
among goroutines. But what about synchronization? In concurrency, synchronization
means we can guarantee that multiple goroutines will be in a known state at some
point. For example, a mutex provides synchronization because it ensures that only
one goroutine can be in a critical section at the same time. Regarding channels:

 An unbuffered channel enables synchronization. We have the guarantee that
two goroutines will be in a known state: one receiving and another sending a
message.

 A buffered channel doesn’t provide any strong synchronization. Indeed, a pro-
ducer goroutine can send a message and then continue its execution if the
channel isn’t full. The only guarantee is that a goroutine won’t receive a mes-
sage before it is sent. But this is only a guarantee because of causality (you don’t
drink your coffee before you prepare it).

It’s essential to keep in mind this fundamental distinction. Both channel types enable
communication, but only one provides synchronization. If we need synchronization,
we must use unbuffered channels. Unbuffered channels may also be easier to reason

Non-blocking
Blocking
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about: buffered channels can lead to obscure deadlocks that would be immediately
apparent with unbuffered channels.

 There are other cases where unbuffered channels are preferable: for example, in
the case of a notification channel where the notification is handled via a channel clo-
sure (close(ch)). Here, using a buffered channel wouldn’t bring any benefits.

 But what if we need a buffered channel? What size should we provide? The default
value we should use for buffered channels is its minimum: 1. So, we may approach the
problem from this standpoint: is there any good reason not to use a value of 1? Here’s
a list of possible cases where we should use another size:

 While using a worker pooling-like pattern, meaning spinning a fixed number of
goroutines that need to send data to a shared channel. In that case, we can tie
the channel size to the number of goroutines created.

 When using channels for rate-limiting problems. For example, if we need to
enforce resource utilization by bounding the number of requests, we should set
up the channel size according to the limit.

If we are outside of these cases, using a different channel size should be done cau-
tiously. It’s pretty common to see a codebase using magic numbers for setting a chan-
nel size:

ch := make(chan int, 40)

Why 40? What’s the rationale? Why not 50 or even 1000? Setting such a value should
be done for a good reason. Perhaps it was decided following a benchmark or perfor-
mance tests. In many cases, it’s probably a good idea to comment on the rationale for
such a value.

 Let’s bear in mind that deciding about an accurate queue size isn’t an easy prob-
lem. First, it’s a balance between CPU and memory. The smaller the value, the more
CPU contention we can face. But the bigger the value, the more memory will need to
be allocated.

 Another point to consider is the one mentioned in a 2011 white paper about LMAX
Disruptor (Martin Thompson et al.; https://lmax-exchange.github.io/disruptor/files/
Disruptor-1.0.pdf):

Queues are typically always close to full or close to empty due to the differences in pace
between consumers and producers. They very rarely operate in a balanced middle ground
where the rate of production and consumption is evenly matched.

So, it’s rare to find a channel size that will be steadily accurate, meaning an accurate
value that won’t lead to too much contention or a waste of memory allocation.

 This is why, except for the cases described, it’s usually best to start with a default
channel size of 1. When unsure, we can still measure it using benchmarks, for
example.

 As with almost any topic in programming, exceptions can be found. Therefore, the
goal of this section isn’t to be exhaustive but to give directions about what size we

https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf
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should use while creating channels. Synchronization is a guarantee with unbuffered
channels, not buffered channels. Furthermore, if we need a buffered channel, we
should remember to use one as the default value for the channel size. We should only
decide to use another value with care using an accurate process, and the rationale
should probably be commented. Last but not least, let’s remember that choosing buff-
ered channels may also lead to obscure deadlocks that would be easier to spot with
unbuffered channels.

 In the next section, we discuss possible side effects when dealing with string for-
matting. 

9.8 #68: Forgetting about possible side effects with string 
formatting
Formatting strings is a common operation for developers, whether to return an error
or log a message. However, it’s pretty easy to forget the potential side effects of string
formatting while working in a concurrent application. This section will see two con-
crete examples: one taken from the etcd repository leading to a data race and another
leading to a deadlock situation.

9.8.1 etcd data race

etcd is a distributed key-value store implemented in Go. It is used in many projects,
including Kubernetes, to store all cluster data. It provides an API to interact with a
cluster. For example, the Watcher interface is used to be notified of data changes:

type Watcher interface {
// Watch watches on a key or prefix. The watched events will be returned
// through the returned channel.
// ...
Watch(ctx context.Context, key string, opts ...OpOption) WatchChan
Close() error

}

The API relies on gRPC streaming. If you’re not familiar with it, it’s a technology to
continuously exchange data between a client and a server. The server has to maintain
a list of all the clients using this feature. Hence, the Watcher interface is implemented
by a watcher struct containing all the active streams:

type watcher struct {
// ...

// streams hold all the active gRPC streams keyed by ctx value.
streams map[string]*watchGrpcStream

}

The map’s key is based on the context provided when calling the Watch method:

func (w *watcher) Watch(ctx context.Context, key string,
opts ...OpOption) WatchChan {
// ...
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ctxKey := fmt.Sprintf("%v", ctx)
// ...
wgs := w.streams[ctxKey]
// ...

ctxKey is the map’s key, formatted from the context provided by the client. When for-
matting a string from a context created with values (context.WithValue), Go will
read all the values in this context. In this case, the etcd developers found that the con-
text provided to Watch was a context containing mutable values (for example, a
pointer to a struct) in some conditions. They found a case where one goroutine was
updating one of the context values, whereas another was executing Watch, hence
reading all the values in this context. This led to a data race.

 The fix (https://github.com/etcd-io/etcd/pull/7816) was to not rely on
fmt.Sprintf to format the map’s key to prevent traversing and reading the chain of
wrapped values in the context. Instead, the solution was to implement a custom
streamKeyFromCtx function to extract the key from a specific context value that
wasn’t mutable.

NOTE A potentially mutable value in a context can introduce additional com-
plexity to prevent data races. This is probably a design decision to be consid-
ered with care.

This example illustrates that we have to be careful about the side effects of string for-
matting in concurrent applications—in this case, a data race. In the following exam-
ple, we will see a side effect leading to a deadlock situation. 

9.8.2 Deadlock

Let’s say we have to deal with a Customer struct that can be accessed concurrently. We
will use a sync.RWMutex to protect the accesses, whether reading or writing. We will
implement an UpdateAge method to update the customer’s age and check that the
age is positive. Meanwhile, we will implement the Stringer interface.

 Can you see what the problem is in this code with a Customer struct exposing an
UpdateAge method and implementing the fmt.Stringer interface?

type Customer struct {
mutex sync.RWMutex
id string
age int

}

func (c *Customer) UpdateAge(age int) error {
c.mutex.Lock()
defer c.mutex.Unlock()

if age < 0 {
return fmt.Errorf("age should be positive for customer %v", c)

}

Formats the map key depending 
on the provided context

Uses a sync.RWMutex to 
protect concurrent accesses

Locks and defers unlock 
as we update Customer Returns an error 

if age is negative

https://github.com/etcd-io/etcd/pull/7816
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c.age = age
return nil

}

func (c *Customer) String() string {
c.mutex.RLock()
defer c.mutex.RUnlock()
return fmt.Sprintf("id %s, age %d", c.id, c.age)

}

The problem here may not be straightforward. If the provided age
is negative, we return an error. Because the error is formatted,
using the %s directive on the receiver, it will call the String method
to format Customer. But because UpdateAge already acquires the
mutex lock, the String method won’t be able to acquire it (see fig-
ure 9.10).

 Hence, this leads to a deadlock situation. If all goroutines are
also asleep, it leads to a panic:

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_SemacquireMutex(0xc00009818c, 0x10b7d00, 0x0)
...

How should we deal with this situation? First, it illustrates how unit
testing is important. In that case, we may argue that creating a test
with a negative age isn’t worth it, as the logic is quite simple. How-
ever, without proper test coverage, we might miss this issue.

 One thing that could be improved here is to restrict the scope
of the mutex locking. In UpdateAge, we first acquire the lock and
check whether the input is valid. We should do the opposite: first
check the input, and if the input is valid, acquire the lock. This has
the benefit of reducing the potential side effects but can also have
an impact performance-wise—a lock is acquired only when it’s
required, not before:

func (c *Customer) UpdateAge(age int) error {
if age < 0 {

return fmt.Errorf("age should be positive for customer %v", c)
}

c.mutex.Lock()
defer c.mutex.Unlock()

c.age = age
return nil

}

Locks and defers unlock 
as we read Customer

Lock mutex

If negative

Check age

Format an error

Call String()
method

Lock mutex

Figure 9.10
UpdateAge 
execution if age 
is negative

Locks the mutex only when 
input has been validated
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In our case, locking the mutex only after the age has been checked avoids the dead-
lock situation. If the age is negative, String is called without locking the mutex
beforehand.

 In some conditions, though, it’s not straightforward or possible to restrict the
scope of a mutex lock. In these conditions, we have to be extremely careful with string
formatting. Perhaps we want to call another function that doesn’t try to acquire the
mutex, or we only want to change the way we format the error so that it doesn’t call
the String method. For example, the following code doesn’t lead to a deadlock
because we only log the customer ID in accessing the id field directly:

func (c *Customer) UpdateAge(age int) error {
c.mutex.Lock()
defer c.mutex.Unlock()

if age < 0 {
return fmt.Errorf("age should be positive for customer id %s", c.id)

}

c.age = age
return nil

}

We have seen two concrete examples, one formatting a key from a context and
another returning an error that formats a struct. In both cases, formatting a string
leads to a problem: a data race and a deadlock situation, respectively. Therefore, in
concurrent applications, we should remain cautious about the possible side effects of
string formatting.

 The following section discusses the behavior of append when it is called
concurrently. 

9.9 #69: Creating data races with append
We mentioned earlier what a data race is and what the impacts are. Now, let’s look at
slices and whether adding an element to a slice using append is data-race-free. Spoiler?
It depends.

 In the following example, we will initialize a slice and create two goroutines that
will use append to create a new slice with an additional element:

s := make([]int, 1)

go func() {
s1 := append(s, 1)
fmt.Println(s1)

}()

go func() {
s2 := append(s, 1)
fmt.Println(s2)

}()

Do you believe this example has a data race? The answer is no.

In a new goroutine, appends 
a new element on s

Same
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 We have to recall some slice fundamentals described in chapter 3. A slice is backed
by an array and has two properties: length and capacity. The length is the number of
available elements in the slice, whereas the capacity is the total number of elements in
the backing array. When we use append, the behavior depends on whether the slice is
full (length == capacity). If it is, the Go runtime creates a new backing array to add the
new element; otherwise, the runtime adds it to the existing backing array.

 In this example, we create a slice with make([]int, 1). The code creates a one-
length, one-capacity slice. Thus, because the slice is full, using append in each gorou-
tine returns a slice backed by a new array. It doesn’t mutate the existing array; hence,
it doesn’t lead to a data race.

 Now, let’s run the same example with a slight change in how we initialize s.
Instead of creating a slice with a length of 1, we create it with a length of 0 but a
capacity of 1:

s := make([]int, 0, 1)

// Same

How about this new example? Does it contain a data race? The answer is yes:

==================
WARNING: DATA RACE
Write at 0x00c00009e080 by goroutine 10:

...

Previous write at 0x00c00009e080 by goroutine 9:
...

==================

We create a slice with make([]int, 0, 1). Therefore, the array isn’t full. Both goroutines
attempt to update the same index of the backing array (index 1), which is a data race.

 How can we prevent the data race if we want both goroutines to work on a slice
containing the initial elements of s plus an extra element? One solution is to create a
copy of s:

s := make([]int, 0, 1)

go func() {
sCopy := make([]int, len(s), cap(s))
copy(sCopy, s)

s1 := append(sCopy, 1)
fmt.Println(s1)

}()

go func() {
sCopy := make([]int, len(s), cap(s))
copy(sCopy, s)

s2 := append(sCopy, 1)
fmt.Println(s2)

}()

Changes the way the 
slice is initialized

Makes a copy and uses 
append on the copied slice

Same
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Both goroutines make a copy of the slice. Then they use append on the slice copy, not
the original slice. This prevents a data race because both goroutines work on isolated
data.

While working with slices in concurrent contexts, we must recall that using append on
slices isn’t always race-free. Depending on the slice and whether it’s full, the behavior
will change. If the slice is full, append is race-free. Otherwise, multiple goroutines may
compete to update the same array index, resulting in a data race.

 In general, we shouldn’t have a different implementation depending on whether
the slice is full. We should consider that using append on a shared slice in concurrent
applications can lead to a data race. Hence, it should be avoided.

 Now, let’s discuss a common mistake with inaccurate mutex locks on top of slices
and maps. 

9.10 #70: Using mutexes inaccurately with slices and maps
While working in concurrent contexts where data is both mutable and shared, we
often have to implement protected accesses around data structures using mutexes. A
common mistake is to use mutexes inaccurately when working with slices and maps.
Let’s look at a concrete example and understand the potential problems.

 We will implement a Cache struct used to handle caching for customer balances.
This struct will contain a map of balances per customer ID and a mutex to protect
concurrent accesses:

type Cache struct {
mu sync.RWMutex
balances map[string]float64

}

Data races with slices and maps
How much do data races impact slices and maps? When we have multiple goroutines
the following is true:

 Accessing the same slice index with at least one goroutine updating the value
is a data race. The goroutines access the same memory location.

 Accessing different slice indices regardless of the operation isn’t a data race;
different indices mean different memory locations.

 Accessing the same map (regardless of whether it’s the same or a different
key) with at least one goroutine updating it is a data race. Why is this differ-
ent from a slice data structure? As we mentioned in chapter 3, a map is an
array of buckets, and each bucket is a pointer to an array of key-value pairs. A
hashing algorithm is used to determine the array index of the bucket.
Because this algorithm contains some randomness during the map initializa-
tion, one execution may lead to the same array index, whereas another exe-
cution may not. The race detector handles this case by raising a warning
regardless of whether an actual data race occurs.
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NOTE This solution uses a sync.RWMutex to allow multiple readers as long as
there are no writers.

Next, we add an AddBalance method that mutates the balances map. The mutation is
done in a critical section (within a mutex lock and a mutex unlock):

func (c *Cache) AddBalance(id string, balance float64) {
c.mu.Lock()
c.balances[id] = balance
c.mu.Unlock()

}

Meanwhile, we have to implement a method to calculate the average balance for all
the customers. One idea is to handle a minimal critical section this way:

func (c *Cache) AverageBalance() float64 {
c.mu.RLock()
balances := c.balances
c.mu.RUnlock()

sum := 0.
for _, balance := range balances {

sum += balance
}
return sum / float64(len(balances))

}

First we create a copy of the map to a local balances variable. Only the copy is done in
the critical section to iterate over each balance and calculate the average outside of the
critical section. Does this solution work?

 If we run a test using the -race flag with two concurrent goroutines, one calling
AddBalance (hence mutating balances) and another calling AverageBalance, a data
race occurs. What’s the problem here?

 Internally, a map is a runtime.hmap struct containing mostly metadata (for exam-
ple, a counter) and a pointer referencing data buckets. So, balances := c.balances
doesn’t copy the actual data. It’s the same principle with a slice:

s1 := []int{1, 2, 3}
s2 := s1
s2[0] = 42
fmt.Println(s1)

Printing s1 returns [42 2 3] even though we modify s2. The reason is that s2 := s1
creates a new slice: s2 has the same length and the same capacity and is backed by the
same array as s1.

 Coming back to our example, we assign to balances a new map referencing the
same data buckets as c.balances. Meanwhile, the two goroutines perform operations
on the same data set, and one of them mutates it. Hence, it’s a data race. How can we
fix the data race? We have two options.

Creates a copy of 
the balances map

Iterates over the copy, outside 
of the critical section
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 If the iteration operation isn’t heavy (that’s the case here, as we perform an incre-
ment operation), we should protect the whole function:

func (c *Cache) AverageBalance() float64 {
c.mu.RLock()
defer c.mu.RUnlock()

sum := 0.
for _, balance := range c.balances {

sum += balance
}
return sum / float64(len(c.balances))

}

The critical section now encompasses the whole function, including the iterations.
This prevents data races.

 Another option, if the iteration operation isn’t lightweight, is to work on an actual
copy of the data and protect only the copy:

func (c *Cache) AverageBalance() float64 {
c.mu.RLock()
m := make(map[string]float64, len(c.balances))
for k, v := range c.balances {

m[k] = v
}
c.mu.RUnlock()

sum := 0.
for _, balance := range m {

sum += balance
}
return sum / float64(len(m))

}

Once we have made a deep copy, we release the mutex. The iterations are done on the
copy outside of the critical section.

 Let’s think about this solution. We have to iterate twice on the map values: once to
copy and once to perform the operations (here, the increments). But the critical sec-
tion is only the map copy. Therefore, this solution can be a good fit if and only if an
operation isn’t fast. For example, if an operation requires calling an external database,
this solution will probably be more efficient. It’s impossible to define a threshold
when choosing one solution or the other as the choice depends on factors such as the
number of elements and the average size of the struct.

 In summary, we have to be careful with the boundaries of a mutex lock. In this sec-
tion, we have seen why assigning an existing map (or an existing slice) to a map isn’t
enough to protect against data races. The new variable, whether a map or a slice, is
backed by the same data set. There are two leading solutions to prevent this: protect
the whole function, or work on a copy of the actual data. In all cases, let’s be cautious
when designing critical sections and make sure the boundaries are accurately defined.

Unlocks when 
the function returns

Copies 
the map
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 Let’s now discuss a common mistake while using sync.WaitGroup. 

9.11 #71: Misusing sync.WaitGroup
sync.WaitGroup is a mechanism to wait for n operations to complete; generally, we
use it to wait for n goroutines to complete. Let’s first recall the public API; then we will
look at a pretty frequent mistake leading to non-deterministic behavior.

 A wait group can be created with the zero value of sync.WaitGroup:

wg := sync.WaitGroup{}

Internally, a sync.WaitGroup holds an internal counter initialized by default to 0. We
can increment this counter using the Add(int) method and decrement it using
Done() or Add with a negative value. If we want to wait for the counter to be equal to 0,
we have to use the Wait() method that is blocking.

NOTE The counter cannot be negative, or the goroutine will panic.

In the following example, we will initialize a wait group, start three goroutines that will
update a counter atomically, and then wait for them to complete. We want to wait for
these three goroutines to print the value of the counter (which should be 3). Can you
guess whether there’s an issue with this code?

wg := sync.WaitGroup{}
var v uint64

for i := 0; i < 3; i++ {
go func() {

wg.Add(1)
atomic.AddUint64(&v, 1)
wg.Done()

}()
}

wg.Wait()
fmt.Println(v)

If we run this example, we get a non-deterministic value: the code can print any value
from 0 to 3. Also, if we enable the -race flag, Go will even catch a data race. How is
this possible, given that we are using the sync/atomic package to update v? What’s
wrong with this code?

 The problem is that wg.Add(1) is called within the newly created goroutine, not in
the parent goroutine. Hence, there is no guarantee that we have indicated to the wait
group that we want to wait for three goroutines before calling wg.Wait().

 Figure 9.11 shows a possible scenario when the code prints 2. In this scenario, the
main goroutine spins up three goroutines. But the last goroutine is executed after the
two first goroutines have already called wg.Done(), so, the parent goroutine is already
unlocked. Therefore, in this scenario, when the main goroutine reads v, it’s equal to
2. The race detector can also detect unsafe accesses to v.

Creates 
a goroutine Increments the wait 

group counter

Atomically 
increments vDecrements the

wait group counter

Waits until all the goroutines have 
incremented v before printing it
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Figure 9.11 The last goroutine calls wg.Add(1) after the main goroutine is already unblocked.

When dealing with goroutines, it’s crucial to remember that the execution isn’t deter-
ministic without synchronization. For example, the following code could print either
ab or ba:

go func() {
fmt.Print("a")

}()
go func() {

fmt.Print("b")
}()

Both goroutines can be assigned to different threads, and there’s no guarantee which
thread will be executed first.

 The CPU has to use a memory fence (also called a memory barrier) to ensure order. Go
provides different synchronization techniques for implementing memory fences: for
example, sync.WaitGroup enables a happens-before relationship between wg.Add and
wg.Wait.

 Coming back to our example, there are two options to fix our issue. First, we can
call wg.Add before the loop with 3:

wg := sync.WaitGroup{}
var v uint64

wg.Add(3)
for i := 0; i < 3; i++ {

go func() {
// ...

}()
}

// ...

Or, second, we can call wg.Add during each loop iteration before spinning up the
child goroutines:

Main goroutine
Spin up

goroutine 1
Spin up

goroutine 2
Spin up

goroutine 3

Goroutine 1

wg.Wait()

wg.Add(1)
wg counter = 1

wg.Done()
wg counter = 1

Increment v

Goroutine 2
wg.Add(1)

wg counter = 2
wg.Done()

wg counter = 0
Increment v

Goroutine 3

Read v
Print 2

Waiting

At this stage, the wg counter is equal to 0.
Hence, it unblocks the main goroutine.

wg.Add(1)
wg counter = 1

wg.Done()
wg counter = 0

Increment v
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wg := sync.WaitGroup{}
var v uint64

for i := 0; i < 3; i++ {
wg.Add(1)
go func() {

// ...
}()

}

// ...

Both solutions are fine. If the value we want to set eventually to the wait group counter
is known in advance, the first solution prevents us from having to call wg.Add multiple
times. However, it requires making sure the same count is used everywhere to avoid
subtle bugs.

 Let’s be cautious not to reproduce this common mistake made by Go developers.
When using a sync.WaitGroup, the Add operation must be done before spinning up a
goroutine in the parent goroutine, whereas the Done operation must be done within
the goroutine.

 The following section discusses another primitive of the sync package: sync.Cond. 

9.12 #72: Forgetting about sync.Cond
Among the synchronization primitives in the sync package, sync.Cond is probably the
least used and understood. However, it provides features that we can’t achieve with
channels. This section goes through a concrete example to show when sync.Cond can
be helpful and how to use it.

 The example in this section implements a donation goal mechanism: an applica-
tion that raises alerts whenever specific goals are reached. We will have one goroutine
in charge of incrementing a balance (an updater goroutine). In contrast, other gor-
outines will receive updates and print a message whenever a specific goal is reached
(listener goroutines). For example, one goroutine is waiting for a $10 donation goal,
whereas another is waiting for a $15 donation goal.

 One first naive solution uses mutexes. The updater goroutine increments the bal-
ance every second. On the other side, the listener goroutines loop until their dona-
tion goal is met:

type Donation struct {
mu sync.RWMutex
balance int

}
donation := &Donation{}

// Listener goroutines
f := func(goal int) {

donation.mu.RLock()
for donation.balance < goal {

donation.mu.RUnlock()
donation.mu.RLock()

Creates and instantiates a 
Donation struct containing the 
current balance and a mutex

Creates 
a closure

Checks if the goal 
is reached
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}
fmt.Printf("$%d goal reached\n", donation.balance)
donation.mu.RUnlock()

}
go f(10)
go f(15)

// Updater goroutine
go func() {

for {
time.Sleep(time.Second)
donation.mu.Lock()
donation.balance++
donation.mu.Unlock()

}
}()

We protect the accesses to the shared donation.balance variable using the mutex. If
we run this example, it works as expected:

$10 goal reached
$15 goal reached

The main issue—and what makes this a terrible implementation—is the busy loop.
Each listener goroutine keeps looping until its donation goal is met, which wastes a lot
of CPU cycles and makes the CPU usage gigantic. We need to find a better solution.

 Let’s take a step back. We have to find a way to signal from the updater goroutine
whenever the balance is updated. If we think about signaling in Go, we should con-
sider channels. So, let’s try another version using the channel primitive:

type Donation struct {
balance int
ch chan int

}

donation := &Donation{ch: make(chan int)}

// Listener goroutines
f := func(goal int) {

for balance := range donation.ch {
if balance >= goal {

fmt.Printf("$%d goal reached\n", balance)
return

}
}

}
go f(10)
go f(15)

// Updater goroutine
for {

time.Sleep(time.Second)
donation.balance++
donation.ch <- donation.balance

}

Keeps incrementing 
the balance

Updates Donation so 
it contains a channel

Receives channel 
updates

Sends a message whenever 
the balance is updated
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Each listener goroutine receives from a shared channel. Meanwhile, the updater
goroutine sends messages whenever the balance is updated. But if we give this solu-
tion a try, here is a possible output:

$11 goal reached
$15 goal reached

The first goroutine should have been notified when the balance was $10, not $11.
What happened?

 A message sent to a channel is received by only one goroutine. In our example, if
the first goroutine receives from the channel before the second one, figure 9.12 shows
what could happen.

Figure 9.12 The first goroutine receives the $1 message, then the second goroutine receives the $2 
message, then the first goroutine receives the $3 message, and so forth.

The default distribution mode with multiple goroutines receiving from a shared chan-
nel is round-robin. It can change if one goroutine isn’t ready to receive messages (not
in a waiting state on the channel); in that case, Go distributes the message to the next
available goroutine.

 Each message is received by a single goroutine. Therefore, the first goroutine
didn’t receive the $10 message in this example, but the second one did. Only a chan-
nel closure event can be broadcast to multiple goroutines. But here we don’t want to
close the channel, because then the updater goroutine couldn’t send messages.

 There’s another issue with using channels in this situation. The listener goroutines
return whenever their donation goal is met. Hence, the updater goroutine has to know
when all the listeners stop receiving messages to the channel. Otherwise, the channel
will eventually become full and block the sender. A possible solution could be to add a
sync.WaitGroup to the mix, but doing so would make the solution more complex.

 Ideally, we need to find a way to repeatedly broadcast notifications whenever the
balance is updated to multiple goroutines. Fortunately, Go has a solution: sync.Cond.
Let’s first discuss the theory; then we will see how to solve our problem using this
primitive.

ChannelUpdater goroutine

$1, $3, $5, $7, $9, $11 Listener goroutine 1
($10)

$2, $4, $6, $8, $10, $12, $13, $14, $15 Listener goroutine 2
($15)
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 According to the official documentation (https://pkg.go.dev/sync),

Cond implements a condition variable, a rendezvous point for goroutines waiting for or
announcing the occurrence of an event.

A condition variable is a container of threads (here, goroutines) waiting for a certain
condition. In our example, the condition is a balance update. The updater goroutine
broadcasts a notification whenever a balance is updated, and the listener goroutine
waits until an update. Furthermore, sync.Cond relies on a sync.Locker (a *sync
.Mutex or *sync.RWMutex) to prevent data races. Here is a possible implementation:

type Donation struct {
cond *sync.Cond
balance int

}

donation := &Donation{
cond: sync.NewCond(&sync.Mutex{}),

}

// Listener goroutines
f := func(goal int) {

donation.cond.L.Lock()
for donation.balance < goal {

donation.cond.Wait()
}
fmt.Printf("%d$ goal reached\n", donation.balance)
donation.cond.L.Unlock()

}
go f(10)
go f(15)

// Updater goroutine
for {

time.Sleep(time.Second)
donation.cond.L.Lock()
donation.balance++
donation.cond.L.Unlock()
donation.cond.Broadcast()

}

First we create a *sync.Cond using sync.NewCond and provide a *sync.Mutex. What
about the listener and updater goroutines?

 The listener goroutines loop until the donation balance is met. Within the loop,
we use the Wait method that blocks until the condition is met.

NOTE Let’s make sure the term condition is understood here. In this context,
we’re talking about the balance being updated, not the donation goal condi-
tion. So, it’s a single condition variable shared by two listener goroutines.

Adds a 
*sync.Cond

sync.Cond relies 
on a mutex.

Waits for a condition (balance 
updated) within lock/unlock

Increments the balance 
within lock/unlock

Broadcasts the fact that a condition 
was met (balance updated)

https://pkg.go.dev/sync
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The call to Wait must happen within a critical section, which may sound odd. Won’t
the lock prevent other goroutines from waiting for the same condition? Actually, the
implementation of Wait is the following:

1 Unlock the mutex.
2 Suspend the goroutine, and wait for a notification.
3 Lock the mutex when the notification arrives.

So, the listener goroutines have two critical sections:

 When accessing donation.balance in for donation.balance < goal
 When accessing donation.balance in fmt.Printf

This way, all the accesses to the shared donation.balance variable are protected.
 Now, what about the updater goroutine? The balance update is done within a criti-

cal section to prevent data races. Then we call the Broadcast method, which wakes all
the goroutines waiting on the condition each time the balance is updated.

 Hence, if we run this example, it prints what we expect:

10$ goal reached
15$ goal reached

In our implementation, the condition variable is based on the balance being updated.
Therefore, the listener variables wake each time a new donation is made, to check
whether their donation goal is met. This solution prevents us from having a busy loop
that burns CPU cycles in repeated checks.

 Let’s also note one possible drawback when using sync.Cond. When we send a
notification—for example, to a chan struct—even if there’s no active receiver, the
message is buffered, which guarantees that this notification will be received eventu-
ally. Using sync.Cond with the Broadcast method wakes all goroutines currently wait-
ing on the condition; if there are none, the notification will be missed. This is also an
essential principle that we have to keep in mind.

Signaling in Go can be achieved with channels. The only event that multiple gorou-
tines can catch is a channel closure, but this can happen just once. Therefore, if we

Signal() vs. Broadcast()
We can wake a single goroutine using Signal() instead of Broadcast(). In terms
of semantics, it is the same as sending a message in a chan struct in a non-block-
ing fashion:

ch := make(chan struct{})
select {
case ch <- struct{}{}:
default:
}
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repeatedly send notifications to multiple goroutines, sync.Cond is a solution. This
primitive is based on condition variables that set up containers of threads waiting for a
specific condition. Using sync.Cond, we can broadcast signals that wake all the gorou-
tines waiting on a condition.

 Let’s extend our knowledge of concurrency primitives using golang.org/x and
the errgroup package. 

9.13 #73: Not using errgroup
Regardless of the programming language, reinventing the wheel is rarely a good idea.
It’s also pretty common for codebases to reimplement how to spin up multiple gorou-
tines and aggregate the errors. But a package in the Go ecosystem is designed to sup-
port this frequent use case. Let’s look at it and understand why it should be part of the
toolset of Go developers.

 golang.org/x is a repository providing extensions to the standard library. The
sync sub-repository contains a handy package: errgroup.

 Suppose we have to handle a function, and we receive as an argument some data
that we want to use to call an external service. Due to constraints, we can’t make a sin-
gle call; we make multiple calls with a different subset each time. Also, these calls are
made in parallel (see figure 9.13).

Figure 9.13 Each circle results in a parallel call.

In case of one error during a call, we want to return it. In case of multiple errors, we
want to return only one of them. Let’s write the skeleton of the implementation using
only the standard concurrency primitives:

func handler(ctx context.Context, circles []Circle) ([]Result, error) {
results := make([]Result, len(circles))
wg := sync.WaitGroup{}
wg.Add(len(results))

for i, circle := range circles {
i := i
circle := circle

Client Handler

Request

External call

External call

External call

Aggregate results

Creates a wait group to 
wait for all the goroutines 
that we spin up

Creates a new i variable used in the goroutine 
(see mistake #63, “Not being careful with 
goroutines and loop variables”)

Same for
circle
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go func() {
defer wg.Done()

result, err := foo(ctx, circle)
if err != nil {

// ?
}
results[i] = result

}()
}

wg.Wait()
// ...

}

We decided to use a sync.WaitGroup to wait until all the goroutines are completed
and handle the aggregations in a slice. This is one way to do it; another would be to
send each partial result to a channel and aggregate them in another goroutine. The
main challenge would be to reorder the incoming messages if ordering was required.
Therefore, we decided to go with the easiest approach and a shared slice.

NOTE Because each goroutine writes to a specific index, this implementation
is data-race-free.

However, there’s one crucial case we haven’t tackled. What if foo (the call made
within a new goroutine) returns an error? How should we handle it? There are various
options, including these:

 Just like the results slice, we could have a slice of errors shared among the
goroutines. Each goroutine would write to this slice in case of an error. We
would have to iterate over this slice in the parent goroutine to determine
whether an error occurred (O(n) time complexity).

 We could have a single error variable accessed by the goroutines via a shared
mutex.

 We could think about sharing a channel of errors, and the parent goroutine
would receive and handle these errors.

Regardless of the option chosen, it starts to make the solution pretty complex. For
that reason, the errgroup package was designed and developed.

 It exports a single WithContext function that returns a *Group struct given a con-
text. This struct provides synchronization, error propagation, and context cancella-
tion for a group of goroutines and exports only two methods:

 Go to trigger a call in a new goroutine.
 Wait to block until all the goroutines have completed. It returns the first non-

nil error, if any.

Let’s rewrite the solution using errgroup. First we need to import the errgroup
package:

$ go get golang.org/x/sync/errgroup

Triggers a 
goroutine per CircleIndicates

when the
goroutine is

complete

Aggregates 
the results



230 CHAPTER 9 Concurrency: Practice
And here’s the implementation:

func handler(ctx context.Context, circles []Circle) ([]Result, error) {
results := make([]Result, len(circles))
g, ctx := errgroup.WithContext(ctx)

for i, circle := range circles {
i := i
circle := circle
g.Go(func() error {

result, err := foo(ctx, circle)
if err != nil {

return err
}
results[i] = result
return nil

})
}

if err := g.Wait(); err != nil {
return nil, err

}
return results, nil

}

First, we create an *errgroup.Group by providing the parent context. In each iteration,
we use g.Go to trigger a call in a new goroutine. This method takes a func() error as
an input, with a closure wrapping the call to foo and handling the result and error. As
the main difference from our first implementation, if we get an error, we return it from
this closure. Then, g.Wait allows us to wait for all the goroutines to complete.

 This solution is inherently more straightforward than the first one (which was par-
tial, as we didn’t handle the error). We don’t have to rely on extra concurrency primi-
tives, and the errgroup.Group is sufficient to tackle our use case.

 Another benefit that we haven’t tackled yet is the shared context. Let’s imagine we
have to trigger three parallel calls:

 The first returns an error in 1 millisecond.
 The second and third calls return a result or an error in 5 seconds.

We want to return an error, if any. Hence, there’s no point in waiting until the second
and third calls are complete. Using errgroup.WithContext creates a shared context
used in all the parallel calls. Because the first call returns an error in 1 millisecond, it
will cancel the context and thus the other goroutines. So, we won’t have to wait 5 sec-
onds to return an error. This is another benefit when using errgroup.

NOTE The process invoked by g.Go must be context aware. Otherwise, cancel-
ing the context won’t have any effect.

In summary, when we have to trigger multiple goroutines and handle errors plus con-
text propagation, it may be worth considering whether errgroup could be a solution.

Creates an *errgroup.Group 
given the parent context

Calls Go to spin up the logic of 
handling the error and aggregating 
the results in a new goroutine

Calls Wait to wait 
for all the goroutines
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As we have seen, this package enables synchronization for a group of goroutines and
provides an answer to deal with errors and shared contexts.

 The last section of this chapter discusses a common mistake made by Go develop-
ers when copying a sync type. 

9.14 #74: Copying a sync type
The sync package provides basic synchronization primitives such as mutexes, condi-
tion variables, and wait groups. For all these types, there’s a hard rule to follow: they
should never be copied. Let’s understand the rationale and the possible problems.

 We will create a thread-safe data structure to store counters. It will contain a
map[string]int representing the current value for each counter. We will also use a
sync.Mutex because the accesses have to be protected. And let’s add an increment
method to increment a given counter name:

type Counter struct {
mu sync.Mutex
counters map[string]int

}

func NewCounter() Counter {
return Counter{counters: map[string]int{}}

}

func (c Counter) Increment(name string) {
c.mu.Lock()
defer c.mu.Unlock()
c.counters[name]++

}

The increment logic is done in a critical section: between c.mu.Lock() and c.mu
.Unlock(). Let’s give our method a try by using the -race option to run the following
example that spins up two goroutines and increments their respective counters:

counter := NewCounter()

go func() {
counter.Increment("foo")

}()
go func() {

counter.Increment("bar")
}()

If we run this example, it raises a data race:

==================
WARNING: DATA RACE
...

The problem in our Counter implementation is that the mutex is copied. Because the
receiver of Increment is a value, whenever we call Increment, it performs a copy of the

Factory 
function

Increments the counter 
in a critical section
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Counter struct, which also copies the mutex. Therefore, the increment isn't done in a
shared critical section.

 sync types shouldn’t be copied. This rule applies to the following types:

 sync.Cond

 sync.Map

 sync.Mutex

 sync.RWMutex

 sync.Once

 sync.Pool

 sync.WaitGroup

Therefore, the mutex shouldn’t have been copied. What are the alternatives?
 The first is to modify the receiver type for the Increment method:

func (c *Counter) Increment(name string) {
// Same code

}

Changing the receiver type avoids copying Counter when Increment is called. There-
fore, the internal mutex isn’t copied.

 If we want to keep a value receiver, the second option is to change the type of the
mu field in Counter to be a pointer:

type Counter struct {
mu *sync.Mutex
counters map[string]int

}

func NewCounter() Counter {
return Counter{

mu: &sync.Mutex{},
counters: map[string]int{},

}
}

If Increment has a value receiver, it still copies the Counter struct. However, as mu is
now a pointer, it will perform a pointer copy only, not an actual copy of a sync.Mutex.
Hence, this solution also prevents data races.

NOTE We also changed the way mu was initialized. Because mu is a pointer, if we
omit it when creating Counter, it will be initialized to the zero value of a pointer:
nil. This will cause to the goroutine to panic when c.mu.Lock() is called.

We may face the issue of unintentionally copying a sync field in the following
conditions:

 Calling a method with a value receiver (as we have seen)
 Calling a function with a sync argument
 Calling a function with an argument that contains a sync field

Changes the 
type of mu

Changes the way 
mu is initialized
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In each case, we should remain very cautious. Also, let’s note that some linters can
catch this issue—for example, using go vet:

$ go vet .
./main.go:19:9: Increment passes lock by value: Counter contains sync.Mutex

As a rule of thumb, whenever multiple goroutines have to access a common sync ele-
ment, we must ensure that they all rely on the same instance. This rule applies to all
the types defined in the sync package. Using pointers is a way to solve this problem:
we can have either a pointer to a sync element or a pointer to a struct containing a
sync element. 

Summary
 Understanding the conditions when a context can be canceled should matter

when propagating it: for example, an HTTP handler canceling the context
when the response has been sent.

 Avoiding leaks means being mindful that whenever a goroutine is started, you
should have a plan to stop it eventually.

 To avoid bugs with goroutines and loop variables, create local variables or call
functions instead of closures.

 Understanding that select with multiple channels chooses the case randomly
if multiple options are possible prevents making wrong assumptions that can
lead to subtle concurrency bugs.

 Send notifications using a chan struct{} type.
 Using nil channels should be part of your concurrency toolset because it allows

you to remove cases from select statements, for example.
 Carefully decide on the right channel type to use, given a problem. Only

unbuffered channels provide strong synchronization guarantees.
 You should have a good reason to specify a channel size other than one for buff-

ered channels.
 Being aware that string formatting may lead to calling existing functions means

watching out for possible deadlocks and other data races.
 Calling append isn’t always data-race-free; hence, it shouldn’t be used concur-

rently on a shared slice.
 Remembering that slices and maps are pointers can prevent common data races.
 To accurately use sync.WaitGroup, call the Add method before spinning up

goroutines.
 You can send repeated notifications to multiple goroutines with sync.Cond.
 You can synchronize a group of goroutines and handle errors and contexts with

the errgroup package.
 sync types shouldn’t be copied.



The standard library
The Go standard library is a set of core packages that enhance and extend the lan-
guage. For example, Go developers can write HTTP clients or servers, handle JSON
data, or interact with SQL databases. All of these features are provided by the stan-
dard library. However, it can be easy to misuse the standard library, or we may have
a limited understanding of its behavior, which can lead to bugs and writing applica-
tions that shouldn’t be considered production-grade. Let’s look at some of the
most common mistakes while using the standard library.

This chapter covers
 Providing a correct time duration

 Understanding potential memory leaks while using 
time.After

 Avoiding common mistakes in JSON handling and SQL

 Closing transient resources

 Remembering the return statement in HTTP handlers

 Why production-grade applications shouldn’t use 
default HTTP clients and servers
234
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10.1 #75: Providing a wrong time duration
The standard library provides common functions and methods that accept a
time.Duration. However, because time.Duration is an alias for the int64 type, new-
comers to the language can get confused and provide a wrong duration. For example,
developers with a Java or JavaScript background are used to passing numeric types.

 To illustrate this common error, let’s create a new time.Ticker that will deliver the
ticks of a clock every second:

ticker := time.NewTicker(1000)
for {

select {
case <-ticker.C:

// Do something
}

}

If we run this code, we notice that ticks aren’t delivered every second; they are deliv-
ered every microsecond.

 Because time.Duration is based on the int64 type, the previous code is correct
since 1000 is a valid int64. But time.Duration represents the elapsed time between
two instants in nanoseconds. Therefore, we provided NewTicker with a duration of
1,000 nanoseconds = 1 microsecond.

 This mistake happens frequently. Indeed, standard libraries in languages such as
Java and JavaScript sometimes ask developers to provide durations in milliseconds.

 Furthermore, if we want to purposely create a time.Ticker with an interval of 1
microsecond, we shouldn’t pass an int64 directly. We should instead always use the
time.Duration API to avoid possible confusion:

ticker = time.NewTicker(time.Microsecond)
// Or
ticker = time.NewTicker(1000 * time.Nanosecond)

This is not the most complex mistake in this book, but developers with a background
in other languages can easily fall into the trap of believing that milliseconds are
expected for the functions and methods in the time package. We must remember to
use the time.Duration API and provide an int64 alongside a time unit.

 Now, let’s discuss a common mistake when using the time package with
time.After. 

10.2 #76: time.After and memory leaks
time.After(time.Duration) is a convenient function that returns a channel and
waits for a provided duration to elapse before sending a message to this channel. Usu-
ally, it’s used in concurrent code; otherwise, if we want to sleep for a given duration,
we can use time.Sleep(time.Duration). The advantage of time.After is that it can
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be used to implement scenarios such as “If I don’t receive any message in this channel
for 5 seconds, I will … .” But codebases often include calls to time.After in a loop,
which, as we describe in this section, may be a root cause of memory leaks.

 Let’s consider the following example. We will implement a function that repeat-
edly consumes messages from a channel. We also want to log a warning if we haven’t
received any messages for more than 1 hour. Here is a possible implementation:

func consumer(ch <-chan Event) {
for {

select {
case event := <-ch:

handle(event)
case <-time.After(time.Hour):

log.Println("warning: no messages received")
}

}
}

Here, we use select in two cases: receiving a message from ch and after 1 hour
without messages (time.After is evaluated during each iteration, so the timeout is
reset every time). At first sight, this code looks OK. However, it may lead to memory
usage issues.

 As we said, time.After returns a channel. We may expect this channel to be closed
during each loop iteration, but this isn’t the case. The resources created by
time.After (including the channel) are released once the timeout expires and use
memory until that happens. How much memory? In Go 1.15, about 200 bytes of mem-
ory are used per call to time.After. If we receive a significant volume of messages,
such as 5 million per hour, our application will consume 1 GB of memory to store the
time.After resources.

 Can we fix this issue by closing the channel programmatically during each itera-
tion? No. The returned channel is a <-chan time.Time, meaning it is a receive-only
channel that can’t be closed.

 We have several options to fix our example. The first is to use a context instead of
time.After:

func consumer(ch <-chan Event) {
for {

ctx, cancel := context.WithTimeout(context.Background(), time.Hour)
select {
case event := <-ch:

cancel()
handle(event)

case <-ctx.Done():
log.Println("warning: no messages received")

}
}

}

The downside of this approach is that we have to re-create a context during every sin-
gle loop iteration. Creating a context isn’t the most lightweight operation in Go: for
example, it requires creating a channel. Can we do better?

Handles 
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Increments the 
idle counter

Main 
loop

Creates a context
with timeout

Cancels context if we 
receive a message

Context 
cancellation
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 The second option comes from the time package: time.NewTimer. This function
creates a time.Timer struct that exports the following:

 A C field, which is the internal timer channel
 A Reset(time.Duration) method to reset the duration
 A Stop() method to stop the timer

Let’s implement a new version using time.NewTimer:

func consumer(ch <-chan Event) {
timerDuration := 1 * time.Hour
timer := time.NewTimer(timerDuration)

for {
timer.Reset(timerDuration)
select {
case event := <-ch:

handle(event)
case <-timer.C:

log.Println("warning: no messages received")
}

}
}

In this implementation, we keep a recurring action during each loop iteration: calling
the Reset method. However, calling Reset is less cumbersome than having to create a
new context every time. It’s faster and puts less pressure on the garbage collector
because it doesn’t require any new heap allocation. Therefore, using time.Timer is
the best possible solution for our initial problem.

NOTE For the sake of simplicity, in the example, the previous goroutine
doesn’t stop. As we mentioned in mistake #62, “Starting a goroutine without
knowing when to stop it,” this isn’t a best practice. In production-grade code,
we should find an exit condition such as a context that can be cancelled. In
that case, we should also remember to stop the time.Timer using defer
timer.Stop(), for example, right after the timer creation.

Using time.After in a loop isn’t the only case that may lead to a peak in memory con-
sumption. The problem relates to code that is repeatedly called. A loop is one case,

time.After internals
We should note that time.After also relies on time.Timer. However, it only returns
the C field, so we don’t have access to the Reset method:

package time

func After(d Duration) <-chan Time {
return NewTimer(d).C

}

Creates a new time.Timer and 
returns the channel field

Creates a 
new timer

Main
loop

Resets 
the duration

Timer 
expiration
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but using time.After in an HTTP handler function can lead to the same issues
because the function will be called multiple times.

 In general, we should be cautious when using time.After. Remember that the
resources created will only be released when the timer expires. When the call to
time.After is repeated (for example, in a loop, a Kafka consumer function, or an
HTTP handler), it may lead to a peak in memory consumption. In this case, we should
favor time.NewTimer.

 The following section discusses the most common mistakes during JSON handling. 

10.3 #77: Common JSON-handling mistakes
Go has excellent support for JSON with the encoding/json package. This section cov-
ers three common mistakes related to encoding (marshaling) and decoding (unmar-
shaling) JSON data.

10.3.1 Unexpected behavior due to type embedding

In mistake #10, “Not being aware of the possible problems with type embedding,” we
looked at issues related to type embedding. In the context of JSON handling, let’s
discuss another potential impact of type embedding that can lead to unexpected
marshaling/unmarshaling results.

 In the following example, we create an Event struct containing an ID and an
embedded timestamp:

type Event struct {
ID int
time.Time

}

Because time.Time is embedded, in the same way we described previously, we can
access the time.Time methods directly at the Event level: for example, event
.Second().

 What are the possible impacts of embedded fields with JSON marshaling? Let’s
find out in the following example. We will instantiate an Event and marshal it into
JSON. What should be the output of this code?

event := Event{
ID: 1234,
Time: time.Now(),

}

b, err := json.Marshal(event)
if err != nil {

return err
}

fmt.Println(string(b))

We may expect this code to print something like the following:

{"ID":1234,"Time":"2021-05-18T21:15:08.381652+02:00"}

Embedded field

The name of an anonymous field 
during a struct instantiation is 
the name of the struct (Time).
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Instead, it prints this:

"2021-05-18T21:15:08.381652+02:00"

How can we explain this output? What happened to the ID field and the 1234 value?
Because this field is exported, it should have been marshaled. To understand this
problem, we have to highlight two points.

 First, as discussed in mistake #10, if an embedded field type implements an inter-
face, the struct containing the embedded field will also implement this interface. Sec-
ond, we can change the default marshaling behavior by making a type implement the
json.Marshaler interface. This interface contains a single MarshalJSON function:

type Marshaler interface {
MarshalJSON() ([]byte, error)

}

Here is an example with custom marshaling:

type foo struct{}

func (foo) MarshalJSON() ([]byte, error) {
return []byte(`"foo"`), nil

}

func main() {
b, err := json.Marshal(foo{})
if err != nil {

panic(err)
}
fmt.Println(string(b))

}

Because we have changed the default JSON marshaling behavior by implementing the
Marshaler interface, this code prints "foo".

 Having clarified these two points, let’s get back to the initial problem with the
Event struct:

type Event struct {
ID int
time.Time

}

We have to know that time.Time implements the json.Marshaler interface. Because
time.Time is an embedded field of Event, the compiler promotes its methods. There-
fore, Event also implements json.Marshaler.

 Consequently, passing an Event to json.Marshal uses the marshaling behavior
provided by time.Time instead of the default behavior. This is why marshaling an
Event leads to ignoring the ID field.

NOTE We would also face the issue the other way around if we were unmar-
shaling an Event using json.Unmarshal.

Defines the struct
Implements the 
MarshalJSON method

Returns a static 
response
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on the custom MarshalJSON 
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To fix this issue, there are two main possibilities. First, we can add a name so the
time.Time field is no longer embedded:

type Event struct {
ID int
Time time.Time

}

This way, if we marshal a version of this Event struct, it will print something like this:

{"ID":1234,"Time":"2021-05-18T21:15:08.381652+02:00"}

If we want or have to keep the time.Time field embedded, the other option is to make
Event implement the json.Marshaler interface:

func (e Event) MarshalJSON() ([]byte, error) {
return json.Marshal(

struct {
ID int
Time time.Time

}{
ID: e.ID,
Time: e.Time,

},
)

}

In this solution, we implement a custom MarshalJSON method while defining an
anonymous struct reflecting the structure of Event. But this solution is more cumber-
some and requires that we ensure that the MarshalJSON method is always up to date
with the Event struct.

 We should be careful with embedded fields. While promoting the fields and meth-
ods of an embedded field type can sometimes be convenient, it can also lead to subtle
bugs because it can make the parent struct implement interfaces without a clear sig-
nal. Again, when using embedded fields, we should clearly understand the possible
side effects.

 In the next section, we see another common JSON mistake related to using
time.Time. 

10.3.2 JSON and the monotonic clock

When marshaling or unmarshaling a struct that contains a time.Time type, we can
sometimes face unexpected comparison errors. It’s helpful to examine time.Time to
refine our assumptions and prevent possible mistakes.

 An OS handles two different clock types: wall and monotonic. This section looks
first at these clock types and then at a possible impact while working with JSON and
time.Time.

 The wall clock is used to determine the current time of day. This clock is subject to
variations. For example, if the clock is synchronized using the Network Time Protocol

time.Time is no longer 
an embedded type.

Creates an 
anonymous struct
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(NTP), it can jump backward or forward in time. We shouldn’t measure durations
using the wall clock because we may face strange behavior, such as negative durations.
This is why OSs provide a second clock type: monotonic clocks. The monotonic clock
guarantees that time always moves forward and is not impacted by jumps in time. It
can be affected by frequency adjustments (for example, if the server detects that the
local quartz clock is moving at a different pace than the NTP server) but never by
jumps in time.

 In the following example, we consider an Event struct containing a single
time.Time field (not embedded):

type Event struct {
Time time.Time

}

We instantiate an Event, marshal it into JSON, and unmarshal it into another struct.
Then we compare both structs. Let’s find out if the marshaling/unmarshaling process
is always symmetric:

t := time.Now()
event1 := Event{

Time: t,
}

b, err := json.Marshal(event1)
if err != nil {

return err
}

var event2 Event
err = json.Unmarshal(b, &event2)
if err != nil {

return err
}

fmt.Println(event1 == event2)

What should be the output of this code? It prints false, not true. How can we explain
this?

 First, let’s print the contents of event1 and event2:

fmt.Println(event1.Time)
fmt.Println(event2.Time)

2021-01-10 17:13:08.852061 +0100 CET m=+0.000338660
2021-01-10 17:13:08.852061 +0100 CET

The code prints different contents for event1 and event2. They are the same except
for the m=+0.000338660 part. What does this mean?

Gets the current 
local time

Instantiates an 
Event struct

Marshals 
into JSON

Unmarshals JSON
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 In Go, instead of splitting the two clocks into two different APIs, time.Time may
contain both a wall clock and a monotonic time. When we get the local time using
time.Now(), it returns a time.Time with both times:

2021-01-10 17:13:08.852061 +0100 CET m=+0.000338660
------------------------------------ --------------

Wall time Monotonic time

Conversely, when we unmarshal the JSON, the time.Time field doesn’t contain the
monotonic time—only the wall time. Therefore, when we compare the structs, the
result is false because of a monotonic time difference; this is also why we see a differ-
ence when we print both structs. How can we fix this problem? There are two main
options.

 When we use the == operator to compare both time.Time fields, it compares all
the struct fields, including the monotonic part. To avoid this, we can use the Equal
method instead:

fmt.Println(event1.Time.Equal(event2.Time))

true

The Equal method doesn’t consider monotonic time; therefore, this code prints true.
But in this case, we only compare the time.Time fields, not the parent Event structs.

 The second option is to keep the == to compare the two structs but strip away the
monotonic time using the Truncate method. This method returns the result of
rounding the time.Time value down to a multiple of a given duration. We can use it by
providing a zero duration like so:

t := time.Now()
event1 := Event{

Time: t.Truncate(0),
}

b, err := json.Marshal(event1)
if err != nil {

return err
}

var event2 Event
err = json.Unmarshal(b, &event2)
if err != nil {

return err
}

fmt.Println(event1 == event2)

With this version, the two time.Time fields are equal. Therefore, this code prints
true.

Strips away the 
monotonic time

Performs the comparison 
using the == operator
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In summary, the marshaling/unmarshaling process isn’t always symmetric, and we
faced this case with a struct containing a time.Time. We should keep this principle in
mind so we don’t, for example, write erroneous tests. 

10.3.3 Map of any

When unmarshaling data, we can provide a map instead of a struct. The rationale is
that when the keys and values are uncertain, passing a map gives us some flexibility
instead of a static struct. However, there’s a rule to bear in mind to avoid wrong
assumptions and possible goroutine panics.

 Let’s write an example that unmarshals a message into a map:

b := getMessage()
var m map[string]any
err := json.Unmarshal(b, &m)
if err != nil {

return err
}

Let’s provide the following JSON to the previous code:

{
"id": 32,
"name": "foo"

}

Because we use a generic map[string]any, it parses all the different fields
automatically:

map[id:32 name:foo]

time.Time and location
Let’s also note that each time.Time is associated with a time.Location that rep-
resents the time zone. For example:

t := time.Now() // 2021-01-10 17:13:08.852061 +0100 CET

Here, the location is set to CET because I used time.Now(), which returns my cur-
rent local time. The JSON marshaling result depends on the location. To prevent this,
we can stick to a particular location:

location, err := time.LoadLocation("America/New_York")
if err != nil {

return err
}
t := time.Now().In(location) // 2021-05-18 22:47:04.155755 -0500 EST

Alternatively, we can get the current time in UTC:

t := time.Now().UTC() // 2021-05-18 22:47:04.155755 +0000 UTC

Gets the current location
for America/New_York

Provides 
a map pointer
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However, there’s an important gotcha to remember if we use a map of any: any
numeric value, regardless of whether it contains a decimal, is converted into a
float64 type. We can observe this by printing the type of m["id"]:

fmt.Printf("%T\n", m["id"])

float64

We should be sure we don’t make the wrong assumption and expect numeric values
without decimals to be converted into integers by default. Making incorrect assump-
tions with type conversions could lead, for example, to goroutine panics.

 The following section discusses the most common mistakes while writing applica-
tions that interact with SQL databases. 

10.4 #78: Common SQL mistakes
The database/sql package provides a generic interface around SQL (or SQL-like)
databases. It’s also fairly common to see some patterns or mistakes while using this
package. Let’s delve into five common mistakes.

10.4.1 Forgetting that sql.Open doesn’t necessarily establish 
connections to a database

When using sql.Open, one common misconception is expecting this function to
establish connections to a database:

db, err := sql.Open("mysql", dsn)
if err != nil {

return err
}

But this isn’t necessarily the case. According to the documentation (https://
pkg.go.dev/database/sql),

Open may just validate its arguments without creating a connection to the database.

Actually, the behavior depends on the SQL driver used. For some drivers, sql.Open
doesn’t establish a connection: it’s only a preparation for later use (for example, with
db.Query). Therefore, the first connection to the database may be established lazily.

 Why do we need to know about this behavior? For example, in some cases, we want
to make a service ready only after we know that all the dependencies are correctly set
up and reachable. If we don’t know this, the service may accept traffic despite an erro-
neous configuration.

 If we want to ensure that the function that uses sql.Open also guarantees that the
underlying database is reachable, we should use the Ping method:

db, err := sql.Open("mysql", dsn)
if err != nil {

https://pkg.go.dev/database/sql
https://pkg.go.dev/database/sql
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return err
}
if err := db.Ping(); err != nil {

return err
}

Ping forces the code to establish a connection that ensures that the data source name
is valid and the database is reachable. Note that an alternative to Ping is PingContext,
which asks for an additional context conveying when the ping should be canceled or
time out.

 Despite being perhaps counterintuitive, let’s remember that sql.Open doesn’t nec-
essarily establish a connection, and the first connection can be opened lazily. If we
want to test our configuration and be sure a database is reachable, we should follow
sql.Open with a call to the Ping or PingContext method. 

10.4.2 Forgetting about connections pooling

Just as the default HTTP client and server provide default behaviors that may not be
effective in production (see mistake #81, “Using the default HTTP client and server”),
it’s essential to understand how database connections are handled in Go. sql.Open
returns an *sql.DB struct. This struct doesn’t represent a single database connection;
instead, it represents a pool of connections. This is worth noting so we’re not tempted
to implement it manually. A connection in the pool can have two states:

 Already used (for example, by another goroutine that triggers a query)
 Idle (already created but not in use for the time being)

It’s also important to remember that creating a pool leads to four available config
parameters that we may want to override. Each of these parameters is an exported
method of *sql.DB:

 SetMaxOpenConns—Maximum number of open connections to the database
(default value: unlimited)

 SetMaxIdleConns—Maximum number of idle connections (default value: 2)
 SetConnMaxIdleTime—Maximum amount of time a connection can be idle

before it’s closed (default value: unlimited)
 SetConnMaxLifetime—Maximum amount of time a connection can be held

open before it’s closed (default value: unlimited)

Figure 10.1 shows an example with a maximum of five connections. It has four ongo-
ing connections: three idle and one in use. Therefore, one slot remains available for
an extra connection. If a new query comes in, it will pick one of the idle connections
(if still available). If there are no more idle connections, the pool will create a new
connection if an extra slot is available; otherwise, it will wait until a connection is
available.

 

Calls the Ping method 
following sql.Open
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Figure 10.1 A connection pool with five connections

So, why should we tweak these config parameters?

 Setting SetMaxOpenConns is important for production-grade applications.
Because the default value is unlimited, we should set it to make sure it fits what
the underlying database can handle.

 The value of SetMaxIdleConns (default: 2) should be increased if our applica-
tion generates a significant number of concurrent requests. Otherwise, the
application may experience frequent reconnects.

 Setting SetConnMaxIdleTime is important if our application may face a burst of
requests. When the application returns to a more peaceful state, we want to
make sure the connections created are eventually released.

 Setting SetConnMaxLifetime can be helpful if, for example, we connect to a
load-balanced database server. In that case, we want to ensure that our applica-
tion never uses a connection for too long.

For production-grade applications, we must consider these four parameters. We can
also use multiple connection pools if an application faces different use cases. 

10.4.3 Not using prepared statements

A prepared statement is a feature implemented by many SQL databases to execute a
repeated SQL statement. Internally, the SQL statement is precompiled and separated
from the data provided. There are two main benefits:

 Efficiency—The statement doesn’t have to be recompiled (compilation means
parsing + optimization + translation).

 Security—This approach reduces the risks of SQL injection attacks.

Therefore, if a statement is repeated, we should use prepared statements. We should
also use prepared statements in untrusted contexts (such as exposing an endpoint on
the internet, where the request is mapped to an SQL statement).

 To use prepared statements, instead of calling the Query method of *sql.DB, we
call Prepare:

stmt, err := db.Prepare("SELECT * FROM ORDER WHERE ID = ?")
if err != nil {

return err

SetMaxOpenConns (5)

SetMaxIdleConns (3)

How long a connection 
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Maximum lifetime 
of a connection:
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Idle connection

Connection already used
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}
rows, err := stmt.Query(id)
// ...

We prepare the statement and then execute it while providing the arguments. The
first output of the Prepare method is an *sql.Stmt, which can be reused and run
concurrently. When the statement is no longer needed, it must be closed using the
Close() method.

NOTE The Prepare and Query methods have alternatives to provide an addi-
tional context: PrepareContext and QueryContext.

For efficiency and security, we need to remember to use prepared statements when it
makes sense. 

10.4.4 Mishandling null values

The next mistake is to mishandle null values with queries. Let’s write an example
where we retrieve the department and age of an employee:

rows, err := db.Query("SELECT DEP, AGE FROM EMP WHERE ID = ?", id)
if err != nil {

return err
}
// Defer closing rows

var (
department string
age int

)
for rows.Next() {

err := rows.Scan(&department, &age)
if err != nil {

return err
}
// ...

}

We use Query to execute a query. Then, we iterate over the rows and use Scan to copy
the column into the values pointed to by the department and age pointers. If we run
this example, we may get the following error while calling Scan:

2021/10/29 17:58:05 sql: Scan error on column index 0, name "DEPARTMENT":
converting NULL to string is unsupported

Here, the SQL driver raises an error because the department value is equal to NULL. If
a column can be nullable, there are two options to prevent Scan from returning an error.

 The first approach is to declare department as a string pointer:

var (
department *string
age int

)

Executes the 
prepared query

Executes
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for rows.Next() {
err := rows.Scan(&department, &age)
// ...

}

We provide scan with the address of a pointer, not the address of a string type directly.
By doing so, if the value is NULL, department will be nil.

 The other approach is to use one of the sql.NullXXX types, such as sql.Null-
String:

var (
department sql.NullString
age int

)
for rows.Next() {

err := rows.Scan(&department, &age)
// ...

}

sql.NullString is a wrapper on top of a string. It contains two exported fields:
String contains the string value, and Valid conveys whether the string isn’t NULL.
The following wrappers are accessible:

 sql.NullString

 sql.NullBool

 sql.NullInt32

 sql.NullInt64

 sql.NullFloat64

 sql.NullTime

Both approaches work, with sql.NullXXX expressing the intent more clearly, as men-
tioned by Russ Cox, a core Go maintainer (http://mng.bz/rJNX):

There’s no effective difference. We thought people might want to use NullString because it
is so common and perhaps expresses the intent more clearly than *string. But either will
work.

So, the best practice with a nullable column is to either handle it as a pointer or use an
sql.NullXXX type. 

10.4.5 Not handling row iteration errors

Another common mistake is to miss possible errors from iterating over rows. Let’s
look at a function where error handling is misused:

func get(ctx context.Context, db *sql.DB, id string) (string, int, error) {
rows, err := db.QueryContext(ctx,

"SELECT DEP, AGE FROM EMP WHERE ID = ?", id)
if err != nil {

return "", 0, err

Changes the type 
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Handles errors while 
executing the query

http://mng.bz/rJNX


24910.5 #79: Not closing transient resources
}
defer func() {

err := rows.Close()
if err != nil {

log.Printf("failed to close rows: %v\n", err)
}

}()

var (
department string
age int

)
for rows.Next() {

err := rows.Scan(&department, &age)
if err != nil {

return "", 0, err
}

}

return department, age, nil
}

In this function, we handle three errors: while executing the query, closing the rows,
and scanning a row. But this isn’t enough. We have to know that the for rows
.Next() {} loop can break either when there are no more rows or when an error
happens while preparing the next row. Following a row iteration, we should call
rows.Err to distinguish between the two cases:

func get(ctx context.Context, db *sql.DB, id string) (string, int, error) {
// ...
for rows.Next() {

// ...
}

if err := rows.Err(); err != nil {
return "", 0, err

}

return department, age, nil
}

This is the best practice to keep in mind: because rows.Next can stop either when we
have iterated over all the rows or when an error happens while preparing the next
row, we should check rows.Err following the iteration.

 Let’s now discuss a frequent mistake: forgetting to close transient resources. 

10.5 #79: Not closing transient resources
Pretty frequently, developers work with transient (temporary) resources that must be
closed at some point in the code: for example, to avoid leaks on disk or in memory.
Structs can generally implement the io.Closer interface to convey that a transient
resource has to be closed. Let’s look at three common examples of what happens
when resources aren’t correctly closed and how to handle them properly.

Handles errors while 
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Checks rows.Err to determine 
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10.5.1 HTTP body

First, let’s discuss this problem in the context of HTTP. We will write a getBody
method that makes an HTTP GET request and returns the HTTP body response.
Here’s a first implementation:

type handler struct {
client http.Client
url string

}

func (h handler) getBody() (string, error) {
resp, err := h.client.Get(h.url)
if err != nil {

return "", err
}

body, err := io.ReadAll(resp.Body)
if err != nil {

return "", err
}

return string(body), nil
}

We use http.Get and parse the response using io.ReadAll. This method looks OK,
and it correctly returns the HTTP response body. However, there’s a resource leak.
Let’s understand where.

 resp is an *http.Response type. It contains a Body io.ReadCloser field
(io.ReadCloser implements both io.Reader and io.Closer). This body must be
closed if http.Get doesn’t return an error; otherwise, it’s a resource leak. In this case,
our application will keep some memory allocated that is no longer needed but can’t
be reclaimed by the GC and may prevent clients from reusing the TCP connection in
the worst cases.

 The most convenient way to deal with body closure is to handle it as a defer state-
ment this way:

defer func() {
err := resp.Body.Close()
if err != nil {

log.Printf("failed to close response: %v\n", err)
}

}()

In this implementation, we properly handle the body resource closure as a defer
function that will be executed once getBody returns.

NOTE On the server side, while implementing an HTTP handler, we aren’t
required to close the request body because the server does this automatically.

Makes an HTTP 
GET request

Reads resp.Body and 
gets a body as a []byte
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We should also understand that a response body must be closed regardless of whether
we read it. For example, if we are only interested in the HTTP status code and not in
the body, it has to be closed no matter what, to avoid a leak:

func (h handler) getStatusCode(body io.Reader) (int, error) {
resp, err := h.client.Post(h.url, "application/json", body)
if err != nil {

return 0, err
}

defer func() {
err := resp.Body.Close()
if err != nil {

log.Printf("failed to close response: %v\n", err)
}

}()

return resp.StatusCode, nil
}

This function closes the body even though we haven’t read it.
 Another essential thing to remember is that the behavior is different when we

close the body, depending on whether we have read from it:

 If we close the body without a read, the default HTTP transport may close the
connection.

 If we close the body following a read, the default HTTP transport won’t close
the connection; hence, it may be reused.

Therefore, if getStatusCode is called repeatedly and we want to use keep-alive con-
nections, we should read the body even though we aren’t interested in it:

func (h handler) getStatusCode(body io.Reader) (int, error) {
resp, err := h.client.Post(h.url, "application/json", body)
if err != nil {

return 0, err
}

// Close response body

_, _ = io.Copy(io.Discard, resp.Body)

return resp.StatusCode, nil
}

In this example, we read the body to keep the connection alive. Note that instead of
using io.ReadAll, we used io.Copy to io.Discard, an io.Writer implementation.
This code reads the body but discards it without any copy, making it more efficient
than io.ReadAll.

Closes the response body 
even if we don’t read it

Reads the 
response body
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Closing a resource to avoid leaks isn’t only related to HTTP body management. In
general, all structs implementing the io.Closer interface should be closed at some
point. This interface contains a single Close method:

type Closer interface {
Close() error

}

Let’s now see the impacts with sql.Rows. 

10.5.2 sql.Rows

sql.Rows is a struct used as a result of an SQL query. Because this struct implements
io.Closer, it has to be closed. The following example omits closing the rows:

db, err := sql.Open("postgres", dataSourceName)
if err != nil {

return err
}

rows, err := db.Query("SELECT * FROM CUSTOMERS")
if err != nil {

return err
}

// Use rows

return nil

When to close the response body
Fairly frequently, implementations close the body if the response isn’t empty, not if
the error is nil:

resp, err := http.Get(url)
if resp != nil {

defer resp.Body.Close()
}

if err != nil {
return "", err

}

This implementation isn’t necessary. It’s based on the fact that in some conditions
(such as a redirection failure), neither resp nor err will be nil. But according to the
official Go documentation (https://pkg.go.dev/net/http),

On error, any Response can be ignored. A non-nil Response with a non-nil
error only occurs when CheckRedirect fails, and even then, the returned
Response.Body is already closed.

Therefore, the if resp != nil {} check isn’t necessary. We should stick with the
initial solution that closes the body in a defer function only if there is no error.

If the response 
isn’t nil …

… close the response 
body as a defer function.

Performs the 
SQL query

https://pkg.go.dev/net/http


25310.5 #79: Not closing transient resources
Forgetting to close the rows means a connection leak, which prevents the database
connection from being put back into the connection pool.

 We can handle the closure as a defer function following the if err != nil block:

// Open connection

rows, err := db.Query("SELECT * FROM CUSTOMERS")
if err != nil {

return err
}

defer func() {
if err := rows.Close(); err != nil {

log.Printf("failed to close rows: %v\n", err)
}

}()

// Use rows

Following the Query call, we should eventually close rows to prevent a connection leak
if it doesn’t return an error.

NOTE As discussed in the previous section, the db variable (*sql.DB type)
represents a pool of connections. It also implements the io.Closer interface.
But as the documentation suggests, it is rare to close an sql.DB because it’s
meant to be long-lived and shared among many goroutines.

Next, let’s discuss closing resources while working with files. 

10.5.3 os.File

os.File represents an open file descriptor. Like sql.Rows, it must be closed
eventually:

f, err := os.OpenFile(filename, os.O_APPEND|os.O_WRONLY, os.ModeAppend)
if err != nil {

return err
}

defer func() {
if err := f.Close(); err != nil {

log.Printf("failed to close file: %v\n", err)
}

}()

In this example, we use defer to defer the call to the Close method. If we don’t even-
tually close an os.File, it will not lead to a leak per se: the file will be closed automat-
ically when os.File is garbage collected. However, it’s better to call Close explicitly
because we don’t know when the next GC will be triggered (unless we manually run it).

 There’s another benefit of calling Close explicitly: to actively monitor the error
that is returned. For example, this should be the case with writable files.

Performs an 
SQL query

Closes 
the rows

Opens the file

Closes the file 
descriptor
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 Writing to a file descriptor isn’t a synchronous operation. For performance con-
cerns, data is buffered. The BSD manual page for close(2) mentions that a closure
can lead to an error in a previously uncommitted write (still living in a buffer)
encountered during an I/O error. For that reason, if we want to write to a file, we
should propagate any error that occurs while closing the file:

func writeToFile(filename string, content []byte) (err error) {
// Open file

defer func() {
closeErr := f.Close()
if err == nil {

err = closeErr
}

}()

_, err = f.Write(content)
return

}

In this example, we use named arguments and set the error to the response of
f.Close if the write succeeds. This way, clients will be aware if something goes wrong
with this function and can react accordingly.

 Furthermore, success while closing a writable os.File doesn’t guarantee that the
file will be written on disk. The write can still live in a buffer on the filesystem and not
be flushed on disk. If durability is a critical factor, we can use the Sync() method to
commit a change. In that case, errors coming from Close can be safely ignored:

func writeToFile(filename string, content []byte) error {
// Open file

defer func() {
_ = f.Close()

}()

_, err = f.Write(content)
if err != nil {

return err
}

return f.Sync()
}

This example is a synchronous write function. It ensures that the content is written to
disk before returning. But its downside is an impact on performance.

 To summarize this section, we’ve seen how important it is to close ephemeral
resources and thus avoid leaks. Ephemeral resources must be closed at the right time
and in specific situations. It’s not always clear up front what has to be closed. We can
only acquire this information by carefully reading the API documentation and/or

Returns the close error 
if the write succeeds

Ignores possible 
errors

Commits the write 
to the disk
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through experience. But we should remember that if a struct implements the
io.Closer interface, we must eventually call the Close method. Last but not least, it’s
essential to understand what to do if a closure fails: is it enough to log a message, or
should we also propagate it? The appropriate action depends on the implementation,
as seen in the three examples in this section.

 Let’s now switch to common mistakes related to HTTP handling: forgetting
return statements. 

10.6 #80: Forgetting the return statement after replying to 
an HTTP request
While writing an HTTP handler, it’s easy to forget the return statement after replying
to an HTTP request. This may lead to an odd situation where we should have stopped
a handler after an error, but we didn’t.

 We can observe this situation in the following example:

func handler(w http.ResponseWriter, req *http.Request) {
err := foo(req)
if err != nil {

http.Error(w, "foo", http.StatusInternalServerError)
}

// ...
}

If foo returns an error, we handle it using http.Error, which replies to the request
with the foo error message and a 500 Internal Server Error. The problem with this
code is that if we enter the if err != nil branch, the application will continue its
execution, because http.Error doesn’t stop the handler’s execution.

 What’s the real impact of such an error? First, let’s discuss it at the HTTP level. For
example, suppose we had completed the previous HTTP handler by adding a step to
write a successful HTTP response body and status code:

func handler(w http.ResponseWriter, req *http.Request) {
err := foo(req)
if err != nil {

http.Error(w, "foo", http.StatusInternalServerError)
}

_, _ = w.Write([]byte("all good"))
w.WriteHeader(http.StatusCreated)

}

In the case err != nil, the HTTP response would be the following:

foo
all good

The response contains both the error and success messages.

Handles 
the error
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 We would return only the first HTTP status code: in the previous example, 500.
However, Go would also log a warning:

2021/10/29 16:45:33 http: superfluous response.WriteHeader call
from main.handler (main.go:20)

This warning means we tried to write the status code multiple times and doing so was
superfluous.

 In terms of execution, the main impact would be to continue the execution of a
function that should have been stopped. For example, if foo was returning a pointer
in addition to the error, continuing execution would mean using this pointer, perhaps
leading to a nil pointer dereference (and hence a goroutine panic).

 The fix for this mistake is to keep thinking about adding the return statement fol-
lowing http.Error:

func handler(w http.ResponseWriter, req *http.Request) {
err := foo(req)
if err != nil {

http.Error(w, "foo", http.StatusInternalServerError)
return

}

// ...
}

Thanks to the return statement, the function will stop its execution if we end in the
if err != nil branch.

 This error is probably not the most complex of this book. Yet, it’s so easy to forget
about it that this mistake occurs fairly frequently. We always need to remember that
http.Error doesn’t stop a handler execution and must be added manually. Such an
issue can and should be caught during testing if we have decent coverage.

 The last section of this chapter continues our discussion of HTTP. We see why
production-grade applications shouldn’t rely on the default HTTP client and server
implementations. 

10.7 #81: Using the default HTTP client and server
The http package provides HTTP client and server implementations. However, it’s all
too easy for developers to make a common mistake: relying on the default implemen-
tations in the context of applications that are eventually deployed in production. Let’s
look at the problems and how to overcome them.

10.7.1 HTTP client

Let’s define what default client means. We will use a GET request as an example. We
can use the zero value of an http.Client struct like so:

client := &http.Client{}
resp, err := client.Get("https://golang.org/")

Adds the return 
statement
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Or we can use the http.Get function:

resp, err := http.Get("https://golang.org/")

In the end, both approaches are the same. The http.Get function uses http
.DefaultClient, which is also based on the zero value of http.Client:

// DefaultClient is the default Client and is used by Get, Head, and Post.
var DefaultClient = &Client{}

So, what’s the problem with using the default HTTP client?
 First, the default client doesn’t specify any timeouts. This absence of timeout is not

something we want for production-grade systems: it can lead to many issues, such as
never-ending requests that could exhaust system resources.

 Before delving into the available timeouts while making a request, let’s review the
five steps involved in an HTTP request:

1 Dial to establish a TCP connection.
2 TLS handshake (if enabled).
3 Send the request.
4 Read the response headers.
5 Read the response body.

Figure 10.2 shows how these steps relate to the main client timeouts.

Figure 10.2 The five steps during an HTTP request, and the related timeouts

The four main timeouts are the following:

 net.Dialer.Timeout—Specifies the maximum amount of time a dial will wait
for a connection to complete.

 http.Transport.TLSHandshakeTimeout—Specifies the maximum amount of
time to wait for the TLS handshake.

 http.Transport.ResponseHeaderTimeout—Specifies the amount of time to
wait for a server’s response headers.

 http.Client.Timeout—Specifies the time limit for a request. It includes all the
steps, from step 1 (dial) to step 5 (read the response body).

Dial TLS handshake Request Resp. headers Resp. body

http.Client.Timeout

net.Dialer.Timeout

http.Transport.TLSHandshakeTimeout

http.Transport.ResponseHeaderTimeout
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Here’s an example of an HTTP client that overrides these timeouts:

client := &http.Client{
Timeout: 5 * time.Second,
Transport: &http.Transport{

DialContext: (&net.Dialer{
Timeout: time.Second,

}).DialContext,
TLSHandshakeTimeout: time.Second,
ResponseHeaderTimeout: time.Second,

},
}

We create a client with a 1-second timeout for the dial, the TLS handshake, and read-
ing the response header. Meanwhile, each request has a global 5-second timeout.

 The second aspect to bear in mind about the default HTTP client is how connec-
tions are handled. By default, the HTTP client does connection pooling. The default
client reuses connections (it can be disabled by setting http.Transport.Disable-
KeepAlives to true). There’s an extra timeout to specify how long an idle connec-
tion is kept in the pool: http.Transport.IdleConnTimeout. The default value is 90
seconds, which means the connection can be reused for other requests during this
time. After that, if the connection hasn’t been reused, it will be closed.

 To configure the number of connections in the pool, we must override
http.Transport.MaxIdleConns. This value is set to 100 by default. But there’s some-
thing important to note: the http.Transport.MaxIdleConnsPerHost limit per host,
which by default is set to 2. For example, if we trigger 100 requests to the same host,
only 2 connections will remain in the connection pool after that. Hence, if we trigger
100 requests again, we will have to reopen at least 98 connections. This configuration
can also impact the average latency if we have to deal with a significant number of par-
allel requests to the same host.

 For production-grade systems, we probably want to override the default timeouts.
And tweaking the parameters related to connection pooling can also have a signifi-
cant impact on the latency. 

HTTP client timeout
You may have encountered the following error when specifying http.Client
.Timeout:

net/http: request canceled (Client.Timeout exceeded while awaiting
headers)

This error means the endpoint failed to respond on time. We get this error about
headers because reading them is the first step while waiting for a response.

Global request 
timeout

Dial timeout
TLS handshake 
timeout

Response 
header timeout
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10.7.2 HTTP server

We should also be careful while implementing an HTTP server. Again, a default server
can be created using the zero value of http.Server:

server := &http.Server{}
server.Serve(listener)

Or we can use a function such as http.Serve, http.ListenAndServe, or http
.ListenAndServeTLS that also relies on the default http.Server.

 Once a connection is accepted, an HTTP response is divided into five steps:

1 Wait for the client to send the request.
2 TLS handshake (if enabled).
3 Read the request headers.
4 Read the request body.
5 Write the response.

NOTE The TLS handshake doesn’t have to be repeated with an already estab-
lished connection.

Figure 10.3 shows how these steps relate to the main server timeouts. The three main
timeouts are the following:

 http.Server.ReadHeaderTimeout—A field that specifies the maximum
amount of time to read the request headers

 http.Server.ReadTimeout—A field that specifies the maximum amount of
time to read the entire request

 http.TimeoutHandler—A wrapper function that specifies the maximum
amount of time for a handler to complete

Figure 10.3 The five steps of an HTTP response, and the related timeouts

The last parameter isn’t a server parameter but a wrapper on top of a handler to limit
its duration. If a handler fails to respond on time, the server will reply 503 Service

Wait TLS handshake Req. headers Req. body Response

http.Server.ReadTimeout

Connection is
accepted.

http.Server.ReadHeaderTimeout

http.TimeoutHandler

HTTP Handler
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Unavailable with a specific message, and the context passed to the handler will be
canceled.

NOTE We purposely omitted http.Server.WriteTimeout, which isn’t neces-
sary since http.TimeoutHandler was released (Go 1.8). http.Server.Write-
Timeout has a few issues. First, its behavior depends on whether TLS is
enabled, making it more complex to understand and use. It also closes the
TCP connection without returning a proper HTTP code if the timeout is
reached. And it doesn’t propagate the cancellation to the handler context, so
a handler may continue its execution without knowing that the TCP connec-
tion is already closed.

While exposing our endpoint to untrusted clients, the best practice is to set at least
the http.Server.ReadHeaderTimeout field and use the http.TimeoutHandler wrap-
per function. Otherwise, clients may exploit this flaw and, for example, create never-
ending connections that can lead to exhaustion of system resources.

 Here’s how to set up a server with these timeouts in place:

s := &http.Server{
Addr: ":8080",
ReadHeaderTimeout: 500 * time.Millisecond,
ReadTimeout: 500 * time.Millisecond,
Handler: http.TimeoutHandler(handler, time.Second, "foo"),

}

http.TimeoutHandler wraps the provided handler. Here, if handler fails to respond
in 1 second, the server returns a 503 status code with foo as the HTTP response.

 Just as we described regarding HTTP clients, on the server side we can configure
the maximum amount of time for the next request when keep-alives are enabled. We
do so using http.Server.IdleTimeout:

s := &http.Server{
// ...
IdleTimeout: time.Second,

}

Note that if http.Server.IdleTimeout isn’t set, the value of http.Server

.ReadTimeout is used for the idle timeout. If neither is set, there won’t be any time-
outs, and connections will remain open until they are closed by clients.

 For production-grade applications, we need to make sure not to use default HTTP
clients and servers. Otherwise, requests may be stuck forever due to an absence of time-
outs or even malicious clients that exploit the fact that our server doesn’t have any
timeouts. 

Summary
 Remain cautious with functions accepting a time.Duration. Even though pass-

ing an integer is allowed, strive to use the time API to prevent any possible con-
fusion.

Wraps the
HTTP handler
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 Avoiding calls to time.After in repeated functions (such as loops or HTTP
handlers) can avoid peak memory consumption. The resources created by
time.After are released only when the timer expires.

 Be careful about using embedded fields in Go structs. Doing so may lead to
sneaky bugs like an embedded time.Time field implementing the json
.Marshaler interface, hence overriding the default marshaling behavior.

 When comparing two time.Time structs, recall that time.Time contains both a
wall clock and a monotonic clock, and the comparison using the == operator is
done on both clocks.

 To avoid wrong assumptions when you provide a map while unmarshaling
JSON data, remember that numerics are converted to float64 by default.

 Call the Ping or PingContext method if you need to test your configuration
and make sure a database is reachable.

 Configure the database connection parameters for production-grade applica-
tions.

 Using SQL prepared statements makes queries more efficient and more secure.
 Deal with nullable columns in tables using pointers or sql.NullXXX types.
 Call the Err method of *sql.Rows after row iterations to ensure that you

haven’t missed an error while preparing the next row.
 Eventually close all structs implementing io.Closer to avoid possible leaks.
 To avoid unexpected behaviors in HTTP handler implementations, make sure

you don’t miss the return statement if you want a handler to stop after
http.Error.

 For production-grade applications, don’t use the default HTTP client and
server implementations. These implementations are missing timeouts and
behaviors that should be mandatory in production.



Testing
Testing is a crucial aspect of a project’s lifecycle. It offers countless benefits, such as
building confidence in an application, acting as code documentation, and making
refactoring easier. Compared to some other languages, Go has strong primitives for
writing tests. Throughout this chapter, we look at common mistakes that make the
testing process brittle, less effective, and less accurate.

11.1 #82: Not categorizing tests
The testing pyramid is a model that groups tests into different categories (see fig-
ure 11.1). Unit tests occupy the base of the pyramid. Most tests should be unit tests:
they’re cheap to write, fast to execute, and highly deterministic. Usually, as we go

This chapter covers
 Categorizing tests and making them more robust

 Making Go tests deterministic

 Working with utility packages such as httptest 
and iotest

 Avoiding common benchmark mistakes

 Improving the testing process
262
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further up the pyramid, tests become more complex to
write and slower to run, and it is more difficult to guar-
antee their determinism.

 A common technique is to be explicit about which
kind of tests to run. For instance, depending on the
project lifecycle stage, we may want to run only unit
tests or run all the tests in the project. Not categorizing
tests means potentially wasting time and effort and los-
ing accuracy about the scope of a test. This section dis-
cusses three main ways to categorize tests in Go.

11.1.1 Build tags

The most common way to classify tests is using build tags. A build tag is a special com-
ment at the beginning of a Go file, followed by an empty line.

 For example, look at this bar.go file:

//go:build foo

package bar

This file contains the foo tag. Note that one package may contain multiple files with
different build tags.

NOTE As of Go 1.17, the syntax // +build foo was replaced by //go:build foo.
For the time being (Go 1.18), gofmt synchronizes the two forms to help with
migration.

Build tags are used for two primary use cases. First, we can use a build tag as a condi-
tional option to build an application: for example, if we want a source file to be
included only if cgo is enabled (cgo is a way to let Go packages call C code), we can
add the //go:build cgo build tag. Second, if we want to categorize a test as an integra-
tion test, we can add a specific build flag, such as integration.

 Here is an example db_test.go file:

//go:build integration

package db

import (
"testing"

)

func TestInsert(t *testing.T) {
// ...

}

Unit tests

Integration tests

E2E
tests

Figure 11.1 An example of the 
testing pyramid



264 CHAPTER 11 Testing
Here we add the integration build tag to categorize that this file contains integration
tests. The benefit of using build tags is that we can select which kinds of tests to exe-
cute. For example, let’s assume a package contains two test files:

 The file we just created: db_test.go
 Another file that doesn’t contain a build tag: contract_test.go

If we run go test inside this package without any options, it will run only the test files
without build tags (contract_test.go):

$ go test -v .
=== RUN TestContract
--- PASS: TestContract (0.01s)
PASS

However, if we provide the integration tag, running go test will also include
db_test.go:

$ go test --tags=integration -v .
=== RUN TestInsert
--- PASS: TestInsert (0.01s)
=== RUN TestContract
--- PASS: TestContract (2.89s)
PASS

So, running tests with a specific tag includes both the files without tags and the files
matching this tag. What if we want to run only integration tests? A possible way is to add
a negation tag on the unit test files. For example, using !integration means we want
to include the test file only if the integration flag is not enabled (contract_test.go):

//go:build !integration

package db

import (
"testing"

)

func TestContract(t *testing.T) {
// ...

}

Using this approach,

 Running go test with the integration flag runs only the integration tests.
 Running go test without the integration flag runs only the unit tests.

Let’s discuss an option that works at the level of a single test, not a file. 

11.1.2 Environment variables

As mentioned by Peter Bourgon, a member of the Go community, build tags have one
main drawback: the absence of signals that a test has been ignored (see http://
mng.bz/qYlr). In the first example, when we executed go test without build flags, it
showed only the tests that were executed:

http://mng.bz/qYlr
http://mng.bz/qYlr
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$ go test -v .
=== RUN TestUnit
--- PASS: TestUnit (0.01s)
PASS
ok db 0.319s

If we’re not careful with the way tags are handled, we may forget about existing tests.
For that reason, some projects favor the approach of checking the test category using
environment variables.

 For example, we can implement the TestInsert integration test by checking a spe-
cific environment variable and potentially skipping the test:

func TestInsert(t *testing.T) {
if os.Getenv("INTEGRATION") != "true" {

t.Skip("skipping integration test")
}

// ...
}

If the INTEGRATION environment variable isn’t set to true, the test is skipped with a
message:

$ go test -v .
=== RUN TestInsert

db_integration_test.go:12: skipping integration test
--- SKIP: TestInsert (0.00s)
=== RUN TestUnit
--- PASS: TestUnit (0.00s)
PASS
ok db 0.319s

One benefit of using this approach is making explicit which tests are skipped and why.
This technique is probably less widely used than build tags, but it’s worth knowing
about because it presents some advantages, as we discussed.

 Next, let’s look at another way to categorize tests: short mode. 

11.1.3 Short mode

Another approach to categorize tests is related to their speed. We may have to dissoci-
ate short-running tests from long-running tests.

 As an illustration, suppose we have a set of unit tests, one of which is notoriously
slow. We would like to categorize the slow test so we don’t have to run it every time
(especially if the trigger is after saving a file, for example). Short mode allows us to
make this distinction:

func TestLongRunning(t *testing.T) {
if testing.Short() {

t.Skip("skipping long-running test")
}
// ...

}

Shows the test-
skipped message

Marks the test 
as long-running
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Using testing.Short, we can retrieve whether short mode was enabled while running
the test. Then we use Skip to skip the test. To run tests using short mode, we have to
pass -short:

% go test -short -v .
=== RUN TestLongRunning

foo_test.go:9: skipping long-running test
--- SKIP: TestLongRunning (0.00s)
PASS
ok foo 0.174s

TestLongRunning is explicitly skipped when the tests are executed. Note that unlike
build tags, this option works per test, not per file.

 In summary, categorizing tests is a best practice for a successful testing strategy. In
this section, we’ve seen three ways to categorize tests:

 Using build tags at the test file level
 Using environment variables to mark a specific test
 Based on the test pace using short mode

We can also combine approaches: for example, using build tags or environment vari-
ables to classify a test (for example, as a unit or integration test) and short mode if our
project contains long-running unit tests.

 In the next section, we discuss why enabling the -race flag matters. 

11.2 #83: Not enabling the -race flag
In mistake #58, “Not understanding race problems,” we defined a data race as occur-
ring when two goroutines simultaneously access the same variable, with at least one
writing to the variable. We should also know that Go has a standard race-detector tool
to help detect data races. One common mistake is forgetting how important this tool
is and not enabling it. This section looks at what the race detector catches, how to use
it, and its limitations.

 In Go, the race detector isn’t a static analysis tool used during compilation;
instead, it’s a tool to find data races that occur at runtime. To enable it, we have to
enable the -race flag while compiling or running a test. For example:

$ go test -race ./...

Once the race detector is enabled, the compiler instruments the code to detect data
races. Instrumentation refers to a compiler adding extra instructions: here, tracking all
memory accesses and recording when and how they occur. At runtime, the race detec-
tor watches for data races. However, we should keep in mind the runtime overhead of
enabling the race detector:

 Memory usage may increase by 5 to 10×.
 Execution time may increase by 2 to 20×.
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Because of this overhead, it’s generally recommended to enable the race detector only
during local testing or continuous integration (CI). In production, we should avoid it
(or only use it in the case of canary releases, for example).

 If a race is detected, Go raises a warning. For instance, this example contains a data
race because i can be accessed at the same time for both a read and a write:

package main

import (
"fmt"

)

func main() {
i := 0
go func() { i++ }()
fmt.Println(i)

}

Running this application with the -race flag logs the following data race warning:

==================
WARNING: DATA RACE
Write at 0x00c000026078 by goroutine 7:

main.main.func1()
/tmp/app/main.go:9 +0x4e

Previous read at 0x00c000026078 by main goroutine:
main.main()

/tmp/app/main.go:10 +0x88

Goroutine 7 (running) created at:
main.main()

/tmp/app/main.go:9 +0x7a
==================

Let’s make sure we are comfortable reading these messages. Go always logs the
following:

 The concurrent goroutines that are incriminated: here, the main goroutine
and goroutine 7.

 Where accesses occur in the code: in this case, lines 9 and 10.
 When these goroutines were created: goroutine 7 was created in main().

NOTE Internally, the race detector uses vector clocks, a data structure used to
determine a partial ordering of events (and also used in distributed systems
such as databases). Each goroutine creation leads to the creation of a vector
clock. The instrumentation updates the vector clock at each memory access
and synchronization event. Then, it compares the vector clocks to detect
potential data races.

The race detector cannot catch a false positive (an apparent data race that isn’t a real
one). Therefore, we know our code contains a data race if we get a warning. Con-
versely, it can sometimes lead to false negatives (missing actual data races).

Indicates that 
goroutine 7 was writing

Indicates that the main 
goroutine was reading

Indicates when  
goroutine 7 was created
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 We need to note two things regarding testing. First, the race detector can only be
as good as our tests. Thus, we should ensure that concurrent code is tested thoroughly
against data races. Second, given the possible false negatives, if we have a test to check
data races, we can put this logic inside a loop. Doing so increases the chances of catch-
ing possible data races:

func TestDataRace(t *testing.T) {
for i := 0; i < 100; i++ {

// Actual logic
}

}

In addition, if a specific file contains tests that lead to data races, we can exclude it
from race detection using the !race build tag:

//go:build !race

package main

import (
"testing"

)

func TestFoo(t *testing.T) {
// ...

}

func TestBar(t *testing.T) {
// ...

}

This file will be built only if the race detector is disabled. Otherwise, the entire file
won’t be built, so the tests won’t be executed.

 In summary, we should bear in mind that running tests with the -race flag for
applications using concurrency is highly recommended, if not mandatory. This
approach allows us to enable the race detector, which instruments our code to catch
potential data races. While enabled, it has a significant impact on memory and perfor-
mance, so it must be used in specific conditions such as local tests or CI.

 The following section discusses two flags related to execution mode: parallel and
shuffle. 

11.3 #84: Not using test execution modes
While running tests, the go command can accept a set of flags to impact how tests are
executed. A common mistake is not being aware of these flags and missing opportuni-
ties that could lead to faster execution or a better way to spot possible bugs. Let’s look
at two of these flags: parallel and shuffle.
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11.3.1 The parallel flag

Parallel execution mode allows us to run specific tests in parallel, which can be very
useful: for example, to speed up long-running tests. We can mark that a test has to be
run in parallel by calling t.Parallel:

func TestFoo(t *testing.T) {
t.Parallel()
// ...

}

When we mark a test using t.Parallel, it is executed in parallel alongside all the
other parallel tests. In terms of execution, though, Go first runs all the sequential tests
one by one. Once the sequential tests are completed, it executes the parallel tests.

 For example, the following code contains three tests, but only two of them are
marked to be run in parallel:

func TestA(t *testing.T) {
t.Parallel()
// ...

}

func TestB(t *testing.T) {
t.Parallel()
// ...

}

func TestC(t *testing.T) {
// ...

}

Running the tests for this file gives the following logs:

=== RUN TestA
=== PAUSE TestA
=== RUN TestB
=== PAUSE TestB
=== RUN TestC
--- PASS: TestC (0.00s)
=== CONT TestA
--- PASS: TestA (0.00s)
=== CONT TestB
--- PASS: TestB (0.00s)
PASS

TestC is the first to be executed. TestA and TestB are logged first, but they are paused,
waiting for TestC to complete. Then both are resumed and executed in parallel.

 By default, the maximum number of tests that can run simultaneously equals
the GOMAXPROCS value. To serialize tests or, for example, increase this number in the
context of long-running tests doing a lot of I/O, we can change this value using the
-parallel flag:

$ go test -parallel 16 .

Pauses TestA

Pauses TestB
Runs TestC

Resumes TestA 
and TestB
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Here, the maximum number of parallel tests is set to 16.
 Let’s now see another mode while running Go tests: shuffle. 

11.3.2 The -shuffle flag

As of Go 1.17, it’s possible to randomize the execution order of tests and bench-
marks. What’s the rationale? A best practice while writing tests is to make them iso-
lated. For example, they shouldn’t depend on execution order or shared variables.
These hidden dependencies can mean a possible test error or, even worse, a bug that
won’t be caught during testing. To prevent that, we can use the -shuffle flag to ran-
domize tests. We can set it to on or off to enable or disable test shuffling (its disabled
by default):

$ go test -shuffle=on -v .

However, in some cases, we want to rerun tests in the same order. For example, if tests
fail during CI, we may want to reproduce the error locally. To do that, instead of pass-
ing on to the -shuffle flag, we can pass the seed used to randomize the tests. We can
access this seed value when running shuffled tests by enabling verbose mode (-v):

$ go test -shuffle=on -v .
-test.shuffle 1636399552801504000
=== RUN TestBar
--- PASS: TestBar (0.00s)
=== RUN TestFoo
--- PASS: TestFoo (0.00s)
PASS
ok teivah 0.129s

We executed the tests randomly, but go test printed the seed value:
1636399552801504000. To force the tests to be run in the same order, we provide
this seed value to shuffle:

$ go test -shuffle=1636399552801504000 -v .
-test.shuffle 1636399552801504000
=== RUN TestBar
--- PASS: TestBar (0.00s)
=== RUN TestFoo
--- PASS: TestFoo (0.00s)
PASS
ok teivah 0.129s

The tests were executed in the same order: TestBar and then TestFoo.
 In general, we should be cautious about existing test flags and keep ourselves

informed about new features with recent Go releases. Running tests in parallel can be
an excellent way to decrease the overall execution time of running all the tests. And
shuffle mode can help us spot hidden dependencies that may mean testing errors or
even invisible bugs while running tests in the same order. 

Seed value
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11.4 #85: Not using table-driven tests
Table-driven tests are an efficient technique for writing condensed tests and thus
reducing boilerplate code to help us focus on what matters: the testing logic. This sec-
tion goes through a concrete example to see why table-driven tests are worth knowing
when working with Go.

 Let’s consider the following function that removes all the new-line suffixes (\n or
\r\n) from a string:

func removeNewLineSuffixes(s string) string {
if s == "" {

return s
}
if strings.HasSuffix(s, "\r\n") {

return removeNewLineSuffixes(s[:len(s)-2])
}
if strings.HasSuffix(s, "\n") {

return removeNewLineSuffixes(s[:len(s)-1])
}
return s

}

This function removes all the leading \r\n and \n suffixes recursively. Now, let’s say
we want to test this function extensively. We should at least cover the following cases:

 Input is empty.
 Input ends with \n.
 Input ends with \r\n.
 Input ends with multiple \n.
 Input ends without newlines.

The following approach creates one unit test per case:

func TestRemoveNewLineSuffix_Empty(t *testing.T) {
got := removeNewLineSuffixes("")
expected := ""
if got != expected {

t.Errorf("got: %s", got)
}

}

func TestRemoveNewLineSuffix_EndingWithCarriageReturnNewLine(t *testing.T) {
got := removeNewLineSuffixes("a\r\n")
expected := "a"
if got != expected {

t.Errorf("got: %s", got)
}

}

func TestRemoveNewLineSuffix_EndingWithNewLine(t *testing.T) {
got := removeNewLineSuffixes("a\n")
expected := "a"
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if got != expected {
t.Errorf("got: %s", got)

}
}

func TestRemoveNewLineSuffix_EndingWithMultipleNewLines(t *testing.T) {
got := removeNewLineSuffixes("a\n\n\n")
expected := "a"
if got != expected {

t.Errorf("got: %s", got)
}

}

func TestRemoveNewLineSuffix_EndingWithoutNewLine(t *testing.T) {
got := removeNewLineSuffixes("a\n")
expected := "a"
if got != expected {

t.Errorf("got: %s", got)
}

}

Each function represents a specific case that we want to cover. However, there are two
main drawbacks. First, the function names are more complex (TestRemoveNewLine-
Suffix_EndingWithCarriageReturnNewLine is 55 characters long), which can quickly
affect the clarity of what the function is supposed to test. The second drawback is the
amount of duplication among these functions, given that the structure is always the
same:

1 Call removeNewLineSuffixes.
2 Define the expected value.
3 Compare the values.
4 Log an error message.

If we want to change one of these steps—for example, include the expected value as
part of the error message—we will have to repeat it in all the tests. And the more tests
we write, the more difficult the code becomes to maintain.

 Instead, we can use table-driven tests so we write the logic only once. Table-driven
tests rely on subtests, and a single test function can include multiple subtests. For
example, the following test contains two subtests:

func TestFoo(t *testing.T) {
t.Run("subtest 1", func(t *testing.T) {

if false {
t.Error()

}
})
t.Run("subtest 2", func(t *testing.T) {

if 2 != 2 {
t.Error()

}
})

}

Runs a first subtest 
called subtest 1

Runs a second subtest 
called subtest 2
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The TestFoo function includes two subtests. If we run this test, it shows the results for
both subtest 1 and subtest 2:

--- PASS: TestFoo (0.00s)
--- PASS: TestFoo/subtest_1 (0.00s)
--- PASS: TestFoo/subtest_2 (0.00s)

PASS

We can also run a single test using the -run flag and concatenating the parent test
name with the subtest. For example, we can run only subtest 1:

$ go test -run=TestFoo/subtest_1 -v
=== RUN TestFoo
=== RUN TestFoo/subtest_1
--- PASS: TestFoo (0.00s)

--- PASS: TestFoo/subtest_1 (0.00s)

Let’s return to our example and see how to use subtests to prevent duplicating the
testing logic. The main idea is to create one subtest per case. Variations exist, but we
will discuss a map data structure where the key represents the test name and the value
represents the test data (input, expected).

 Table-driven tests avoid boilerplate code by using a data structure containing test
data together with subtests. Here’s a possible implementation using a map:

func TestRemoveNewLineSuffix(t *testing.T) {
tests := map[string]struct {

input string
expected string

}{
`empty`: {

input: "",
expected: "",

},
`ending with \r\n`: {

input: "a\r\n",
expected: "a",

},
`ending with \n`: {

input: "a\n",
expected: "a",

},
`ending with multiple \n`: {

input: "a\n\n\n",
expected: "a",

},
`ending without newline`: {

input: "a",
expected: "a",

},
}
for name, tt := range tests {

t.Run(name, func(t *testing.T) {
got := removeNewLineSuffixes(tt.input)
if got != tt.expected {

Uses the -run flag 
to run only subtest 1

Defines the 
test data

Each entry in the map 
represents a subtest.

Iterates over 
the map

Runs a new subtest 
for each map entry
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t.Errorf("got: %s, expected: %s", got, tt.expected)
}

})
}

}

The tests variable is a map. The key is the test name, and the value represents test
data: in our case, input and expected string. Each map entry is a new test case that we
want to cover. We run a new subtest for each map entry.

 This test solves the two drawbacks we discussed:

 Each test name is now a string instead of a PascalCase function name, making it
simpler to read.

 The logic is written only once and shared for all the different cases. Modifying
the testing structure or adding a new test requires minimal effort.

We need to mention one last thing regarding table-driven tests that can also be a source
of mistakes: as we mentioned previously, we can mark a test to be run in parallel by call-
ing t.Parallel. We can also do this in subtests inside the closure provided to t.Run:

for name, tt := range tests {
t.Run(name, func(t *testing.T) {

t.Parallel()
// Use tt

})
}

However, this closure uses a loop variable. To prevent an issue similar to that discussed
in mistake #63, “Not being careful with goroutines and loop variables,” which may
cause the closures to use a wrong value of the tt variable, we should create another
variable or shadow tt:

for name, tt := range tests {
tt := tt
t.Run(name, func(t *testing.T) {

t.Parallel()
// Use tt

})
}

This way, each closure accesses its own tt variable.
 In summary, if multiple unit tests have a similar structure, we can mutualize them

using table-driven tests. Because this technique prevents duplication, it makes it sim-
ple to change the testing logic and easier to add new use cases.

 Next, let’s discuss how to prevent flaky tests in Go. 

11.5 #86: Sleeping in unit tests
A flaky test is a test that may both pass and fail without any code change. Flaky tests are
among the biggest hurdles in testing because they are expensive to debug and under-
mine our confidence in testing accuracy. In Go, calling time.Sleep in a test can be a

Marks the subtest 
to be run in parallel

Shadows tt to make it 
local to the loop iteration



27511.5 #86: Sleeping in unit tests
signal of possible flakiness. For example, concurrent code is often tested using sleeps.
This section presents concrete techniques to remove sleeps from tests and thus pre-
vent us from writing flaky tests.

 We will illustrate this section with a function that returns a value and spins up a
goroutine that performs a job in the background. We will call a function to get a slice
of Foo structs and return the best element (the first one). In the meantime, the other
goroutine will be in charge of calling a Publish method with the first n Foo elements:

type Handler struct {
n int
publisher publisher

}

type publisher interface {
Publish([]Foo)

}

func (h Handler) getBestFoo(someInputs int) Foo {
foos := getFoos(someInputs)
best := foos[0]

go func() {
if len(foos) > h.n {

foos = foos[:h.n]
}
h.publisher.Publish(foos)

}()

return best
}

The Handler struct contains two fields: an n field and a publisher dependency used
to publish the first n Foo structs. First we get a slice of Foo; but before returning the
first element, we spin up a new goroutine, filter the foos slice, and call Publish.

 How can we test this function? Writing the part to assert the response is straightfor-
ward. However, what if we also want to check what is passed to Publish?

 We could mock the publisher interface to record the arguments passed while call-
ing the Publish method. Then we could sleep for a few milliseconds before checking
the arguments recorded:

type publisherMock struct {
mu sync.RWMutex
got []Foo

}

func (p *publisherMock) Publish(got []Foo) {
p.mu.Lock()
defer p.mu.Unlock()
p.got = got

}

func (p *publisherMock) Get() []Foo {
p.mu.RLock()

Gets a slice 
of Foo

Keeps the first element (checking the length 
of foos is omitted for the sake of simplicity)

Keeps only the 
first n Foo structs

Calls the Publish 
method
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defer p.mu.RUnlock()
return p.got

}

func TestGetBestFoo(t *testing.T) {
mock := publisherMock{}
h := Handler{

publisher: &mock,
n: 2,

}

foo := h.getBestFoo(42)
// Check foo

time.Sleep(10 * time.Millisecond)
published := mock.Get()
// Check published

}

We write a mock of publisher that relies on a mutex to protect access to the pub-
lished field. In our unit test, we call time.Sleep to leave some time before checking
the arguments passed to Publish.

 This test is inherently flaky. There is no strict guarantee that 10 milliseconds will be
enough (in this example, it is likely but not guaranteed).

 So, what are the options to improve this unit test? First, we can periodically assert a
given condition using retries. For example, we can write a function that takes an asser-
tion as an argument and a maximum number of retries plus a wait time that is called
periodically to avoid a busy loop:

func assert(t *testing.T, assertion func() bool,
maxRetry int, waitTime time.Duration) {
for i := 0; i < maxRetry; i++ {

if assertion() {
return

}
time.Sleep(waitTime)

}
t.Fail()

}

This function checks the assertion provided and fails after a certain number of retries.
We also use time.Sleep, but we could use a shorter sleep with this code.

 For example, let’s go back to TestGetBestFoo:

assert(t, func() bool {
return len(mock.Get()) == 2

}, 30, time.Millisecond)

Instead of sleeping for 10 milliseconds, we sleep each millisecond and configure a
maximum number of retries. Such an approach reduces the execution time if the test
succeeds because we reduce the waiting interval. Therefore, implementing a retry
strategy is a better approach than using passive sleeps.

Sleeps for 10 milliseconds 
before checking the arguments 
passed to Publish

Checks the
assertion

Sleeps 
before retry

Fails eventually after 
a number of retries
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NOTE Some testing libraries, such as testify, offer retry features. For exam-
ple, in testify, we can use the Eventually function, which implements
assertions that should eventually succeed and other features such as configur-
ing the error message.

Another strategy is to use channels to synchronize the goroutine publishing the Foo
structs and the testing goroutine. For example, in the mock implementation, instead
of copying the slice received into a field, we can send this value to a channel:

type publisherMock struct {
ch chan []Foo

}

func (p *publisherMock) Publish(got []Foo) {
p.ch <- got

}

func TestGetBestFoo(t *testing.T) {
mock := publisherMock{

ch: make(chan []Foo),
}
defer close(mock.ch)

h := Handler{
publisher: &mock,
n: 2,

}
foo := h.getBestFoo(42)
// Check foo

if v := len(<-mock.ch); v != 2 {
t.Fatalf("expected 2, got %d", v)

}
}

The publisher sends the received argument to a channel. Meanwhile, the testing
goroutine sets up the mock and creates the assertion based on the received value. We
can also implement a timeout strategy to make sure we don’t wait forever for mock.ch
if something goes wrong. For example, we can use select with a time.After case.

 Which option should we favor: retry or synchronization? Indeed, synchronization
reduces waiting time to the bare minimum and makes a test fully deterministic if well
designed.

 If we can’t apply synchronization, we should perhaps reconsider our design since
we may have a problem. If synchronization is truly impossible, we should use the retry
option, which is a better choice than using passive sleeps to eradicate non-determin-
ism in tests.

 Let’s continue our discussion of how to prevent flakiness in testing, this time when
using the time API. 

Sends the 
arguments received

Compares these 
arguments
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11.6 #87: Not dealing with the time API efficiently
Some functions have to rely on the time API: for example, to retrieve the current
time. In such a case, it can be pretty easy to write brittle unit tests that may fail at some
point. In this section, we go through a concrete example and discuss the options. The
goal is not to cover every use case and technique but rather to give directions about
writing more robust tests of functions using the time API.

 Let’s say an application receives events that we want to store in an in-memory
cache. We will implement a Cache struct to hold the most recent events. This struct
will expose three methods that do the following:

 Append events
 Get all the events
 Trim the events for a given duration (we will focus on this method)

Each of these methods needs to access the current time. Let’s write a first implementa-
tion of the third method using time.Now() (we will assume that all the events are
sorted by time):

type Cache struct {
mu sync.RWMutex
events []Event

}

type Event struct {
Timestamp time.Time
Data string

}

func (c *Cache) TrimOlderThan(since time.Duration) {
c.mu.RLock()
defer c.mu.RUnlock()

t := time.Now().Add(-since)
for i := 0; i < len(c.events); i++ {

if c.events[i].Timestamp.After(t) {
c.events = c.events[i:]
return

}
}

}

We compute a t variable that is the current time minus the provided duration. Then,
because the events are sorted by time, we update the internal events slice as soon as
we reach an event whose time is after t.

 How can we test this method? We could rely on the current time using time.Now to
create the events:

func TestCache_TrimOlderThan(t *testing.T) {
events := []Event{

{Timestamp: time.Now().Add(-20 * time.Millisecond)},

Subtracts the given duration 
from the current time

Trims 
the events

Creates events 
using time.Now()
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{Timestamp: time.Now().Add(-10 * time.Millisecond)},
{Timestamp: time.Now().Add(10 * time.Millisecond)},

}
cache := &Cache{}
cache.Add(events)
cache.TrimOlderThan(15 * time.Millisecond)
got := cache.GetAll()
expected := 2
if len(got) != expected {

t.Fatalf("expected %d, got %d", expected, len(got))
}

}

We add a slice of events to the cache using time.Now() and add or subtract some
small durations. Then we trim these events for 15 milliseconds, and we perform the
assertion.

 Such an approach has one main drawback: if the machine executing the test is sud-
denly busy, we may trim fewer events than expected. We might be able to increase the
duration provided to reduce the chance of having a failing test, but doing so isn’t
always possible. For example, what if the timestamp field was an unexported field gen-
erated while adding an event? In this case, it wouldn’t be possible to pass a specific
timestamp, and one might end up adding sleeps in the unit test.

 The problem is related to the implementation of TrimOlderThan. Because it calls
time.Now(), it’s harder to implement robust unit tests. Let’s discuss two approaches to
make our test less brittle.

 The first approach is to make the way to retrieve the current time a dependency of
the Cache struct. In production, we would inject the real implementation, whereas in
unit tests, we would pass a stub, for example.

 There are various techniques to handle this dependency, such as an interface or a
function type. In our case, because we only rely on a single method (time.Now()), we
can define a function type:

type now func() time.Time

type Cache struct {
mu sync.RWMutex
events []Event
now now

}

The now type is a function that returns a time.Time. In the factory function, we can
pass the actual time.Now function this way:

func NewCache() *Cache {
return &Cache{

events: make([]Event, 0),
now: time.Now,

}
}

Adds these events 
to the cache

Trims the events since 
15 milliseconds agoRetrieves all 

the events
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Because the now dependency remains unexported, it isn’t accessible by external cli-
ents. Furthermore, in our unit test, we can create a Cache struct by injecting a fake
implementation of func() time.Time based on a predefined time:

func TestCache_TrimOlderThan(t *testing.T) {
events := []Event{

{Timestamp: parseTime(t, "2020-01-01T12:00:00.04Z")},
{Timestamp: parseTime(t, "2020-01-01T12:00:00.05Z")},
{Timestamp: parseTime(t, "2020-01-01T12:00:00.06Z")},

}
cache := &Cache{now: func() time.Time {

return parseTime(t, "2020-01-01T12:00:00.06Z")
}}
cache.Add(events)
cache.TrimOlderThan(15 * time.Millisecond)
// ...

}

func parseTime(t *testing.T, timestamp string) time.Time {
// ...

}

While creating a new Cache struct, we inject the now dependency based on a given
time. Thanks to this approach, the test is robust. Even in the worst conditions, the out-
come of this test is deterministic.

This solution is also extensible. For example, what if the function calls time.After?
We can either add another after dependency or create one interface grouping the
two methods: Now and After. However, this approach has one main drawback: the now
dependency isn’t available if we, for example, create a unit test from an external pack-
age (we explore this in mistake #90, “Not exploring all the Go testing features”).

 In that case, we can use another technique. Instead of handling the time as an
unexported dependency, we can ask clients to provide the current time:

func (c *Cache) TrimOlderThan(now time.Time, since time.Duration) {
// ...

}

Using a global variable
Instead of using a field, we can retrieve the time via a global variable:

var now = time.Now

In general, we should try to avoid having such a mutable shared state. In our case,
it would lead to at least one concrete issue: tests would no longer be isolated
because they would all depend on a shared variable. Therefore, the tests couldn’t be
run in parallel, for example. If possible, we should handle these cases as part of
struct dependencies, fostering testing isolation.

Creates events 
based on specific 
timestamps

Injects a static function 
to fix the time

Defines a now 
global variable
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To go even further, we can merge the two function arguments in a single time.Time
that represents a specific point in time until which we want to trim the events:

func (c *Cache) TrimOlderThan(t time.Time) {
// ...

}

It is up to the caller to calculate this point in time:

cache.TrimOlderThan(time.Now().Add(time.Second))

And in the test, we also have to pass the corresponding time:

func TestCache_TrimOlderThan(t *testing.T) {
// ...
cache.TrimOlderThan(parseTime(t, "2020-01-01T12:00:00.06Z").

Add(-15 * time.Millisecond))
// ...

}

This approach is the simplest because it doesn’t require creating another type and a
stub.

 In general, we should be cautious about testing code that uses the time API. It can
be an open door for flaky tests. In this section, we have seen two ways to deal with it.
We can keep the time interactions as part of a dependency that we can fake in unit
tests by using our own implementations or relying on external libraries; or we can
rework our API and ask clients to provide us with the information we need, such as
the current time (this technique is simpler but more limited).

 Let’s now discuss two helpful Go packages related to testing: httptest and iotest. 

11.7 #88: Not using testing utility packages
The standard library provides utility packages for testing. A common mistake is being
unaware of these packages and trying to reinvent the wheel or rely on other solutions
that aren’t as handy. This section examines two of these packages: one to help us when
using HTTP and another to use when doing I/O and using readers and writers.

11.7.1 The httptest package

The httptest package (https://pkg.go.dev/net/http/httptest) provides utilities for
HTTP testing for both clients and servers. Let’s look at these two use cases.

 First, let’s see how httptest can help us while writing an HTTP server. We will imple-
ment a handler that performs some basic actions: writing a header and body, and
returning a specific status code. For the sake of clarity, we will omit error handling:

func Handler(w http.ResponseWriter, r *http.Request) {
w.Header().Add("X-API-VERSION", "1.0")
b, _ := io.ReadAll(r.Body)
_, _ = w.Write(append([]byte("hello "), b...))
w.WriteHeader(http.StatusCreated)

}

Concatenates hello 
with the request body

https://pkg.go.dev/net/http/httptest
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An HTTP handler accepts two arguments: the request and a way to write the response.
The httptest package provides utilities for both. For the request, we can use http-
test.NewRequest to build an *http.Request using an HTTP method, a URL, and a
body. For the response, we can use httptest.NewRecorder to record the mutations
made within the handler. Let’s write a unit test of this handler:

func TestHandler(t *testing.T) {
req := httptest.NewRequest(http.MethodGet, "http://localhost",

strings.NewReader("foo"))
w := httptest.NewRecorder()
Handler(w, req)

if got := w.Result().Header.Get("X-API-VERSION"); got != "1.0" {
t.Errorf("api version: expected 1.0, got %s", got)

}

body, _ := ioutil.ReadAll(wordy)
if got := string(body); got != "hello foo" {

t.Errorf("body: expected hello foo, got %s", got)
}

if http.StatusOK != w.Result().StatusCode {
t.FailNow()

}
}

Testing a handler using httptest doesn’t test the transport (the HTTP part). The
focus of the test is calling the handler directly with a request and a way to record the
response. Then, using the response recorder, we write the assertions to verify the
HTTP header, body, and status code.

 Let’s look at the other side of the coin: testing an HTTP client. We will write a cli-
ent in charge to query an HTTP endpoint that calculates how long it takes to drive
from one coordinate to another. The client looks like this:

func (c DurationClient) GetDuration(url string,
lat1, lng1, lat2, lng2 float64) (
time.Duration, error) {
resp, err := c.client.Post(

url, "application/json",
buildRequestBody(lat1, lng1, lat2, lng2),

)
if err != nil {

return 0, err
}

return parseResponseBody(resp.Body)
}

This code performs an HTTP POST request to the provided URL and returns the
parsed response (let’s say, some JSON).

 What if we want to test this client? One option is to use Docker and spin up a mock
server to return some preregistered responses. However, this approach makes the test
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response recorderCalls the
handler
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HTTP header

Verifies the 
HTTP body
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status code



28311.7 #88: Not using testing utility packages
slow to execute. The other option is to use httptest.NewServer to create a local
HTTP server based on a handler that we will provide. Once the server is up and run-
ning, we can pass its URL to GetDuration:

func TestDurationClientGet(t *testing.T) {
srv := httptest.NewServer(

http.HandlerFunc(
func(w http.ResponseWriter, r *http.Request) {

_, _ = w.Write([]byte(`{"duration": 314}`))
},

),
)
defer srv.Close()

client := NewDurationClient()
duration, err :=

client.GetDuration(srv.URL, 51.551261, -0.1221146, 51.57, -0.13)
if err != nil {

t.Fatal(err)
}

if duration != 314*time.Second {
t.Errorf("expected 314 seconds, got %v", duration)

}
}

In this test, we create a server with a static handler returning 314 seconds. We could
also make assertions based on the request sent. Furthermore, when we call Get-
Duration, we provide the URL of the server that’s started. Compared to testing a han-
dler, this test performs an actual HTTP call, but it executes in only a few milliseconds.

 We can also start a new server using TLS with httptest.NewTLSServer and create
an unstarted server with httptest.NewUnstartedServer so that we can start it lazily.

 Let’s remember how helpful httptest is when working in the context of HTTP
applications. Whether we’re writing a server or a client, httptest can help us create
efficient tests. 

11.7.2 The iotest package

The iotest package (https://pkg.go.dev/testing/iotest) implements utilities for test-
ing readers and writers. It’s a convenient package that Go developers too often forget.

 When implementing a custom io.Reader, we should remember to test it using
iotest.TestReader. This utility function tests that a reader behaves correctly: it accu-
rately returns the number of bytes read, fills the provided slice, and so on. It also tests
different behaviors if the provided reader implements interfaces such as io.ReaderAt.

 Let’s assume we have a custom LowerCaseReader that streams lowercase letters
from a given input io.Reader. Here’s how to test that this reader doesn’t misbehave:

func TestLowerCaseReader(t *testing.T) {
err := iotest.TestReader(

&LowerCaseReader{reader: strings.NewReader("aBcDeFgHiJ")},

Starts the 
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Registers the
handler to serve

the responseShuts down 
the server
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Verifies the 
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Provides an
io.Reader

https://pkg.go.dev/testing/iotest
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[]byte("acegi"),
)
if err != nil {

t.Fatal(err)
}

}

We call iotest.TestReader by providing the custom LowerCaseReader and an expec-
tation: the lowercase letters acegi.

 Another use case for the iotest package is to make sure an application using read-
ers and writers is tolerant to errors:

 iotest.ErrReader creates an io.Reader that returns a provided error.
 iotest.HalfReader creates an io.Reader that reads only half as many bytes as

requested from an io.Reader.
 iotest.OneByteReader creates an io.Reader that reads a single byte for each

non-empty read from an io.Reader.
 iotest.TimeoutReader creates an io.Reader that returns an error on the sec-

ond read with no data. Subsequent calls will succeed.
 iotest.TruncateWriter creates an io.Writer that writes to an io.Writer but

stops silently after n bytes.

For example, let’s assume we implement the following function that starts by reading
all the bytes from a reader:

func foo(r io.Reader) error {
b, err := io.ReadAll(r)
if err != nil {

return err
}

// ...
}

We want to make sure our function is resilient if, for example, the provided reader
fails during a read (such as to simulate a network error):

func TestFoo(t *testing.T) {
err := foo(iotest.TimeoutReader(

strings.NewReader(randomString(1024)),
))
if err != nil {

t.Fatal(err)
}

}

We wrap an io.Reader using io.TimeoutReader. As we mentioned, the second read
will fail. If we run this test to make sure our function is tolerant to error, we get a test
failure. Indeed, io.ReadAll returns any errors it finds.

 Knowing this, we can implement our custom readAll function that tolerates up to
n errors:

Expectation

Wraps the provided io.Reader 
using io.TimeoutReader
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func readAll(r io.Reader, retries int) ([]byte, error) {
b := make([]byte, 0, 512)
for {

if len(b) == cap(b) {
b = append(b, 0)[:len(b)]

}
n, err := r.Read(b[len(b):cap(b)])
b = b[:len(b)+n]
if err != nil {

if err == io.EOF {
return b, nil

}
retries--
if retries < 0 {

return b, err
}

}
}

}

This implementation is similar to io.ReadAll, but it also handles configurable retries.
If we change the implementation of our initial function to use our custom readAll
instead of io.ReadAll, the test will no longer fail:

func foo(r io.Reader) error {
b, err := readAll(r, 3)
if err != nil {

return err
}

// ...
}

We have seen an example of how to check that a function is tolerant to errors while
reading from an io.Reader. We performed the test by relying on the iotest package.

 When doing I/O and working with io.Reader and io.Writer, let’s remember how
handy the iotest package is. As we have seen, it provides utilities to test the behavior
of a custom io.Reader and test our application against errors that occur while read-
ing or writing data.

 The following section discusses some common traps that can lead to writing inac-
curate benchmarks. 

11.8 #89: Writing inaccurate benchmarks
In general, we should never guess about performance. When writing optimizations, so
many factors may come into play that even if we have a strong opinion about the
results, it’s rarely a bad idea to test them. However, writing benchmarks isn’t straight-
forward. It can be pretty simple to write inaccurate benchmarks and make wrong
assumptions based on them. The goal of this section is to examine common and con-
crete traps leading to inaccuracy.

Tolerates 
retries

Indicates up to 
three retries
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 Before discussing these traps, let’s briefly review how benchmarks work in Go. The
skeleton of a benchmark is as follows:

func BenchmarkFoo(b *testing.B) {
for i := 0; i < b.N; i++ {

foo()
}

}

The function name starts with the Benchmark prefix. The function under test (foo) is
called within the for loop. b.N represents a variable number of iterations. When run-
ning a benchmark, Go tries to make it match the requested benchmark time. The
benchmark time is set by default to 1 second and can be changed with the -benchtime
flag. b.N starts at 1; if the benchmark completes in under 1 second, b.N is increased,
and the benchmark runs again until b.N roughly matches benchtime:

$ go test -bench=.
cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkFoo-4 73 16511228 ns/op

Here, the benchmark took about 1 second, and foo was executed 73 times, for an
average execution time of 16,511,228 nanoseconds. We can change the benchmark
time using -benchtime:

$ go test -bench=. -benchtime=2s
BenchmarkFoo-4 150 15832169 ns/op

foo was executed roughly twice more than during the previous benchmark.
 Next, let’s look at some common traps.

11.8.1 Not resetting or pausing the timer

In some cases, we need to perform operations before the benchmark loop. These
operations may take quite a while (for example, generating a large slice of data) and
may significantly impact the benchmark results:

func BenchmarkFoo(b *testing.B) {
expensiveSetup()
for i := 0; i < b.N; i++ {

functionUnderTest()
}

}

In this case, we can use the ResetTimer method before entering the loop:

func BenchmarkFoo(b *testing.B) {
expensiveSetup()
b.ResetTimer()
for i := 0; i < b.N; i++ {

functionUnderTest()
}

}

Resets the 
benchmark timer
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Calling ResetTimer zeroes the elapsed benchmark time and memory allocation
counters since the beginning of the test. This way, an expensive setup can be dis-
carded from the test results.

 What if we have to perform an expensive setup not just once but within each loop
iteration?

func BenchmarkFoo(b *testing.B) {
for i := 0; i < b.N; i++ {

expensiveSetup()
functionUnderTest()

}
}

We can’t reset the timer, because that would be executed during each loop iteration.
But we can stop and resume the benchmark timer, surrounding the call to expen-
siveSetup:

func BenchmarkFoo(b *testing.B) {
for i := 0; i < b.N; i++ {

b.StopTimer()
expensiveSetup()
b.StartTimer()
functionUnderTest()

}
}

Here, we pause the benchmark timer to perform the expensive setup and then
resume the timer.

NOTE There’s one catch to remember about this approach: if the function
under test is too fast to execute compared to the setup function, the bench-
mark may take too long to complete. The reason is that it would take much
longer than 1 second to reach benchtime. Calculating the benchmark time is
based solely on the execution time of functionUnderTest. So, if we wait a sig-
nificant time in each loop iteration, the benchmark will be much slower than
1 second. If we want to keep the benchmark, one possible mitigation is to
decrease benchtime.

We must be sure to use the timer methods to preserve the accuracy of a benchmark. 

11.8.2 Making wrong assumptions about micro-benchmarks

A micro-benchmark measures a tiny computation unit, and it can be extremely easy to
make wrong assumptions about it. Let’s say, for example, that we aren’t sure whether to
use atomic.StoreInt32 or atomic.StoreInt64 (assuming that the values we handle
will always fit in 32 bits). We want to write a benchmark to compare both functions:

func BenchmarkAtomicStoreInt32(b *testing.B) {
var v int32
for i := 0; i < b.N; i++ {

atomic.StoreInt32(&v, 1)

Pauses the 
benchmark timer

Resumes the 
benchmark timer
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}
}

func BenchmarkAtomicStoreInt64(b *testing.B) {
var v int64
for i := 0; i < b.N; i++ {

atomic.StoreInt64(&v, 1)
}

}

If we run this benchmark, here’s some example output:

cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkAtomicStoreInt32
BenchmarkAtomicStoreInt32-4 197107742 5.682 ns/op
BenchmarkAtomicStoreInt64
BenchmarkAtomicStoreInt64-4 213917528 5.134 ns/op

We could easily take this benchmark for granted and decide to use atomic.Store-
Int64 because it appears to be faster. Now, for the sake of doing a fair benchmark, we
reverse the order and test atomic.StoreInt64 first, followed by atomic.StoreInt32.
Here is some example output:

BenchmarkAtomicStoreInt64
BenchmarkAtomicStoreInt64-4 224900722 5.434 ns/op
BenchmarkAtomicStoreInt32
BenchmarkAtomicStoreInt32-4 230253900 5.159 ns/op

This time, atomic.StoreInt32 has better results. What happened?
 In the case of micro-benchmarks, many factors can impact the results, such as

machine activity while running the benchmarks, power management, thermal scaling,
and better cache alignment of a sequence of instructions. We must remember that
many factors, even outside the scope of our Go project, can impact the results.

NOTE We should make sure the machine executing the benchmark is idle.
However, external processes may run in the background, which may affect
benchmark results. For that reason, tools such as perflock can limit how
much CPU a benchmark can consume. For example, we can run a benchmark
with 70% of the total available CPU, giving 30% to the OS and other processes
and reducing the impact of the machine activity factor on the results.

One option is to increase the benchmark time using the -benchtime option. Similar
to the law of large numbers in probability theory, if we run a benchmark a large num-
ber of times, it should tend to approach its expected value (assuming we omit the ben-
efits of instructions caching and similar mechanics).

 Another option is to use external tools on top of the classic benchmark tooling.
For instance, the benchstat tool, which is part of the golang.org/x repository, allows
us to compute and compare statistics about benchmark executions.

 Let’s run the benchmark 10 times using the -count option and pipe the output to
a specific file:
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$ go test -bench=. -count=10 | tee stats.txt
cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkAtomicStoreInt32-4 234935682 5.124 ns/op
BenchmarkAtomicStoreInt32-4 235307204 5.112 ns/op
// ...
BenchmarkAtomicStoreInt64-4 235548591 5.107 ns/op
BenchmarkAtomicStoreInt64-4 235210292 5.090 ns/op
// ...

We can then run benchstat on this file:

$ benchstat stats.txt
name time/op
AtomicStoreInt32-4 5.10ns ± 1%
AtomicStoreInt64-4 5.10ns ± 1%

The results are the same: both functions take on average 5.10 nanoseconds to complete.
We also see the percent variation between the executions of a given benchmark: ± 1%.
This metric tells us that both benchmarks are stable, giving us more confidence in the
computed average results. Therefore, instead of concluding that atomic.StoreInt32 is
faster or slower, we can conclude that its execution time is similar to that of atomic
.StoreInt64 for the usage we tested (in a specific Go version on a particular machine).

 In general, we should be cautious about micro-benchmarks. Many factors can sig-
nificantly impact the results and potentially lead to wrong assumptions. Increasing the
benchmark time or repeating the benchmark executions and computing stats with
tools such as benchstat can be an efficient way to limit external factors and get more
accurate results, leading to better conclusions.

 Let’s also highlight that we should be careful about using the results of a micro-
benchmark executed on a given machine if another system ends up running the
application. The production system may act quite differently from the one on which
we ran the micro-benchmark. 

11.8.3 Not being careful about compiler optimizations

Another common mistake related to writing benchmarks is being fooled by compiler
optimizations, which can also lead to wrong benchmark assumptions. In this section,
we look at Go issue 14813 (https://github.com/golang/go/issues/14813, also dis-
cussed by Go project member Dave Cheney) with a population count function (a
function that counts the number of bits set to 1):

const m1 = 0x5555555555555555
const m2 = 0x3333333333333333
const m4 = 0x0f0f0f0f0f0f0f0f
const h01 = 0x0101010101010101

func popcnt(x uint64) uint64 {
x -= (x >> 1) & m1
x = (x & m2) + ((x >> 2) & m2)
x = (x + (x >> 4)) & m4
return (x * h01) >> 56

}

https://github.com/golang/go/issues/14813
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This function takes and returns a uint64. To benchmark this function, we can write
the following:

func BenchmarkPopcnt1(b *testing.B) {
for i := 0; i < b.N; i++ {

popcnt(uint64(i))
}

}

However, if we execute this benchmark, we get a surprisingly low result:

cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkPopcnt1-4 1000000000 0.2858 ns/op

A duration of 0.28 nanoseconds is roughly one clock cycle, so this number is unrea-
sonably low. The problem is that the developer wasn’t careful enough about compiler
optimizations. In this case, the function under test is simple enough to be a candidate
for inlining : an optimization that replaces a function call with the body of the called
function and lets us prevent a function call, which has a small footprint. Once the
function is inlined, the compiler notices that the call has no side effects and replaces
it with the following benchmark:

func BenchmarkPopcnt1(b *testing.B) {
for i := 0; i < b.N; i++ {

// Empty
}

}

The benchmark is now empty—which is why we got a result close to one clock cycle.
To prevent this from happening, a best practice is to follow this pattern:

1 During each loop iteration, assign the result to a local variable (local in the con-
text of the benchmark function).

2 Assign the latest result to a global variable.

In our case, we write the following benchmark:

var global uint64

func BenchmarkPopcnt2(b *testing.B) {
var v uint64
for i := 0; i < b.N; i++ {

v = popcnt(uint64(i))
}
global = v

}

global is a global variable, whereas v is a local variable whose scope is the benchmark
function. During each loop iteration, we assign the result of popcnt to the local vari-
able. Then we assign the latest result to the global variable.

NOTE Why not assign the result of the popcnt call directly to global to sim-
plify the test? Writing to a global variable is slower than writing to a local

Defines a global 
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Defines a local variable

Assigns the result 
to the local variable

Assigns the result 
to the global variable
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variable (we discuss these concepts in mistake #95, “Not understanding stack
vs. heap”). Therefore, we should write each result to a local variable to limit
the footprint during each loop iteration.

If we run these two benchmarks, we now get a significant difference in the results:

cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkPopcnt1-4 1000000000 0.2858 ns/op
BenchmarkPopcnt2-4 606402058 1.993 ns/op

BenchmarkPopcnt2 is the accurate version of the benchmark. It guarantees that we
avoid the inlining optimizations, which can artificially lower the execution time or
even remove the call to the function under test. Relying on the results of Benchmark-
Popcnt1 could have led to wrong assumptions.

 Let’s remember the pattern to avoid compiler optimizations fooling benchmark
results: assign the result of the function under test to a local variable, and then assign
the latest result to a global variable. This best practice also prevents us from making
incorrect assumptions. 

11.8.4 Being fooled by the observer effect

In physics, the observer effect is the disturbance of an observed system by the act of
observation. This effect can also be seen in benchmarks and can lead to wrong
assumptions about results. Let’s look at a concrete example and then try to mitigate it.

 We want to implement a function receiving a matrix of int64 elements. This
matrix has a fixed number of 512 columns, and we want to compute the total sum of
the first eight columns, as shown in figure 11.2.

Figure 11.2 Computing the sum of the first eight columns

...

We iterate over the first eight columns for each line.

...

...

512 columns in total



292 CHAPTER 11 Testing
For the sake of optimizations, we also want to determine whether varying the number
of columns has an impact, so we also implement a second function with 513 columns.
The implementation is the following:

func calculateSum512(s [][512]int64) int64 {
var sum int64
for i := 0; i < len(s); i++ {

for j := 0; j < 8; j++ {
sum += s[i][j]

}
}
return sum

}

func calculateSum513(s [][513]int64) int64 {
// Same implementation as calculateSum512

}

We iterate over each row and then over the first eight columns, and we increment a
sum variable that we return. The implementation in calculateSum513 remains the
same.

 We want to benchmark these functions to decide which one is the most perfor-
mant given a fixed number of rows:

const rows = 1000

var res int64

func BenchmarkCalculateSum512(b *testing.B) {
var sum int64
s := createMatrix512(rows)
b.ResetTimer()
for i := 0; i < b.N; i++ {

sum = calculateSum512(s)
}
res = sum

}

func BenchmarkCalculateSum513(b *testing.B) {
var sum int64
s := createMatrix513(rows)
b.ResetTimer()
for i := 0; i < b.N; i++ {

sum = calculateSum513(s)
}
res = sum

}

We want to create the matrix only once, to limit the footprint on the results. There-
fore, we call createMatrix512 and createMatrix513 outside of the loop. We may
expect the results to be similar as again we only want to iterate on the first eight col-
umns, but this isn’t the case (on my machine):
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the sum
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cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkCalculateSum512-4 81854 15073 ns/op
BenchmarkCalculateSum513-4 161479 7358 ns/op

The second benchmark with 513 columns is about 50% faster. Again, because we iter-
ate only over the first eight columns, this result is quite surprising.

 To understand this difference, we need to understand the basics of CPU caches. In
a nutshell, a CPU is composed of different caches (usually L1, L2, and L3). These
caches reduce the average cost of accessing data from the main memory. In some con-
ditions, the CPU can fetch data from the main memory and copy it to L1. In this case,
the CPU tries to fetch into L1 the matrix’s subset that calculateSum is interested in
(the first eight columns of each row). However, the matrix fits in memory in one case
(513 columns) but not in the other case (512 columns).

NOTE It isn’t in the scope of this chapter to explain why, but we look at this
problem in mistake #91, “Not understanding CPU caches.”

Coming back to the benchmark, the main issue is that we keep reusing the same
matrix in both cases. Because the function is repeated thousands of times, we don’t
measure the function’s execution when it receives a plain new matrix. Instead, we
measure a function that gets a matrix that already has a subset of the cells present in
the cache. Therefore, because calculateSum513 leads to fewer cache misses, it has a
better execution time.

 This is an example of the observer effect. Because we keep observing a repeatedly
called CPU-bound function, CPU caching may come into play and significantly affect
the results. In this example, to prevent this effect, we should create a matrix during
each test instead of reusing one:

func BenchmarkCalculateSum512(b *testing.B) {
var sum int64
for i := 0; i < b.N; i++ {

b.StopTimer()
s := createMatrix512(rows)
b.StartTimer()
sum = calculateSum512(s)

}
res = sum

}

A new matrix is now created during each loop iteration. If we run the benchmark
again (and adjust benchtime—otherwise, it takes too long to execute), the results are
closer to each other:

cpu: Intel(R) Core(TM) i5-7360U CPU @ 2.30GHz
BenchmarkCalculateSum512-4 1116 33547 ns/op
BenchmarkCalculateSum513-4 998 35507 ns/op

Instead of making the incorrect assumption that calculateSum513 is faster, we see
that both benchmarks lead to similar results when receiving a new matrix.

Creates a new matrix during 
each loop iteration
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 As we have seen in this section, because we were reusing the same matrix, CPU
caches significantly impacted the results. To prevent this, we had to create a new
matrix during each loop iteration. In general, we should remember that observing a
function under test may lead to significant differences in results, especially in the con-
text of micro-benchmarks of CPU-bound functions where low-level optimizations mat-
ter. Forcing a benchmark to re-create data during each iteration can be a good way to
prevent this effect.

 In the last section of this chapter, let’s see some common tips regarding testing in Go. 

11.9 #90: Not exploring all the Go testing features
When it comes to writing tests, developers should know about Go’s specific testing fea-
tures and options. Otherwise, the testing process can be less accurate and even less
efficient. This section discusses topics that can make us more comfortable while writ-
ing Go tests.

11.9.1 Code coverage

During the development process, it can be handy to see visually which parts of our code
are covered by tests. We can access this information using the -coverprofile flag:

$ go test -coverprofile=coverage.out ./...

This command creates a coverage.out file that we can then open using go tool cover:

$ go tool cover -html=coverage.out

This command opens the web browser and shows the coverage for each line of code.
 By default, the code coverage is analyzed only for the current package being

tested. For example, suppose we have the following structure:

/myapp
|_ foo

|_ foo.go
|_ foo_test.go

|_ bar
|_ bar.go
|_ bar_test.go

If some portion of foo.go is only tested in bar_test.go, by default, it won’t be shown
in the coverage report. To include it, we have to be in the myapp folder and use the
-coverpkg flag:

go test -coverpkg=./... -coverprofile=coverage.out ./...

We need to remember this feature to see the current code coverage and decide which
parts deserve more tests.

NOTE Remain cautious when it comes to chasing code coverage. Having
100% test coverage doesn’t imply a bug-free application. Properly reasoning
about what our tests cover is more important than any static threshold. 
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11.9.2 Testing from a different package

When writing unit tests, one approach is to focus on behaviors instead of internals.
Suppose we expose an API to clients. We may want our tests to focus on what’s visible
from the outside, not the implementation details. This way, if the implementation
changes (for example, if we refactor one function into two), the tests will remain the
same. They can also be easier to understand because they show how our API is used. If
we want to enforce this practice, we can do so using a different package.

 In Go, all the files in a folder should belong to the same package, with only one
exception: a test file can belong to a _test package. For example, suppose the follow-
ing counter.go source file belongs to the counter package:

package counter

import "sync/atomic"

var count uint64

func Inc() uint64 {
atomic.AddUint64(&count, 1)
return count

}

The test file can live in the same package and access internals such as the count vari-
able. Or it can live in a counter_test package, like this counter_test.go file:

package counter_test

import (
"testing"

"myapp/counter"
)

func TestCount(t *testing.T) {
if counter.Inc() != 1 {

t.Errorf("expected 1")
}

}

In this case, the test is implemented in an external package and cannot access inter-
nals such as the count variable. Using this practice, we can guarantee that a test won’t
use any unexported elements; hence, it will focus on testing the exposed behavior. 

11.9.3 Utility functions

When writing tests, we can handle errors differently than we do in our production
code. For example, let’s say we want to test a function that takes as an argument a
Customer struct. Because the creation of a Customer will be reused, we decide to cre-
ate a specific createCustomer function for the sake of the tests. This function will
return a possible error alongside a Customer:
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func TestCustomer(t *testing.T) {
customer, err := createCustomer("foo")
if err != nil {

t.Fatal(err)
}
// ...

}

func createCustomer(someArg string) (Customer, error) {
// Create customer
if err != nil {

return Customer{}, err
}
return customer, nil

}

We create a customer using the createCustomer utility function, and then we perform
the rest of the test. However, in the context of testing functions, we can simplify error
management by passing the *testing.T variable to the utility function:

func TestCustomer(t *testing.T) {
customer := createCustomer(t, "foo")
// ...

}

func createCustomer(t *testing.T, someArg string) Customer {
// Create customer
if err != nil {

t.Fatal(err)
}
return customer

}

Instead of returning an error, createCustomer fails the test directly if it can’t create a
Customer. This makes TestCustomer smaller to write and easier to read.

 Let’s remember this practice regarding error management and testing to improve
our tests. 

11.9.4 Setup and teardown

In some cases, we may have to prepare a testing environment. For example, in integra-
tion tests, we spin up a specific Docker container and then stop it. We can call setup
and teardown functions per test or per package. Fortunately, in Go, both are possible.

 To do so per test, we can call the setup function as a preaction and the teardown
function using defer:

func TestMySQLIntegration(t *testing.T) {
setupMySQL()
defer teardownMySQL()
// ...

}

It’s also possible to register a function to be executed at the end of a test. For example,
let’s assume TestMySQLIntegration needs to call createConnection to create the

Creates a customer 
and checks for errors

Calls the utility 
function and provides t

Fails the test directly if we 
can’t create a customer
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database connection. If we want this function to also include the teardown part, we
can use t.Cleanup to register a cleanup function:

func TestMySQLIntegration(t *testing.T) {
// ...
db := createConnection(t, "tcp(localhost:3306)/db")
// ...

}

func createConnection(t *testing.T, dsn string) *sql.DB {
db, err := sql.Open("mysql", dsn)
if err != nil {

t.FailNow()
}
t.Cleanup(

func() {
_ = db.Close()

})
return db

}

At the end of the test, the closure provided to t.Cleanup is executed. This makes
future unit tests easier to write because they won’t be responsible for closing the db
variable.

 Note that we can register multiple cleanup functions. In that case, they will be exe-
cuted just as if we were using defer: last in, first out.

 To handle setup and teardown per package, we have to use the TestMain function.
A simple implementation of TestMain is the following:

func TestMain(m *testing.M) {
os.Exit(m.Run())

}

This particular function accepts a *testing.M argument that exposes a single Run
method to run all the tests. Therefore, we can surround this call with setup and tear-
down functions:

func TestMain(m *testing.M) {
setupMySQL()
code := m.Run()
teardownMySQL()
os.Exit(code)

}

This code spins up MySQL once before all the tests and then tears it down.
 Using these practices to add setup and teardown functions, we can configure a

complex environment for our tests. 

Summary
 Categorizing tests using build flags, environment variables, or short mode

makes the testing process more efficient. You can create test categories using
build flags or environment variables (for example, unit versus integration tests)

Registers a function to be 
executed at the end of the test

Sets up 
MySQL

Runs the tests
Tears down 
MySQL
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and differentiate short- from long-running tests to decide which kinds of tests to
execute.

 Enabling the -race flag is highly recommended when writing concurrent appli-
cations. Doing so allows you to catch potential data races that can lead to soft-
ware bugs.

 Using the -parallel flag is an efficient way to speed up tests, especially long-
running ones.

 Use the -shuffle flag to help ensure that a test suite doesn’t rely on wrong
assumptions that could hide bugs.

 Table-driven tests are an efficient way to group a set of similar tests to prevent
code duplication and make future updates easier to handle.

 Avoid sleeps using synchronization to make a test less flaky and more robust. If
synchronization isn’t possible, consider a retry approach.

 Understanding how to deal with functions using the time API is another way to
make a test less flaky. You can use standard techniques such as handling the
time as part of a hidden dependency or asking clients to provide it.

 The httptest package is helpful for dealing with HTTP applications. It pro-
vides a set of utilities to test both clients and servers.

 The iotest package helps write io.Reader and test that an application is toler-
ant to errors.

 Regarding benchmarks:
– Use time methods to preserve the accuracy of a benchmark.
– Increasing benchtime or using tools such as benchstat can be helpful when

dealing with micro-benchmarks.
– Be careful with the results of a micro-benchmark if the system that ends up

running the application is different from the one running the micro-bench-
mark.

– Make sure the function under test leads to a side effect, to prevent compiler
optimizations from fooling you about the benchmark results.

– To prevent the observer effect, force a benchmark to re-create the data used
by a CPU-bound function.

 Use code coverage with the -coverprofile flag to quickly see which part of the
code needs more attention.

 Place unit tests in a different package to enforce writing tests that focus on an
exposed behavior, not internals.

 Handling errors using the *testing.T variable instead of the classic if err
!= nil makes code shorter and easier to read.

 You can use setup and teardown functions to configure a complex environ-
ment, such as in the case of integration tests.



Optimizations
Before we begin this chapter, a disclaimer: in most contexts, writing readable, clear
code is better than writing code that is optimized but more complex and difficult to
understand. Optimization generally comes with a price, and we advocate that you
follow this famous quote from software engineer Wes Dyer:

Make it correct, make it clear, make it concise, make it fast, in that order.

That doesn’t mean optimizing an application for speed and efficiency is prohib-
ited. For example, we can try to identify code paths that need to be optimized

This chapter covers
 Delving into the concept of mechanical sympathy

 Understanding heap vs. stack and reducing 
allocations

 Using standard Go diagnostics tooling

 Understanding how the garbage collector works

 Running Go inside Docker and Kubernetes
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because there’s a need to do so, such as making our customers happy or reducing our
costs. Throughout this chapter, we discuss common optimization techniques; some
are specific to Go, and some aren’t. We also discuss methods to identify bottlenecks so
we don’t work blindly.

12.1 #91: Not understanding CPU caches
Mechanical sympathy is a term coined by Jackie Stewart, a three-time F1 world
champion:

You don’t have to be an engineer to be a racing driver, but you do have to have
mechanical sympathy.

In a nutshell, when we understand how a system is designed to be used, be it an F1 car,
an airplane, or a computer, we can align with the design to gain optimal performance.
Throughout this section, we discuss concrete examples where a mechanical sympathy
for how CPU caches work can help us optimize Go applications.

12.1.1 CPU architecture

First, let’s understand the fundamentals of CPU architecture and why CPU caches are
important. We will take as an example the Intel Core i5-7300.

 Modern CPUs rely on caching to speed up memory access, in most cases via three
caching levels: L1, L2, and L3. On the i5-7300, here are the sizes of these caches:

 L1: 64 KB
 L2: 256 KB
 L3: 4 MB

The i5-7300 has two physical cores but four logical cores (also called virtual cores or
threads). In the Intel family, dividing a physical core into multiple logical cores is
called Hyper-Threading.

 Figure 12.1 gives an overview of the Intel Core i5-7300 (Tn stands for thread n).
Each physical core (core 0 and core 1) is divided into two logical cores (thread 0 and
thread 1). The L1 cache is split into two sub-caches: L1D for data and L1I for instruc-
tions (each 32 KB). Caching isn’t solely related to data—when a CPU executes an
application, it can also cache some instructions with the same rationale: to speed up
overall execution.

 The closer a memory location is to a logical core, the faster accesses are (see
http://mng.bz/o29v):

 L1: about 1 ns
 L2: about 4 times slower than L1
 L3: about 10 times slower than L1

The physical location of the CPU caches can also explain these differences. L1 and L2
are called on-die, meaning they belong to the same piece of silicon as the rest of the

http://mng.bz/o29v
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processor. Conversely, L3 is off-die, which partly explains the latency differences com-
pared to L1 and L2.

 For main memory (or RAM), average accesses are between 50 and 100 times slower
than L1. We can access up to 100 variables stored on L1 for the price of a single access
to the main memory. Therefore, as Go developers, one avenue for improvement is
making sure our applications use CPU caches. 

12.1.2 Cache line

The concept of cache lines is crucial to understand. But before presenting what they
are, let’s understand why we need them.

 When a specific memory location is accessed (for example, by reading a variable),
one of the following is likely to happen in the near future:

 The same location will be referenced again.
 Nearby memory locations will be referenced.

The former refers to temporal locality, and the latter refers to spatial locality. Both are
part of a principle called locality of reference.

 For example, let’s look at the following function that computes the sum of an
int64 slice:

func sum(s []int64) int64 {
var total int64
length := len(s)
for i := 0; i < length; i++ {

total += s[i]
}
return total

}

In this example, temporal locality applies to multiple variables: i, length, and total.
Throughout the iteration, we keep accessing these variables. Spatial locality applies to
code instructions and the slice s. Because a slice is backed by an array allocated
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The i5-7300 has three 
levels of caches, two 
physical cores, and four 
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contiguously in memory, in this case, accessing s[0] means also accessing s[1], s[2],
and so on.

 Temporal locality is part of why we need CPU caches: to speed up repeated
accesses to the same variables. However, because of spatial locality, the CPU copies
what we call a cache line instead of copying a single variable from the main memory to
a cache.

 A cache line is a contiguous memory segment of a fixed size, usually 64 bytes (8
int64 variables). Whenever a CPU decides to cache a memory block from RAM, it
copies the memory block to a cache line. Because memory is a hierarchy, when the
CPU wants to access a specific memory location, it first checks in L1, then L2, then L3,
and finally, if the location is not in those caches, in the main memory.

 Let’s illustrate fetching a memory block with a concrete example. We call the sum
function with a slice of 16 int64 elements for the first time. When sum accesses s[0],
this memory address isn’t in the cache yet. If the CPU decides to cache this variable
(we also discuss this decision later in the chapter), it copies the whole memory block;
see figure 12.2.

Figure 12.2 Accessing s[0] makes the CPU copy the 0x000 memory block.

At first, accessing s[0] results in a cache miss because the address isn’t in the cache.
This kind of miss is called a compulsory miss. However, if the CPU fetches the 0x000
memory block, accessing elements from 1 to 7 results in a cache hit. The same logic
applies when sum accesses s[8] (see figure 12.3).

Figure 12.3 Accessing s[8] makes the CPU copy the 0x100 memory block.
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Again, accessing s8 results in a compulsory miss. But if the 0x100 memory block is
copied into a cache line, it will also speed up accesses for elements 9 to 15. In the end,
iterating over the 16 elements results in 2 compulsory cache misses and 14 cache hits.

Let’s look at a concrete example to illustrate how fast CPU caches are. We will imple-
ment two functions that compute a total while iterating over a slice of int64 elements.
In one case we will iterate over every two elements, and in the other case over every
eight elements:

func sum2(s []int64) int64 {
var total int64
for i := 0; i < len(s); i+=2 {

total += s[i]
}
return total

}

func sum8(s []int64) int64 {
var total int64
for i := 0; i < len(s); i += 8 {

total += s[i]
}
return total

}

Both functions are the same except for the iteration. If we benchmark these two func-
tions, our gut feeling may be that the second version will be about four times faster
because we have to increment over four times fewer elements. However, running a
benchmark shows that sum8 is only about 10% faster on my machine: still faster, but
only 10%.

 The reason is related to cache lines. We saw that a cache line is usually 64 bytes,
containing up to eight int64 variables. Here, the running time of these loops is domi-
nated by memory accesses, not increment instruction. Three out of four accesses
result in a cache hit in the first case. Therefore, the execution time difference for
these two functions isn’t significant. This example demonstrates why the cache line

CPU caching strategies
You may wonder about the exact strategy when a CPU copies a memory block. For
example, will it copy a block to all the levels? Only to L1? In this case, what about L2
and L3?

We have to know that different strategies exist. Sometimes caches are inclusive (for
example, L2 data is also present in L3), and sometimes caches are exclusive (for
example, L3 is called a victim cache because it contains only data evicted from L2).

In general, these strategies are hidden by CPU vendors and not necessarily useful to
know. So, we won’t delve deeper into these questions.

Iterates over every 
two elements

Iterates over every 
eight elements
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matters and that we can easily be fooled by our gut feeling if we lack mechanical sym-
pathy—in this case, for how CPUs cache data.

 Let’s keep discussing locality of reference and see a concrete example of using spa-
tial locality. 

12.1.3 Slice of structs vs. struct of slices

This section looks at an example that compares the execution time of two functions.
The first takes as an argument a slice of structs and sums all the a fields:

type Foo struct {
a int64
b int64

}

func sumFoo(foos []Foo) int64 {
var total int64
for i := 0; i < len(foos); i++ {

total += foos[i].a
}
return total

}

sumFoo receives a slice of Foo and increments total by reading each a field.
 The second function also computes a sum. But this time, the argument is a struct

containing slices:

type Bar struct {
a []int64
b []int64

}

func sumBar(bar Bar) int64 {
var total int64
for i := 0; i < len(bar.a); i++ {

total += bar.a[i]
}
return total

}

sumBar receives a single Bar struct
that contains two slices: a and b. It
iterates over each element of a to
increment total.

 Do we expect any difference in
terms of speed for these two func-
tions? Before running a benchmark,
let’s visually look at the differences
in memory in figure 12.4. Both cases
have the same amount of data: 16
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Figure 12.4 A struct of slices is more compact and 
therefore requires fewer cache lines to iterate over.
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Foo elements in the slice and 16 elements in the slices of Bar. Each black bar rep-
resents an int64 that is read to compute the sum, whereas each gray bar represents an
int64 that is skipped.

 In the case of sumFoo, we receive a slice of structs containing two fields, a and b.
Therefore, we have a succession of a and b in memory. Conversely, in the case of sum-
Bar, we receive a struct containing two slices, a and b. Therefore, all the elements of a
are allocated contiguously.

 This difference doesn’t lead to any memory compaction optimization. But the goal
of both functions is to iterate over each a, and doing so requires four cache lines in
one case and only two cache lines in the other.

 If we benchmark these two functions, sumBar is faster (about 20% on my
machine). The main reason is a better spatial locality that makes the CPU fetch fewer
cache lines from memory.

 This example demonstrates how spatial locality can have a substantial impact on
performance. To optimize an application, we should organize data to get the most
value out of each individual cache line.

 However, is using spatial locality enough to help the CPU? We are still missing one
crucial characteristic: predictability. 

12.1.4 Predictability

Predictability refers to the ability of a CPU to anticipate what the application will do to
speed up its execution. Let’s see a concrete example where a lack of predictability
negatively impacts application performance.

 Again, let’s look at two functions that sum a list of elements. The first iterates over
a linked list and sums all the values:

type node struct {
value int64
next *node

}

func linkedList(n *node) int64 {
var total int64
for n != nil {

total += n.value
n = n.next

}
return total

}

This function receives a linked list, iterates over it, and increments a total.
 On the other side, let’s again take the sum2 function that iterates over a slice, one

element out of two:

func sum2(s []int64) int64 {
var total int64
for i := 0; i < len(s); i+=2 {

Linked list 
data structure

Iterates over 
each node

Increments 
total

Iterates over every 
two elements
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total += s[i]
}
return total

}

Let’s assume that the linked list is allocated contiguously: for example, by a single func-
tion. On a 64-bit architecture, a word is 64 bits long. Figure 12.5 compares the two data
structures that the functions receive (linked list or slice); the darker bars represent

the int64 elements we use to
increment the total.
     In both examples, we face sim-
ilar compaction. Because a
linked list is a succession of val-
ues and 64-bit pointer elements,
we increment the sum using one
element out of two. Meanwhile,
the sum2 example reads only one
element out of two.

The two data structures have the same spatial locality, so we may expect a similar exe-
cution time for these two functions. But the function iterating on the slice is signifi-
cantly faster (about 70% on my machine). What’s the reason?

 To understand this, we have to discuss the concept of striding. Striding relates to
how CPUs work through data. There are three different types of strides (see figure
12.6):

 Unit stride—All the values we want to access are allocated contiguously: for
example, a slice of int64 elements. This stride is predictable for a CPU and the
most efficient because it requires a minimum number of cache lines to walk
through the elements.

 Constant stride—Still predictable for the CPU: for example, a slice that iterates
over every two elements. This stride requires more cache lines to walk through
data, so it’s less efficient than a unit stride.

Figure 12.6 The three types of strides

Linked list allocated contiguously.

Slice iteration, one element out of two

Value Pointer

Figure 12.5 In memory, linked lists and slices are 
compacted in a similar manner.
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 Non-unit stride—A stride the CPU can’t predict: for example, a linked list or a
slice of pointers. Because the CPU doesn’t know whether data is allocated con-
tiguously, it won’t fetch any cache lines.

For sum2, we face a constant stride. However, for the linked list, we face a non-unit
stride. Even though we know the data is allocated contiguously, the CPU doesn’t know
that. Therefore, it can’t predict how to walk through the linked list.

 Because of the different stride and similar spatial locality, iterating over a linked
list is significantly slower than a slice of values. We should generally favor unit strides
over constant strides because of the better spatial locality. But a non-unit stride cannot
be predicted by the CPU regardless of how the data is allocated, leading to negative
performance impacts.

 So far, we have discussed that CPU caches are fast but significantly smaller than
the main memory. Therefore, a CPU needs a strategy to fetch a memory block to a
cache line. This policy is called cache placement policy and can significantly impact
performance. 

12.1.5 Cache placement policy

In mistake #89, “Writing inaccurate benchmarks,” we discussed an example with a
matrix in which we had to compute the total sum of the first eight columns. At that
point, we didn’t explain why changing the overall number of columns impacted the
benchmark results. It might sound counterintuitive: because we need to read only the
first eight columns, why does changing the total number of columns affect the execu-
tion time? Let’s take a look in this section.

 As a reminder, the implementation is the following:

func calculateSum512(s [][512]int64) int64 {
var sum int64
for i := 0; i < len(s); i++ {

for j := 0; j < 8; j++ {
sum += s[i][j]

}
}
return sum

}

func calculateSum513(s [][513]int64) int64 {
// Same implementation as calculateSum512

}

We iterate over each row, summing the first eight columns each time. When these two
functions are benchmarked each time with a new matrix, we don’t observe any differ-
ence. However, if we keep reusing the same matrix, calculateSum513 is about 50%
faster on my machine. The reason lies in CPU caches and how a memory block is cop-
ied to a cache line. Let’s examine this to understand this difference.

 When a CPU decides to copy a memory block and place it into the cache, it must fol-
low a particular strategy. Assuming an L1D cache of 32 KB and a cache line of 64 bytes,

Receives a matrix 
of 512 columns

Receives a matrix 
of 513 columns
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if a block is placed randomly into L1D, the CPU will have to iterate over 512 cache lines
in the worst case to read a variable. This kind of cache is called fully associative.

 To improve how fast an address can be accessed from a CPU cache, designers work
on different policies regarding cache placement. Let’s skip the history and discuss
today’s most widely used option: set-associative cache, which relies on cache partitioning.

 For the sake of clarity in the following figures, we will work with a reduced version
of the problem:

 We will assume an L1D cache of 512 bytes (8 cache lines).
 The matrix is composed of 4 rows and 32 columns, and we will read only the

first 8 columns.

Figure 12.7 shows how this matrix can be stored in memory. We will use the binary
representation for the memory block addresses. Also, the gray blocks represent the
first 8 int64 elements we want to iterate over. The remaining blocks are skipped
during the iteration.

Each memory block contains 64 bytes and hence 8 int64 elements. The first memory
block starts at 0x0000000000000, the second begins at 0001000000000 (512 in
binary), and so on. We also show the cache that can hold 8 lines.

NOTE We will see in mistake #94, “Not being aware of data alignment,” that a
slice doesn’t necessarily start at the beginning of a block.

Cache
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With the set-associative cache policy, a cache is partitioned into sets. We assume the
cache is two-way set associative, meaning each set contains two lines. A memory block
can belong to only one set, and the placement is determined by its memory address.
To understand this, we have to dissect the memory block address into three parts:

 The block offset is based on the block size. Here a block size is 512 bytes, and 512
equals 2^9. Therefore, the first 9 bits of the address represent the block offset
(bo).

 The set index indicates the set to which an address belongs. Because the cache is
two-way set associative and contains 8 lines, we have 8 / 2 = 4 sets. Furthermore,
4 equals 2^2, so the next two bits represent the set index (si).

 The rest of the address consists of the tag bits (tb). In figure 12.7, we represent
an address using 13 bits for simplicity. To compute tb, we use 13 – bo – si. This
means the two remaining bits represent the tag bits.

Let’s say the function starts and tries to read s[0][0], which belongs to address
0000000000000. Because this address isn’t present in the cache yet, the CPU calculates
its set index and copies it to the corresponding cache set (figure 12.8).

Figure 12.8 Memory address 0000000000000 is copied into set 0.
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As discussed, 9 bits represent the block offset: it’s the minimum common prefix for
each memory block address. Then, 2 bits represent the set index. With address
0000000000000, si equals 00. Hence, this memory block is copied to set 0.

 When the function reads from s[0][1] to s[0][7], the data is already in the
cache. How does the CPU know about it? The CPU calculates the starting address of
the memory block, computes the set index and the tag bits, and then checks whether
00 is present in set 0.

 Next the function reads s[0][8], and this address isn’t cached yet. So the same
operation occurs to copy memory block 0100000000000 (figure 12.9).

Figure 12.9 Memory address 0100000000000 is copied into set 0.

This memory has a set index equal to 00, so it also belongs to set 0. The cache line is
copied to the next available line in set 0. Then, again, reading from s[1][1] to
s[1][7] results in cache hits.

 Now things are getting interesting. The function reads s[2][0], and this address
isn’t present in the cache. The same operation is performed (figure 12.10).

 The set index is again equal to 00. However, set 0 is full—what does the CPU do?
Copy the memory block to another set? No. The CPU replaces one of the existing
cache lines to copy memory block 1000000000000.
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The cache replacement policy depends on the CPU, but it’s usually a pseudo-LRU pol-
icy (a real LRU [least recently used] would be too complex to handle). In this case,
let’s say it replaces our first cache line: 0000000000000. This situation is repeated
when iterating on row 3: memory address 1100000000000 also has a set index equal to
00, resulting in replacing an existing cache line.

 Now, let’s say the benchmark executes the function with a slice pointing to the
same matrix starting at address 0000000000000. When the function reads s[0][0],
the address isn’t in the cache. This block was already replaced.

 Instead of using CPU caches from one execution to another, the benchmark will
lead to more cache misses. This type of cache miss is called a conflict miss: a miss that
wouldn’t occur if the cache wasn’t partitioned. All the variables we iterate belong to a
memory block whose set index is 00. Therefore, we use only one cache set instead of
having a distribution across the entire cache.

 Previously we discussed the concept of striding, which we defined as how a CPU
walks through our data. In this example, this stride is called a critical stride : it leads to
accessing memory addresses with the same set index that are hence stored to the same
cache set.

 Let’s come back to our real-world example with the two functions calculate-
Sum512 and calculateSum513. The benchmark was executed on a 32 KB eight-way
set-associative L1D cache: 64 sets total. Because a cache line is 64 bytes, the critical
stride equals 64 × 64 bytes = 4 KB. Four KB of int64 types represent 512 elements.
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Figure 12.10 Memory address 
1000000000000 replaces an 
existing cache line in set 0.
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Therefore, we reach a critical stride with a matrix of 512 columns, so we have a poor
caching distribution. Meanwhile, if the matrix contains 513 columns, it doesn’t lead to
a critical stride. This is why we observed such a massive difference between the two
benchmarks.

 In summary, we have to be aware that modern caches are partitioned. Depending
on the striding, in some cases only one set is used, which may harm application per-
formance and lead to conflict misses. This kind of stride is called a critical stride. For
performance-intensive applications, we should avoid critical strides to get the most
out of CPU caches.

NOTE Our example also highlights why we should take care with the results
of a micro-benchmark if it’s executed on a system other than production. If
the production system has a different cache architecture, performance may
be significantly different.

Let’s continue discussing the impact of CPU caching. This time, we see concrete
effects while writing concurrent code. 

12.2 #92: Writing concurrent code that leads to false sharing
So far, we have discussed the fundamental concepts of CPU caching. We have seen
that some specific caches (typically, L1 and L2) aren’t shared among all the logical
cores but are specific to a physical core. This specificity has some concrete impacts
such as concurrency and the concept of false sharing, which can lead to a significant
performance decrease. Let’s look at what false sharing is via an example and then see
how to prevent it.

 In this example, we use two structs, Input and Result:

type Input struct {
a int64
b int64

}

type Result struct {
sumA int64
sumB int64

}

The goal is to implement a count function that receives a slice of Input and computes
the following:

 The sum of all the Input.a fields into Result.sumA
 The sum of all the Input.b fields into Result.sumB

For the sake of the example, we implement a concurrent solution with one goroutine
that computes sumA and another that computes sumB:

func count(inputs []Input) Result {
wg := sync.WaitGroup{}
wg.Add(2)

result := Result{}

Initializes the 
result struct
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go func() {
for i := 0; i < len(inputs); i++ {

result.sumA += inputs[i].a
}
wg.Done()

}()

go func() {
for i := 0; i < len(inputs); i++ {

result.sumB += inputs[i].b
}
wg.Done()

}()

wg.Wait()
return result

}

We spin up two goroutines: one that iterates over each a field and another that iter-
ates over each b field. This example is fine from a concurrency perspective. For
instance, it doesn’t lead to a data race, because each goroutine increments its own
variable. But this example illustrates
the false sharing concept that
degrades expected performance.

 Let’s look at the main memory
(see figure 12.11). Because sumA and
sumB are allocated contiguously, in
most cases (seven out of eight), both
variables are allocated to the same
memory block.

 Now, let’s assume that the machine contains two cores. In most cases, we should
eventually have two threads scheduled on different cores. So if the CPU decides to
copy this memory block to a cache line, it is copied twice (figure 12.12).

Figure 12.12 Each block is copied to a cache line on both core 0 and core 1.

Computes sumA

Computes sumB

Main memory

sumA sumB

...

Figure 12.11 In this example, sumA and sumB are 
part of the same memory block.

Core 0

Main memory

sumA sumB

...

L1D

sumA sumB

...

Core 1

L1D

sumA sumB

...

Fetch cache line Fetch cache line
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Both cache lines are replicated because L1D (L1 data) is per core. Recall that in our
example, each goroutine updates its own variable: sumA on one side, and sumB on the
other side (figure 12.13).

Figure 12.13 Each goroutine updates its own variable.

Because these cache lines are replicated, one of the goals of the CPU is to guarantee
cache coherency. For example, if one goroutine updates sumA and another reads sumA
(after some synchronization), we expect our application to get the latest value.

 However, our example doesn’t do exactly this. Both goroutines access their own
variables, not a shared one. We might expect the CPU to know about this and under-
stand that it isn’t a conflict, but this isn’t the case. When we write a variable that’s in a
cache, the granularity tracked by the CPU isn’t the variable: it’s the cache line.

 When a cache line is shared across multiple cores and at least one goroutine is a
writer, the entire cache line is invalidated. This happens even if the updates are logi-
cally independent (for example, sumA and sumB). This is the problem of false sharing,
and it degrades performance.

NOTE Internally, a CPU uses the MESI protocol to guarantee cache coher-
ency. It tracks each cache line, marking it modified, exclusive, shared, or
invalid (MESI).

One of the most important aspects to understand about memory and caching is that
sharing memory across cores isn’t real—it’s an illusion. This understanding comes
from the fact that we don’t consider a machine a black box; instead, we try to have
mechanical sympathy with underlying levels.

 So how do we solve false sharing? There are two main solutions.
 The first solution is to use the same approach we’ve shown but ensure that sumA

and sumB aren’t part of the same cache line. For example, we can update the Result
struct to add padding between the fields. Padding is a technique to allocate extra mem-
ory. Because an int64 requires an 8-byte allocation and a cache line 64 bytes long, we
need 64 – 8 = 56 bytes of padding:

type Result struct {
sumA int64

Core 0
L1D

sumA sumB

...

Core 1
L1D

sumA sumB

...

Goroutine 2Goroutine 1

UpdateUpdate
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_ [56]byte
sumB int64

}

Figure 12.14 shows a possible memory allocation. Using padding, sumA and sumB will
always be part of different memory blocks and hence different cache lines.

Figure 12.14 sumA and sumB are part of different memory blocks.

If we benchmark both solutions (with and without padding), we see that the padding
solution is significantly faster (about 40% on my machine). This is an important
improvement that results from the addition of padding between the two fields to pre-
vent false sharing.

 The second solution is to rework the structure of the algorithm. For example, instead
of having both goroutines share the same struct, we can make them communicate their
local result via channels. The result benchmark is roughly the same as with padding.

 In summary, we must remember that sharing memory across goroutines is an illu-
sion at the lowest memory levels. False sharing occurs when a cache line is shared
across two cores when at least one goroutine is a writer. If we need to optimize an
application that relies on concurrency, we should check whether false sharing applies,
because this pattern is known to degrade application performance. We can prevent
false sharing with either padding or communication.

 The following section discusses how CPUs can execute instructions in parallel and
how to leverage that capability. 

12.3 #93: Not taking into account instruction-level parallelism
Instruction-level parallelism is another factor that can significantly impact perfor-
mance. Before defining this concept, let’s discuss a concrete example and how to opti-
mize it.

Padding
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Main memory

sumA

...

L1D

sumA

...

Core 1

L1D

...

sumB

56 bytes of padding

sumB
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 We will write a function that receives an array of two int64 elements. This function
will iterate a certain number of times (a constant). During each iteration, it will do the
following:

 Increment the first element of the array.
 Increment the second element of the array if the first element is even.

Here’s the Go version:

const n = 1_000_000

func add(s [2]int64) [2]int64 {
for i := 0; i < n; i++ {

s[0]++
if s[0]%2 == 0 {

s[1]++
}

}
return s

}

The instructions executed within the loop are shown in figure 12.15 (an increment
requires both a read and then a write). The sequence of instructions is sequential: first
we increment s[0]; then, before incrementing s[1], we need to read s[0] again.

Figure 12.15 Three main steps: increment, check, increment

NOTE This sequence of instructions doesn’t match the granularity of the
assembly instructions. But for clarity throughout this section, we use a simpli-
fied view.

Let’s take a moment to discuss the theory behind instruction-level parallelism (ILP). A
few decades ago, CPU designers stopped focusing solely on clock speed to improve
CPU performance. They developed multiple optimizations, including ILP, which
allows developers to parallelize the execution of a sequence of instructions. A proces-
sor that implements ILP in a single virtual core is called a superscalar processor. For
example, figure 12.16 illustrates a CPU executing an application consisting of three
instructions, I1, I2, and I3.

 Executing a sequence of instructions requires different stages. In a nutshell, the
CPU needs to decode the instructions and execute them. The execution is handled by
the execution unit, which performs the various operations and calculations.

Iterates 
n times

Increments s[0]
Increments s[1] 
if s[0] is even

Increment s[1]Increment s[0]

Read s[0] Add 1 to s[0]
If even

Check s[0] Read s[1] Add 1 to s[1]
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In figure 12.16, the CPU decided to
execute the three instructions in par-
allel. Note that not all the instruc-
tions necessarily complete in a single
clock cycle. For example, an instruc-
tion that reads a value already pres-
ent in a register will finish in one
clock cycle, but an instruction that
reads an address that must be
fetched from main memory may take
dozens of clock cycles to complete.

 If executed sequentially, this
sequence of instructions would have
taken the following time (the func-
tion t(x) denotes the time the CPU
takes to execute instruction x):

total time = t(I1) + t(I2) + t(I3)

Thanks to ILP, the total time is the following:

total time = max(t(I1), t(I2), t(I3))

ILP looks magic, theoretically. But it leads to a few challenges called hazards.
 For example, what if I3 sets a variable to 42 but I2 is a conditional instruction (for

example, if foo == 1)? In theory, this scenario should prevent executing I2 and I3 in
parallel. This is called a control hazard or branching hazard. In practice, CPU designers
solved control hazards using branch prediction.

 For example, a CPU can count that the condition was true 99 of the last 100 times;
therefore, it will execute both I2 and I3 in parallel. In case of a wrong prediction (I2
happens to be false), the CPU will flush its current execution pipeline, ensuring that
there are no inconsistencies. This flush leads to a performance penalty of 10 to 20
clock cycles.

 Other types of hazards can prevent executing instructions in parallel. As soft-
ware engineers, we should be aware of that. For example, let’s consider the two follow-
ing instructions that update registers (temporary storage areas used to execute
operations):

 I1 adds the numbers in registers A and B to C.
 I2 adds the numbers in registers C and D to D.

Because I2 depends on the outcome of I1 concerning the value of register C, the two
instructions cannot be executed simultaneously. I1 must complete before I2. This is
called a data hazard. To deal with data hazards, CPU designers have come up with a
trick called forwarding that basically bypasses writing to a register. This technique
doesn’t solve the problem but rather tries to alleviate the effects.

I1

I2

I3

Execution unitI1 I2 I3

Sequence of
instructions

Execution unit

Figure 12.16 Despite being written sequentially, the 
three instructions are executed in parallel.
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NOTE There are also structural hazards, when at least two instructions in the
pipeline need the same resource. As Go developers, we can’t really impact
these kinds of hazards, so we don’t discuss them in this section.

Now that we have a decent understanding of ILP theory, let’s get back to our initial
problem and focus on the content of the loop:

s[0]++
if s[0]%2 == 0 {

s[1]++
}

As we discussed, data hazards prevent instructions from being executed simultane-
ously. Let’s look at the sequence of instructions in figure 12.17; this time we highlight
the hazards between the instructions.

Figure 12.17 Hazard types between the instructions

This sequence contains one control hazard because of the if statement. However, as
discussed, it’s the scope of the CPU to optimize the execution and predict what
branch should be taken. There are also multiple data hazards. As we discussed, data
hazards prevent ILP from executing instructions in parallel. Figure 12.18 shows the
sequence of instructions from an ILP standpoint: the only independent instructions
are the s[0] check and the s[1] increment, so these two instruction sets can be exe-
cuted in parallel thanks to branch prediction.

Increment s[1]Increment s[0]

Read s[0] Add 1 to s[0]
If even

Check s[0] Read s[1] Add 1 to s[1]

Data hazardData hazard Data hazardControl hazard

Increment s[1]

Increment s[0]

Read s[0] Add 1 to s[0] If even

Check s[0]

Read s[1] Add 1 to s[1]
Figure 12.18
Both increments 
are executed 
sequentially.
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What about the increments? Can we improve our code to minimize the number of
data hazards?

 Let’s write another version (add2) that introduces a temporary variable:

func add(s [2]int64) [2]int64 {
for i := 0; i < n; i++ {

s[0]++
if s[0]%2 == 0 {

s[1]++
}

}
return s

}

func add2(s [2]int64) [2]int64 {
for i := 0; i < n; i++ {

v := s[0]
s[0] = v + 1
if v%2 != 0 {

s[1]++
}

}
return s

}

In this new version, we fix the value of s[0] to a new variable, v. Previously we incre-
mented s[0] and checked whether it was even. To replicate this behavior, because v is
based on s[0], to increment s[1] we now check whether v is odd.

 Figure 12.19 compares the two versions in terms of hazards. The number of steps is
the same. The significant difference is regarding the data hazards: the s[0] increment
step and the check v step now depend on the same instruction (read s[0] into v).

Figure 12.19 One significant difference: the data hazard for the v check step

First 
version

Second version

Introduces a new variable 
to fix the s[0] value

Increment s[1]Increment s[0]

Read s[0] into v
if odd

Check vAdd 1 and v
to s[0] Read s[1] Add 1 to s[1]

Increment s[1]Increment s[0]

Read s[0] Add 1 to s[0]
If even

Check s[0] Read s[1] Add 1 to s[1]

Second version

First version
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Why does this matter? Because it allows the CPU to increase the level of parallelism
(figure 12.20).

Figure 12.20 In the second version, both increment steps can be executed in parallel.

Despite having the same number of steps, the second version increases how many
steps can be executed in parallel: three parallel routes instead of two. Meanwhile, the
execution time should be optimized because the longest path has been reduced. If we
benchmark these two functions, we see a significant speed improvement for the sec-
ond version (about 20% on my machine), mainly because of ILP.

 Let’s take a step back to conclude this section. We discussed how modern CPUs use
parallelism to optimize the execution time of a set of instructions. We also looked at

Increment s[1]

Increment s[0]

Read s[0] into v

If odd

Check v

Add 1 and v
to s[0]

Read s[1] Add 1 to s[1]

Increment s[1]

Increment s[0]

Read s[0] Add 1 to s[0] If even
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Read s[1] Add 1 to s[1]
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data hazards, which can prevent executing instructions in parallel. And we optimized
a Go example by reducing the number of data hazards to increase the number of
instructions that can be executed in parallel.

 Understanding how Go compiles our code into assembly and how to use CPU opti-
mizations such as ILP is another avenue for improvement. Here, introducing a tempo-
rary variable resulted in a significant performance improvement. This example
demonstrated how mechanical sympathy can help us optimize a Go application.

 Let’s also remember to remain cautious about such micro-optimizations. Because
the Go compiler keeps evolving, an application’s generated assembly may also change
when the Go version is bumped.

 The following section discusses the effects of data alignment. 

12.4 #94: Not being aware of data alignment
Data alignment is a way to arrange how data is allocated to speed up memory accesses
by the CPU. Not being aware of this concept can lead to extra memory consumption
and even degraded performance. This section discusses this concept, where it applies,
and techniques to prevent under-optimized code.

 To understand how data alignment works, let’s first discuss what would happen
without it. Suppose we allocate two variables, an int32 (32 bytes) and an int64 (64
bytes):

var i int32
var j int64

Without data alignment, on a 64-bit architecture, these
two variables could be allocated as shown in figure 12.21.
The j variable allocation could be spread over two words.
If the CPU wanted to read j, it would require two mem-
ory accesses instead of one.

 To prevent such a case, a variable’s memory address
should be a multiple of its own size. This is the concept of
data alignment. In Go, the alignment guarantees are as
follows:

 byte, uint8, int8: 1 byte
 uint16, int16: 2 bytes
 uint32, int32, float32: 4 bytes
 uint64, int64, float64, complex64: 8 bytes
 complex128: 16 bytes

All these types are guaranteed to be aligned: their addresses are a multiple of their
size. For example, the address of any int32 variable is a multiple of 4.

 Let’s get back to the real world. Figure 12.22 shows two different cases where i and
j are allocated in memory.

i

Word

j

Word

0 32 64 96 128
Bits

Figure 12.21 j allocated on 
two words
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In the first case, a 32-bit variable was allocated just before i. Therefore, i and j were
allocated contiguously. In the second case, the 32-bit variable wasn’t allocated before i
(for example, it was a 64-bit variable); so, i was allocated at the beginning of a word.
To respect data alignment (an address that is a multiple of 64), j can’t be allocated
alongside i but to the next multiple of 64. The gray box represents 32 bits of padding.

 Next, let’s look at when padding can be an issue. We will consider the following
struct containing three fields:

type Foo struct {
b1 byte
i int64
b2 byte

}

We have a byte type (1 byte), an int64 (8 bytes), and another byte type (1 byte). On
a 64-bit architecture, the struct is allocated in memory as shown in figure 12.23. b1 is
allocated first. Because i is an int64, its address must be a multiple of 8. Therefore,
it’s impossible to allocate it alongside b1 at 0x01. What’s the next address that is a mul-
tiple of 8? 0x08. b2 is allocated to the next available address that is a multiple of
1: 0x10.

Because a struct’s size must be a multiple of the word size (8 bytes), its address isn’t 17
bytes but 24 bytes total. During the compilation, the Go compiler adds padding to
guarantee data alignment:

type Foo struct {
b1 byte
_ [7]byte

i

Word Word

ji

Word Word

jA 32-bit
variable

Case 2Case 1

0 32 64 96 128
Bits

0 32 64 96 128
Bits

Figure 12.22 In both cases, j is 
aligned to its own size.
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24 bytes

0x00

0x08
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8 bytes (word)

Figure 12.23 The struct 
occupies 24 bytes total.

Added by 
the compiler



32312.4 #94: Not being aware of data alignment
i int64
b2 byte
_ [7]byte

}

Every time a Foo struct is created, it requires 24 bytes in memory, but only 10 bytes
contain data—the remaining 14 bytes are padding. Because a struct is an atomic unit,
it will never be reorganized, even after a garbage collection (GC); it will always occupy
24 bytes in memory. Note that the compiler doesn’t rearrange the fields; it only adds
padding to guarantee data alignment.

 How can we reduce the amount of memory allocated? The rule of thumb is to
reorganize a struct so that its fields are sorted by type size in descending order. In our
case, the int64 type is first, followed by the two byte types:

type Foo struct {
i int64
b1 byte
b2 byte

}

Figure 12.24 shows how this new version of Foo is allocated in memory. i is allocated
first and occupies a complete word. The main difference is that now b1 and b2 can live
alongside each other in the same word.

Again, the struct must be a multiple of the word size; but instead of occupying 24 bytes
in memory, it occupies only 16 bytes. We saved 33% of the memory just by moving i to
the first position.

 What would be the concrete impacts if we used the first version of the Foo struct
(24 bytes) instead of the compacted one? If the Foo structs were retained (for exam-
ple, an in-memory Foo cache), our application would consume extra memory. But
even if the Foo structs weren’t retained, there would be other effects. For example, if
we created Foo variables frequently and they were allocated to the heap (we discuss
this concept in the next section), the result would be more frequent GCs, impacting
overall application performance.

 Speaking of performance, there’s another effect on spatial locality. For example,
let’s consider the following sum function that takes a slice of Foo structs as an argu-
ment. This function iterates over the slice and sums all the i fields (int64):

func sum(foos []Foo) int64 {
var s int64

Added by 
the compiler

b1

i

8 bytes (word)

b2
16 bytes

0x00

0x08 Figure 12.24 The struct now 
occupies 16 bytes in memory.
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for i := 0; i < len(foos); i++ {
s += foos[i].i

}
return s

}

Because a slice is backed by an array, it means a contiguous allocation of Foo structs.
 Let’s discuss the backing array for the two versions of Foo and check two cache

lines of data (128 bytes). In figure 12.25, each gray bar represents 8 bytes of data, and
the darker bars are the i variables (the fields we want to sum).

As we can see, with the latest version of Foo, each cache line is more useful because it
contains on average 33% more i variables. Therefore, iterating over a Foo slice to sum
all the int64 elements is more efficient.

 We can confirm this observation with a benchmark. If we run two benchmarks with
the two versions of Foo using a slice of 10,000 elements, the version using the latest
Foo struct is about 15% faster on my machine. That’s a 15% speed improvement from
changing the position of a single field in a struct.

 Let’s be mindful of data alignment. As we have seen in this section, reorganizing
the fields of a Go struct to sort them by size in descending order prevents padding.
Preventing padding means allocating more compact structs, possibly leading to opti-
mizations such as reducing the frequency of GCs and better spatial locality.

 The following section discusses the fundamental differences between stack and
heap and why they matter. 

12.5 #95: Not understanding stack vs. heap
In Go, a variable can be allocated either on the stack or on the heap. These two types
of memory are fundamentally different and can significantly impact data-intensive
applications. Let’s examine these concepts and the rules the compiler follows to
decide where a variable should be allocated.

12.5.1 Stack vs. heap

First, let’s discuss the differences between the stack and the heap. The stack is the
default memory; it’s a last-in, first-out (LIFO) data structure that stores all the local

Sums all 
the i fields

type Foo struct {
    b1 byte
    i int64
    b2 byte
}

type Foo struct {
    i int64
    b1 byte
    b2 byte
}

Cache line Cache line Cache line Cache line

Figure 12.25 Because each cache 
line contains more i variables, 
iterating over a slice of Foo requires 
fewer cache lines total.
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variables for a specific goroutine. When a goroutine starts, it gets 2 KB of contiguous
memory as its stack space (this size has evolved over time and could change again).
However, this size isn’t fixed at run time and can grow and shrink as necessary (but it
always remains contiguous in memory, preserving data locality).

 When Go enters a function, a stack frame is created, representing an interval in
memory that only the current function can access. Let’s look at a concrete example to
understand this concept. Here, the main function will print the result of a sumValue
function:

func main() {
a := 3
b := 2

c := sumValue(a, b)
println(c)

}

//go:noinline
func sumValue(x, y int) int {

z := x + y
return z

}

There are two things to note here. First, we use the println built-in function instead
of fmt.Println, which would force allocating the c variable on the heap. Second, we
disable inlining on the sumValue function; otherwise, the function call would not
occur (we discuss inlining in mistake #97, “Not relying on inlining”).

 Figure 12.26 shows the stack following a and b allocations. Because we executed
main, a stack frame was created for this function. The two variables a and b were allo-
cated to the stack in this stack frame. All the variables stored are valid addresses,
meaning they can be referenced and accessed.

Figure 12.27 shows what happens if we enter into the sumValue function up to the
return statement. The Go runtime creates a new stack frame as part of the current
goroutine stack. x and y are allocated alongside z in the current stack frame.

Calls the sumValue 
function

Prints 
the result

Disables 
inlining

func main() {
   a := 3
   b := 2

   c := sumValue(a, b)
   println(c)

}

func sumValue(x, y int) int {
   z := x + y
   return z

}

main
a = 3
b = 2

Valid

Stack 

Invalid

Figure 12.26
a and b are allocated 
on the stack.
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The previous stack frame (main) contains addresses that are still considered valid.
We can’t access a and b directly; but if we had a pointer on a, for example, it would be
valid. We discuss pointers shortly.

 Let’s move to the last statement of the main function: println. We exited the sum-
Value function, so what happens to its stack frame? See figure 12.28.

Figure 12.28 The sumValue stack frame was deleted and replaced by 
variables from main. In this example, x has been erased by c, while 
y and z are still allocated in memory but unreachable.

The sumValue stack frame wasn’t completely erased from memory. When a function
returns, Go doesn’t take time to deallocate the variables to reclaim free space. But
these previous variables can no longer be accessed, and when new variables from the
parent function are allocated to the stack, they replace earlier allocations. In a sense, a
stack is self-cleaning; it doesn’t require an additional mechanism such as a GC.

 Now, let’s make a slight change to understand the stack’s limitations. Instead of
returning an int, the function will return a pointer:

func main() {
a := 3
b := 2

func main() {
   a := 3
   b := 2

   c := sumValue(a, b)
   println(c)
}

func sumValue(x, y int) int {
   z := x + y
   return z
}

sumValue
x = 3
y = 2
z = 5

Stack 

main
a = 3
b = 2

Valid

Invalid Figure 12.27 Calling 
sumValue creates a 
new stack frame.

func main() {
   a := 3
   b := 2

   c := sumValue(a, b)
   println(c)
}

func sumValue(x, y int) int {
   z := x + y
   return z
}

Stack 

i = 3
y = 2
z = 5

main
a = 3
b = 2
c = 5

Valid

Invalid
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c := sumPtr(a, b)
println(*c)

}

//go:noinline
func sumPtr(x, y int) *int {

z := x + y
return &z

}

The c variable in main is now a *int type. Let’s move directly to the last println state-
ment, following the call to sumPtr. What would happen if z remained allocated on the
stack (which can’t be the case)? See figure 12.29.

Figure 12.29 The c variable references an address that is no longer valid.

If c was referencing the address of the z variable, and that z was allocated on the stack,
we would have a major problem. The address would no longer be valid, plus the stack
frame of main would keep growing and erase the z variable. For that reason, the stack
isn’t enough, and we need another type of memory: the heap.

 A memory heap is a pool of memory shared by all
the goroutines. In figure 12.30, each of the three
goroutines G1, G2, and G3 has its own stack. They all
share the same heap.

 In the previous example, we saw that the z vari-
able couldn’t live on the stack; therefore, it is escaped
to the heap. If the compiler cannot prove that a vari-
able isn’t referenced after the function returns, the
variable is allocated on the heap.

 Why should we care? What’s the point of under-
standing the differences between stack and heap?
Because there’s a significant impact in terms of per-
formance.

Returns 
a pointer

func main() {
   a := 3
   b := 2

   c := sumPtr(a, b)
   println(*c)
}

func sumPtr(x, y int) *int {
   z := x + y
   return &z
}

Stack 

i = 3
y = 2
z = 5

main
a = 3
b = 2

c = 0xc000038730
Valid

Invalid

Heap

Stack Stack Stack

G1 G2 G3

Figure 12.30 Three goroutines 
that have their own stacks but 
share the heap
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As we said, a stack is self-cleaning and is accessed by a single goroutine. Conversely, the
heap must be cleaned by an external system: the GC. The more heap allocations are
made, the more we pressure the GC. When the GC runs, it uses 25% of the available
CPU capacity and may create milliseconds of “stop the world” latency (the phase when
an application is paused).

 We must also understand that allocating on the stack is faster for the Go runtime
because it’s trivial: a pointer references the following available memory address. Con-
versely, allocating on the heap requires more effort to find the right place and hence
takes more time.

 To illustrate these differences, let’s benchmark sumValue and sumPtr:

var globalValue int
var globalPtr *int

func BenchmarkSumValue(b *testing.B) {
b.ReportAllocs()
var local int
for i := 0; i < b.N; i++ {

local = sumValue(i, i)
}
globalValue = local

}

func BenchmarkSumPtr(b *testing.B) {
b.ReportAllocs()
var local *int
for i := 0; i < b.N; i++ {

local = sumPtr(i, i)
}
globalValue = *local

}

If we run these benchmarks (and still disable inlining), we get the following results:

BenchmarkSumValue-4 992800992 1.261 ns/op 0 B/op 0 allocs/op
BenchmarkSumPtr-4 82829653 14.84 ns/op 8 B/op 1 allocs/op

sumPtr is about an order of magnitude slower than sumValue, which is the direct con-
sequence of using the heap instead of the stack.

NOTE This example shows that using pointers to avoid a copy isn’t necessarily
faster; it depends on the context. So far in this book, we have only discussed
values versus pointers via the prism of semantics: using a pointer when a value
has to be shared. In most cases, this should be the rule to follow. Also bear in
mind that modern CPUs are extremely efficient at copying data, especially
within the same cache line. Let’s avoid premature optimization and focus on
readability and semantics first.

We should also note that in the previous benchmarks, we called b.ReportAllocs(),
which highlights heap allocation (stack allocations aren’t counted):

Reports heap 
allocations

Sums by 
value

Reports heap 
allocations

Sums by 
pointer
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 B/op: how many bytes per operation allocated
 allocs/op: how many allocations per operation

Next, let’s discuss the conditions for a variable to escape to the heap.

12.5.2 Escape analysis

Escape analysis refers to the work performed by the compiler to decide whether a vari-
able should be allocated on the stack or the heap. Let’s look at the main rules.

 When an allocation cannot be done on the stack, it is done on the heap. Even
though this sounds like a simplistic rule, it’s important to remember. For example, if
the compiler cannot prove that a variable isn’t referenced after a function returns,
this variable is allocated on the heap. In the previous section, this was the case with the
sumPtr function returning a pointer to a variable created in the function’s scope. In
general, sharing up escapes to the heap.

 But what about the opposite situation? What if we accept a pointer, as in the follow-
ing example?

func main() {
a := 3
b := 2
c := sum(&a, &b)
println(c)

}

//go:noinline
func sum(x, y *int) int {

return *x + *y
}

sum accepts two pointers on variables created in the parent. If we move to the return
statement in the sum function, figure 12.31 shows the current stack.

Despite being part of another stack frame, the x and y variables reference valid
addresses. Therefore, a and b won’t have to be escaped; they can stay on the stack. In
general, sharing down stays on the stack.

Accepts 
pointers

func main() {
   a := 3
   b := 2
   c := sum(&a, &b)
   println(c)
}

func sum(x, y *int) int {
   return *x + *y
}

Stack 

main
a = 3
b = 2

Valid
sum

x = 0xc0000bc018
y = 0xc0000bc020

Figure 12.31 The x and 
y variables reference 
valid addresses.
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 The following are other cases in which a variable can be escaped to the heap:

 Global variables, because multiple goroutines can access them.
 A pointer sent to a channel:

type Foo struct{ s string }
ch := make(chan *Foo, 1)
foo := &Foo{s: "x"}
ch <- foo

Here, foo escapes to the heap.

 A variable referenced by a value sent to a channel:

type Foo struct{ s *string }
ch := make(chan Foo, 1)
s := "x"
bar := Foo{s: &s}
ch <- bar

Because s is referenced by Foo via its address, it escapes to the heap in these
situations. 

 If a local variable is too large to fit on the stack. 
 If the size of a local variable is unknown. For example, s := make([]int, 10)

may not escape to the heap, but s := make([]int, n) will, because its size is
based on a variable.

 If the backing array of a slice is reallocated using append.

Although this list gives us ideas for understanding the compiler’s decisions, it’s not
exhaustive and may change in future Go versions. To confirm an assumption, we can
access the compiler’s decisions using -gcflags:

$ go build -gcflags "-m=2"
...
./main.go:12:2: z escapes to heap:

Here, the compiler informs us that the z variable will escape to the heap.
 Understanding the fundamental differences between heap and stack is crucial in

optimizing a Go application. As we have seen, heap allocations are more complex for
the Go runtime to handle and require an external system with the GC to deallocate
data. Heap management can account for up to 20% or 30% of the total CPU time
consumed in some data-intensive applications. On the other hand, a stack is self-
cleaning and local to a single goroutine, making allocations faster. Therefore, optimiz-
ing memory allocation can have a great return on investment.

 It’s also essential to understand the rules of escape analysis to write more efficient
code. In general, sharing down stays on the stack, whereas sharing up escapes to the
heap. This should prevent common mistakes such as premature optimizations where
we want to return pointers, for example, “to avoid a copy.” Let’s focus on readability
and semantics first and then optimize allocations if needed.

 The following section discusses how to reduce allocations. 



33112.6 #96: Not knowing how to reduce allocations
12.6 #96: Not knowing how to reduce allocations
Reducing allocations is a common optimization technique to speed up Go applica-
tions. This book has already covered a few approaches that reduce the number of
heap allocations:

 Under-optimized string concatenation (mistake #39): using strings.Builder
instead of the + operator to concatenate strings.

 Useless string conversions (mistake #40): whenever possible, avoid having to
convert []byte into strings.

 Inefficient slice and map initialization (mistakes #21 and #27): preallocate
slices and maps if the length is already known.

 Better data struct alignment to reduce struct size (mistake #94).

As part of this section, we discuss three common approaches to reduce allocations:

 Changing our API
 Relying on compiler optimizations
 Using tools such as sync.Pool

12.6.1 API changes

The first option is to work carefully on the API we provide. Let’s take as a concrete
example the io.Reader interface:

type Reader interface {
Read(p []byte) (n int, err error)

}

The Read method accepts a slice and returns the number of bytes read. Now, imagine
if the io.Reader interface had been designed the other way around: passing an int
representing how many bytes have to be read and returning a slice:

type Reader interface {
Read(n int) (p []byte, err error)

}

Semantically, there is nothing wrong with this. But the returned slice would automati-
cally escape to the heap in this case. We would be in the sharing-up case described in
the previous section.

 The Go designers used the sharing-down approach to prevent automatically escap-
ing the slice to the heap. Therefore, it’s up to the caller to provide a slice. That
doesn’t necessarily mean this slice won’t be escaped: the compiler may have decided
that this slice cannot stay on the stack. However, it’s up to the caller to handle it, not a
constraint caused by calling the Read method.

 Sometimes even a slight change in an API can positively affect allocations. When
designing an API, let’s remain aware of the escape analysis rules described in the pre-
vious section and, if needed, use -gcflags to understand the compiler’s decisions. 
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12.6.2 Compiler optimizations

One of the goals of the Go compiler is to optimize our code if possible. Here’s a con-
crete example regarding maps.

 In Go, we can’t define a map using a slice as a key type. In some cases, especially in
applications doing I/O, we may receive []byte data that we would like to use as a key.
We are obliged to transform it into a string first, so we can write the following code:

type cache struct {
m map[string]int

}

func (c *cache) get(bytes []byte) (v int, contains bool) {
key := string(bytes)
v, contains = c.m[key]
return

}

Because the get function receives a []byte slice, we convert it to a key string to query
the map.

 However, the Go compiler implements a specific optimization if we query the map
using string(bytes):

func (c *cache) get(bytes []byte) (v int, contains bool) {
v, contains = c.m[string(bytes)]
return

}

Despite this being almost the same code (we call string(bytes) directly instead of
passing a variable), the compiler will avoid doing this bytes-to-string conversion.
Hence, the second version is faster than the first.

 This example illustrates that two versions of a function that look similar may result
in different assembly code following the Go compiler’s work. We should also be aware
of the possible compiler optimizations to optimize an application. And we need to
watch future Go releases to check whether new optimizations are added to the lan-
guage. 

12.6.3 sync.Pool

Another avenue for improvement if we want to tackle the number of allocations is using
sync.Pool. We should understand that sync.Pool isn’t a cache: there’s no fixed size or
maximum capacity that we can set. Instead, it’s a pool to reuse common objects.

 Let’s imagine that we want to implement a write function that receives an
io.Writer, calls a function to get a []byte slice, and then writes it to the io.Writer.
Our code looks like this (we omit error handling for the sake of clarity):

func write(w io.Writer) {
b := getResponse()
_, _ = w.Write(b)

}

Holds a map 
of strings

Converts from 
[]byte to string

Queries the map 
using the string value

Queries the map directly 
using string(bytes)

Receives a []byte 
response

Writes to 
the io.Writer
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Here, getResponse returns a new []byte slice upon each call. What if we want to
reduce the number of allocations by reusing this slice? We assume that all the
responses have a max size of 1,024 bytes. In this situation, we can use sync.Pool.

 Creating a sync.Pool requires a func() any factory function; see figure 12.32.
sync.Pool exposes two methods:

 Get() any—Gets an object from the pool
 Put(any)—Returns an object to the pool

Using Get either creates a new object if the pool is empty
or reuses an object, otherwise. Then, after using the object,
we can put it back into the pool using Put. Figure 12.33
shows an example with the previously defined factory with
a Get when the pool is empty, a Put, and a Get when the
pool isn’t empty.

Figure 12.33 Get either creates a new object or returns one from the pool. Put returns the 
object to the pool.

When are objects drained from the pool? There’s no specific method to do this: it
relies on the GC. After each GC, objects from the pool are destroyed.

 Back in our example, assuming that we can update the getResponse function to
write data to a given slice instead of creating one, we can implement another version
of the write method that relies on a pool:

func factory() any {

    return 

}

Figure 12.32 Define a 
factory function that 
creates a new object upon 
each call.

after

after

before

before after

before
Add        back

to the pool
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var pool = sync.Pool{
New: func() any {

return make([]byte, 1024)
},

}

func write(w io.Writer) {
buffer := pool.Get().([]byte)
buffer = buffer[:0]
defer pool.Put(buffer)

getResponse(buffer)
_, _ = w.Write(buffer)

}

We define a new pool using the sync.Pool struct and set the factory function to create
a new []byte with a length of 1,024 elements. In the write function, we try to retrieve
one buffer from the pool. If the pool is empty, the function creates a new buffer; oth-
erwise, it selects an arbitrary buffer from the pool and returns it. One crucial step is to
reset the buffer using buffer[:0], as this slice may already have been used. Then we
defer the call to Put to put the slice back into the pool.

 With this new version, calling write doesn’t lead to creating a new []byte slice for
every call. Instead, we can reuse existing allocated slices. In the worst-case scenario—
for example, after a GC—the function will create a new buffer; however, the amor-
tized allocation cost is reduced.

 In summary, if we frequently allocate many objects of the same type, we can con-
sider using sync.Pool. It is a set of temporary objects that can help us prevent reallo-
cating the same kind of data repeatedly. And sync.Pool is safe for use by multiple
goroutines simultaneously.

 Next, let’s discuss the concept of inlining to understand that this computer optimi-
zation is worth knowing about. 

12.7 #97: Not relying on inlining
Inlining refers to replacing a function call with the body of the function. Nowadays,
inlining is done automatically by compilers. Understanding the fundamentals of inlin-
ing can also be a way to optimize particular code paths of an application.

 Let’s see a concrete example of inlining with a simple sum function that sums two
int types:

func main() {
a := 3
b := 2
s := sum(a, b)
println(s)

}

func sum(a int, b int) int {
return a + b

}

Creates a pool and sets 
the factory function

Gets a []byte from the 
pool or creates one

Resets the buffer
Puts the buffer 
back into the pool

Writes the response 
to the provided buffer

Inlines the 
function
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If we run go build using -gcflags, we access the decision made by the compiler
regarding the sum function:

$ go build -gcflags "-m=2"
./main.go:10:6: can inline sum with cost 4 as:

func(int, int) int { return a + b }
...
./main.go:6:10: inlining call to sum func(int, int) int { return a + b }

The compiler decided to inline the call to sum. Hence, the previous code is replaced
by the following:

func main() {
a := 3
b := 2
s := a + b
println(s)

}

Inlining only works for functions with a certain complexity, also known as an inlining bud-
get. Otherwise, the compiler will inform us that the function is too complex to be inlined:

./main.go:10:6: cannot inline foo: function too complex:
cost 84 exceeds budget 80

Inlining has two main benefits. First, it removes the overhead of a function call (even
though the overhead has been mitigated since Go 1.17 and register-based calling con-
ventions). Second, it allows the compiler to proceed to further optimizations. For
example, after inlining a function, the compiler can decide that a variable it was ini-
tially supposed to escape on the heap may stay on the stack.

 The question is, if this optimization is applied automatically by the compiler, why
should we care about it as Go developers? The answer lies in the concept of mid-stack
inlining.

 Mid-stack inlining is about inlining functions that call other functions. Before Go
1.9, only leaf functions were considered for inlining. Now, thanks to mid-stack inlin-
ing, the following foo function can also be inlined:

func main() {
foo()

}

func foo() {
x := 1
bar(x)

}

Because the foo function isn’t too complex, the compiler can inline its call:

func main() {
x := 1
bar(x)

}

Replaces the call to 
sum with its body

Replaced with 
the body of foo
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Thanks to mid-stack inlining, as Go developers, we can now optimize an application
using the concept of fast-path inlining to distinguish between fast and slow paths. Let’s
look at a concrete example released in the sync.Mutex implementation to understand
how this works.

 Before mid-stack inlining, the implementation of the Lock method was the following:

func (m *Mutex) Lock() {
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {

// Mutex isn't locked
if race.Enabled {

race.Acquire(unsafe.Pointer(m))
}
return

}

// Mutex is already locked
var waitStartTime int64
starving := false
awoke := false
iter := 0
old := m.state
for {

// ...
}
if race.Enabled {

race.Acquire(unsafe.Pointer(m))
}

}

We can distinguish two primary paths:

 If the mutex isn’t locked (atomic.CompareAndSwapInt32 is true), fast path
 If the mutex is already locked (atomic.CompareAndSwapInt32 is false), slow

path

However, regardless of the path taken, the function cannot be inlined because of its
complexity. To use mid-stack inlining, the Lock method was refactored so that the slow
path lives in a specific function:

func (m *Mutex) Lock() {
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {

if race.Enabled {
race.Acquire(unsafe.Pointer(m))

}
return

}
m.lockSlow()

}

func (m *Mutex) lockSlow() {
var waitStartTime int64
starving := false

Complex logic

Path on which the mutex 
is already locked
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awoke := false
iter := 0
old := m.state
for {

// ...
}

if race.Enabled {
race.Acquire(unsafe.Pointer(m))

}
}

Thanks to this change, the Lock method can be inlined. The benefit is that a mutex
that isn’t already locked is now locked without paying the overhead of calling a func-
tion (speed improves around 5%). The slow path, when the mutex is already locked,
didn’t change. Previously it required one function call to execute this logic; it remains
one function call, this time to lockSlow.

 This optimization technique is about distinguishing between fast and slow paths. If
a fast path can be inlined but not a slow one, we can extract the slow path inside a ded-
icated function. Hence, if the inlining budget isn’t exceeded, our function is a candi-
date for inlining.

 Inlining isn’t just an invisible compiler optimization that we shouldn’t care about.
As seen in this section, understanding how inlining works and how to access the com-
piler’s decision can be a road to optimization using the fast-path inlining technique.
Extracting the slow path in a dedicated function prevents a function call if the fast
path is executed.

 The next section discusses common diagnostics tooling that can help us under-
stand what should be optimized in our Go applications. 

12.8 #98: Not using Go diagnostics tooling
Go offers a few excellent diagnostics tools to help us get insights into how an applica-
tion performs. This section focuses on the most important ones: profiling and the
execution tracer. Both tools are so important that they should be part of the core tool-
set of any Go developer who is interested in optimization. We’ll discuss profiling first.

12.8.1 Profiling

Profiling provides insights into the execution of an application. It allows us to resolve
performance issues, detect contention, locate memory leaks, and more. These
insights can be collected via several profiles:

 CPU—Determines where an application spends its time
 Goroutine—Reports the stack traces of the ongoing goroutines
 Heap—Reports heap memory allocation to monitor current memory usage and

check for possible memory leaks
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 Mutex—Reports lock contentions to see the behaviors of the mutexes used in
our code and whether an application spends too much time in locking calls

 Block—Shows where goroutines block waiting on synchronization primitives

Profiling is achieved via instrumentation using a tool called a profiler: in Go, pprof.
First, let’s understand how and when to enable pprof; then, we discuss the most criti-
cal profile types.

ENABLING PPROF

There are several ways to enable pprof. For example, we can use the net/http/pprof
package to serve the profiling data via HTTP:

package main

import (
"fmt"
"log"
"net/http"
_ "net/http/pprof"

)

func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {  

fmt.Fprintf(w, "")
})
log.Fatal(http.ListenAndServe(":80", nil))

}

Importing net/http/pprof leads to a side effect that allows us to reach the pprof
URL, http://host/debug/pprof. Note that enabling pprof is safe even in production
(https://go.dev/doc/diagnostics#profiling). The profiles that impact performance,
such as CPU profiling, aren’t enabled by default, nor do they run continuously: they
are activated only for a specific period.

 Now that we have seen how to expose a pprof endpoint, let’s discuss the most com-
mon profiles. 

CPU PROFILING

The CPU profiler relies on the OS and signaling. When it is activated, the application
asks the OS to interrupt it every 10 ms by default via a SIGPROF signal. When the appli-
cation receives a SIGPROF, it suspends the current activity and transfers the execution
to the profiler. The profiler collects data such as the current goroutine activity and
aggregates execution statistics that we can retrieve. Then it stops, and the execution
resumes until the next SIGPROF.

 We can access the /debug/pprof/profile endpoint to activate CPU profiling.
Accessing this endpoint executes CPU profiling for 30 seconds by default. For 30 sec-
onds, our application is interrupted every 10 ms. Note that we can change these two
default values: we can use the seconds parameter to pass to the endpoint how long
the profiling should last (for example, /debug/pprof/profile?seconds=15), and we

Blank import 
to pprof

Exposes an
HTTP endpoint

http://host/debug/pprof
https://go.dev/doc/diagnostics#profiling
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can change the interruption rate (even to less than 10 ms). But in most cases, 10 ms
should be enough, and in decreasing this value (meaning increasing the rate), we
should be careful not to harm performance. After 30 seconds, we download the
results of the CPU profiler.

From this file, we can navigate to the results using go tool:

$ go tool pprof -http=:8080 <file>

This command opens a web UI showing the call graph. Figure 12.34 shows an exam-
ple taken from an application. The larger the arrow, the more it was a hot path. We
can then navigate into this graph and get execution insights.

Figure 12.34 The call graph of an application during 30 seconds

CPU profiling during benchmarks
We can also enable the CPU profiler using the -cpuprofile flag, such as when run-
ning a benchmark:

$ go test -bench=. -cpuprofile profile.out

This command produces the same type of file that can be downloaded via /debug/
pprof/profile.
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For example, the graph in figure 12.35 tells us that
during 30 seconds, 0.06 seconds were spent in the
decode method (*FetchResponse receiver). Of
these 0.06 seconds, 0.02 were spent in Record-
Batch.decode and 0.01 in makemap (creating a
map).
     We can also access this kind of information from
the web UI with different representations. For
example, the Top view sorts the functions per exe-
cution time, and Flame Graph visualizes the execu-
tion time hierarchy. The UI can even display the
expensive parts of the source code line by line.

NOTE We can also delve into profiling data via a command line. However, we
focus on the web UI in this section.

Thanks to this data, we can get a general idea of how an application behaves:

 Too many calls to runtime.mallogc can mean an excessive number of small
heap allocations that we can try to minimize.

 Too much time spent in channel operations or mutex locks can indicate exces-
sive contention that is harming the application’s performance.

 Too much time spent on syscall.Read or syscall.Write means the applica-
tion spends a significant amount of time in Kernel mode. Working on I/O buff-
ering may be an avenue for improvement.

These are the kinds of insights we can get from the CPU profiler. It’s valuable to
understand the hottest code path and identify bottlenecks. But it won’t determine
more than the configured rate because the CPU profiler is executed at a fixed pace
(by default, 10 ms). To get finer-grained insights, we should use tracing, which we dis-
cuss later in this chapter.

NOTE We can also attach labels to the different functions. For example, imag-
ine a common function called from different clients. To track the time spent
for both clients, we can use pprof.Labels. 

HEAP PROFILING

Heap profiling allows us to get statistics about the current heap usage. Like CPU pro-
filing, heap profiling is sample-based. We can change this rate, but we shouldn’t be
too granular because the more we decrease the rate, the more effort heap profiling
will require to collect data. By default, samples are profiled at one allocation for every
512 KB of heap allocation.

 If we reach /debug/pprof/heap/, we get raw data that can be hard to read. How-
ever, we can download a heap profile using debug/pprof/heap/?debug=0 and then
open it with go tool (the same command as in the previous section) to navigate into
the data using the web UI.

Figure 12.35 Example call graph
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 Figure 12.36 shows an example of a heap
graph. Calling the MetadataResponse

.decode method leads to allocating 1536 KB
of heap data (which represents 6.32% of the
total heap). However, 0 out of these 1536 KB
were allocated by this function directly, so we
need to inspect the second call. The Topic-
Metadata.decode method allocated 512 KB
out of the 1536 KB; the rest—1024 KB—
were allocated in another method.

 This is how we can navigate the call chain
to understand what part of an application is
responsible for most of the heap allocations.
We can also look at different sample types:

 alloc_objects—Total number of
objects allocated

 alloc_space—Total amount of mem-
ory allocated

 inuse_objects—Number of objects allocated and not yet released
 inuse_space—Amount of memory allocated and not yet released

Another very helpful capability with heap profiling is tracking memory leaks. With a
GC-based language, the usual procedure is the following:

1 Trigger a GC.
2 Download heap data.
3 Wait for a few seconds/minutes.
4 Trigger another GC.
5 Download another heap data.
6 Compare.

Forcing a GC before downloading data is a way to prevent false assumptions. For
example, if we see a peak of retained objects without running a GC first, we cannot be
sure whether it’s a leak or objects that the next GC will collect.

 Using pprof, we can download a heap profile and force a GC in the meantime.
The procedure in Go is the following:

1 Go to /debug/pprof/heap?gc=1 (trigger the GC and download the heap pro-
file).

2 Wait for a few seconds/minutes.
3 Go to /debug/pprof/heap?gc=1 again.
4 Use go tool to compare both heap profiles:

$ go tool pprof -http=:8080 -diff_base <file2> <file1>

Figure 12.36 A heap graph
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Figure 12.37 shows the kind of data we can access. For example, the amount of heap
memory held by the newTopicProducer method (top left) has decreased (–513 KB).
In contrast, the amount held by updateMetadata (bottom right) has increased (+512
KB). Slow increases are normal. The second heap profile may have been calculated in
the middle of a service call, for example. We can repeat this process or wait longer;
the important part is to track steady increases in allocations of a specific object.

NOTE Another type of profiling related to the heap is allocs, which reports
allocations. Heap profiling shows the current state of the heap memory. To
get insights about past memory allocations since the application started, we
can use allocations profiling. As discussed, because stack allocations are
cheap, they aren’t part of this profiling, which only focuses on the heap. 

GOROUTINES PROFILING

The goroutine profile reports the stack trace of all the current goroutines in an appli-
cation. We can download a file using debug/pprof/goroutine/?debug=0 and use go
tool again. Figure 12.38 shows the kind of information we can get.

Figure 12.37 The 
differences between the 
two heap profiles

Figure 12.38
Goroutine graph
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We can see the current state of the application and how many goroutines were created
per function. In this case, withRecover has created 296 ongoing goroutines (63%),
and 29 were related to a call to responseFeeder.

 This kind of information is also beneficial if we suspect goroutine leaks. We can
look at goroutine profiler data to know which part of a system is the suspect. 

BLOCK PROFILING

The block profile reports where ongoing goroutines block waiting on synchroniza-
tion primitives. Possibilities include

 Sending or receiving on an unbuffered channel
 Sending to a full channel
 Receiving from an empty channel
 Mutex contention
 Network or filesystem waits

Block profiling also records the amount of time a goroutine has been waiting and is
accessible via debug/pprof/block. This profile can be extremely helpful if we suspect
that performance is being harmed by blocking calls.

 The block profile isn’t enabled by default: we have to call runtime.SetBlock-
ProfileRate to enable it. This function controls the fraction of goroutine blocking
events that are reported. Once enabled, the profiler will keep collecting data in the
background even if we don’t call the debug/pprof/block endpoint. Let’s be cautious
if we want to set a high rate so we don’t harm performance.

MUTEX PROFILING

The last profile type is related to blocking but only regarding mutexes. If we suspect
that our application spends significant time waiting for locking mutexes, thus harm-
ing execution, we can use mutex profiling. It’s accessible via /debug/pprof/mutex.

 This profile works in a manner similar to that for blocking. It’s disabled by default:
we have to enable it using runtime.SetMutexProfileFraction, which controls the
fraction of mutex contention events reported.

Full goroutine stack dump
If we face a deadlock or suspect that goroutines are in a blocked state, the full
goroutine stack dump (debug/pprof/goroutine/?debug=2) creates a dump of all the
current goroutine stack traces. This can be helpful as a first analysis step. For exam-
ple, the following dump shows a Sarama goroutine blocked for 1,420 minutes on a
channel-receive operation:

goroutine 2494290 [chan receive, 1420 minutes]:
github.com/Shopify/sarama.(*syncProducer).SendMessages(0xc00071a090,

➥{0xc0009bb800, 0xfb, 0xfb})
/app/vendor/github.com/Shopify/sarama/sync_producer.go:117 +0x149
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 Following are a few additional notes about profiling:

 We haven’t mentioned the threadcreate profile because it’s been broken since
2013 (https://github.com/golang/go/issues/6104).

 Be sure to enable only one profiler at a time: for example, do not enable CPU
and heap profiling simultaneously. Doing so can lead to erroneous observations.

 pprof is extensible, and we can create our own custom profiles using pprof
.Profile.

We have seen the most important profiles that we can enable to help us understand
how an application performs and possible avenues for optimization. In general,
enabling pprof is recommended, even in production, because in most cases it offers
an excellent balance between its footprint and the amount of insight we can get from
it. Some profiles, such as the CPU profile, lead to performance penalties but only
during the time they are enabled.

 Let’s now look at the execution tracer. 

12.8.2 Execution tracer

The execution tracer is a tool that captures a wide range of runtime events with go
tool to make them available for visualization. It is helpful for the following:

 Understanding runtime events such as how the GC performs
 Understanding how goroutines execute
 Identifying poorly parallelized execution

Let’s try it with an example given in mistake #56, “Thinking concurrency is always
faster.” We discussed two parallel versions of the merge sort algorithm. The issue with
the first version was poor parallelization, leading to the creation of too many gorou-
tines. Let’s see how the tracer can help us in validating this statement.

 We will write a benchmark for the first version and execute it with the -trace flag
to enable the execution tracer:

$ go test -bench=. -v -trace=trace.out

NOTE We can also download a remote trace file using the /debug/pprof/
trace?debug=0 pprof endpoint.

This command creates a trace.out file that we can open using go tool:

$ go tool trace trace.out
2021/11/26 21:36:03 Parsing trace...
2021/11/26 21:36:31 Splitting trace...
2021/11/26 21:37:00 Opening browser. Trace viewer is listening on

http://127.0.0.1:54518

The web browser opens, and we can click View Trace to see all the traces during a spe-
cific timeframe, as shown in figure 12.39. This figure represents about 150 ms. We can
see multiple helpful metrics, such as the goroutine count and the heap size. The heap
size grows steadily until a GC is triggered. We can also observe the activity of the Go

https://github.com/golang/go/issues/6104
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application per CPU core. The timeframe starts with user-level code; then a “stop the
world” is executed, which occupies the four CPU cores for approximately 40 ms.

Figure 12.39 Showing goroutine activity and runtime events such as a GC phase

Regarding concurrency, we can see that this version uses all the available CPU cores
on the machine. However, figure 12.40 zooms in on a portion of 1 ms. Each bar corre-
sponds to a single goroutine execution. Having too many small bars doesn’t look
right: it means execution that is poorly parallelized.

Figure 12.40 Too many small bars mean poorly parallelized execution.

Figure 12.41 zooms even closer to see how these goroutines are orchestrated. Roughly
50% of the CPU time isn’t spent executing application code. The white spaces repre-
sent the time the Go runtime takes to spin up and orchestrate new goroutines.

Figure 12.41 About 50% of CPU time is spent handling goroutine switches.

Goroutines
activity per core

Goroutines count
Heap size

User execution

Timeframe

GC User execution
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Let’s compare this with the second parallel implementation, which was about an
order of magnitude faster. Figure 12.42 again zooms to a 1 ms timeframe.

Figure 12.42 The number of white spaces has been significantly reduced, proving that the CPU is more fully 
occupied.

Each goroutine takes more time to execute, and the number of white spaces has been
significantly reduced. Hence, the CPU is much more occupied executing application
code than it was in the first version. Each millisecond of CPU time is spent more effi-
ciently, explaining the benchmark differences.

 Note that the granularity of the traces is per goroutine, not per function like CPU
profiling. However, it’s possible to define user-level tasks to get insights per function
or group of functions using the runtime/trace package.

 For example, imagine a function that computes a Fibonacci number and then
writes it to a global variable using atomic. We can define two different tasks:

var v int64
ctx, fibTask := trace.NewTask(context.Background(), "fibonacci")
trace.WithRegion(ctx, "main", func() {

v = fibonacci(10)
})
fibTask.End()
ctx, fibStore := trace.NewTask(ctx, "store")
trace.WithRegion(ctx, "main", func() {

atomic.StoreInt64(&result, v)
})
fibStore.End()

Using go tool, we can get more precise information about how these two tasks perform.
In the previous trace UI (figure 12.42), we can see the boundaries for each task per
goroutine. In User-Defined Tasks, we can follow the duration distribution (see figure
12.43).

 We see that in most cases, the fibonacci task is executed in less than 15 microsec-
onds, whereas the store task takes less than 6309 nanoseconds.

Creates a
fibonacci task

Creates a 
store task
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In the previous section, we discussed the kinds of information we can get from CPU
profiling. What are the main differences compared to the data we can get from user-
level traces?

 CPU profiling:
– Sample-based.

– Per function.
– Doesn’t go below the sampling rate (10 ms by default).

 User-level traces:

– Not sample-based.
– Per-goroutine execution (unless we use the runtime/trace package).
– Time executions aren’t bound by any rate.

In summary, the execution tracer is a powerful tool for understanding how an applica-
tion performs. As we have seen with the merge sort example, we can identify poorly
parallelized execution. However, the tracer’s granularity remains per goroutine unless
we manually use runtime/trace compared to a CPU profile, for example. We can use
both profiling and the execution tracer to get the most out of the standard Go diag-
nostics tools when optimizing an application.

 The next section discusses how the GC works and how to tune it. 

12.9 #99: Not understanding how the GC works
The garbage collector (GC) is a critical piece of the Go language that simplifies the
lives of developers. It allows us to track and free heap allocations that are no longer
needed. Because we can’t replace every heap allocation with a stack allocation, under-
standing how the GC works should be part of the Go developer’s toolset to optimize
applications.

12.9.1 Concepts

A GC keeps a tree of object references. The Go GC is based on the mark-and-sweep
algorithm, which relies on two stages:

 Mark stage—Traverses all the objects of the heap and marks whether they are
still in use

Figure 12.43 Distribution of 
user-level tasks
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 Sweep stage—Traverses the tree of references from the root and deallocates
blocks of objects that are no longer referenced

When a GC runs, it first performs a set of actions that lead to stopping the world (two stop-
the-worlds per GC, to be precise). That is, all the available CPU time is used to perform
the GC, putting our application code on hold. Following these steps, it starts the world
again, resuming our application but also running a concurrent phase. For that reason,
the Go GC is called concurrent mark-and-sweep : it aims to reduce the number of stop-the-
world operations per GC cycle and mostly run concurrently alongside our application.

 The Go GC also includes a way to free memory after consumption peak. Imagine
that our application is based on two phases:

 An init phase that leads to frequent allocations and a large heap
 A runtime phase with moderate allocations and a small heap

How will Go tackle the fact that the large heap is only helpful when the application
starts, not after that? This is handled as part of the GC with a so-called periodic scaven-
ger. After a certain time, the GC detects that such a large heap is no longer necessary,
so it frees some memory and returns it to the OS.

NOTE If the scavenger isn’t quick enough, we can manually force memory to
be returned to the OS using debug.FreeOSMemory().

The important question is, when will a GC cycle run? Compared to other languages
such as Java, the Go configuration remains reasonably simple. It relies on a single
environment variable: GOGC. This variable defines the percentage of the heap growth
since the last GC before triggering another GC; the default value is 100%.

 Let’s look at a concrete example to be sure we understand. Let’s assume a GC just
got triggered and the current heap size is 128 MB. If GOGC=100, the next GC is trig-
gered when the heap size reaches 256 MB. A GC is executed by default every time the
heap size doubles. Also, if a GC hasn’t been executed during the last 2 minutes, Go
will force one to run.

 If we profile our application with production loads, we can fine-tune GOGC:

 Reducing it will cause the heap to grow more slowly, increasing the pressure on
the GC.

 Conversely, bumping it will cause the heap to grow faster, reducing the pressure
on the GC.

GC traces
We can print the GC traces by setting the GODEBUG environment variable, such as
while running a benchmark:

$ GODEBUG=gctrace=1 go test -bench=. -v

Enabling gctrace writes a trace to stderr each time the GC runs.
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Let’s go through some concrete examples to understand how the GC behaves in the
event of a load increase. 

12.9.2 Examples

Let’s imagine that we expose some public services to users. During peak time at 12:00
PM, 1 million users connect. However, it’s a steady increase in connected users. Figure
12.44 represents the average heap size and when a GC will be triggered if we keep
GOGC set to 100.

Because GOGC is set to 100, the GC is triggered every time the heap size doubles. In
these conditions, because the number of users steadily increases, we should face an
acceptable number of GCs throughout the day (figure 12.45).

Heap size

Time of day8 AM

2 GB

Average heap size1 GB

4 PM12 PM

GC

Figure 12.44
Steady increases in 
connected users

GC frequency

Time of day8 AM 4 PM12 PM

Moderate

High

Figure 12.45
GC frequency never 
reaches a state 
greater than moderate.
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We should have a moderate number of GC cycles at the beginning of the day. When
we reach 12:00 PM, when the number of users starts to decrease, the number of GC
cycles should also decrease steadily. In such a scenario, keeping GOGC to 100 should be
fine.

 Now, let’s consider a second scenario where most of the 1 million users connect in
less than an hour; see figure 12.46. At 8:00 AM, the average heap size grows rapidly,
reaching its peak in about an hour.

Figure 12.46 A sudden increase in users

The frequency of the GC cycles is heavily impacted during this hour, as shown in fig-
ure 12.47. Because of the significant and sudden bump of the heap, we face frequent
GC cycles during a short period. Even though the Go GC is concurrent, this situation
will lead to a significant number of stop-the-world periods and can cause impacts such
as increasing the average latency seen by users.

 In this case, we should consider bumping GOGC to a higher value to reduce the
pressure on the GC. Note that increasing GOGC doesn’t lead to linear benefits: the big-
ger the heap, the longer it will take to clean. Hence, using production load, we should
be careful when configuring GOGC.

 In exceptional conditions with a bump that is even more significant, tweaking GOGC
may not be enough. For example, let’s say that instead of going from 0 to 1 million
users in an hour, we do so in a few seconds. During these seconds, the number of GCs
may reach a critical state, causing the application to perform very poorly.

Heap size
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2 GB

Average heap size

GC

1 GB

8 AM 4 PM12 PM
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Figure 12.47 During one hour, we observe a high frequency of GCs.

If we know about the heap peak, we can use a trick that forces a large allocation of
memory to improve the stability of the heap. For example, we can force the allocation
of 1 GB using a global variable in main.go:

var min = make([]byte, 1_000_000_000) // 1 GB

What’s the point of such an allocation? If GOGC is kept at 100, instead of triggering a
GC every time the heap doubles (which, again, happens extremely frequently during
these few seconds), Go will only trigger a GC when the heap reaches 2 GB. This
should reduce the number of GC cycles triggered when all the users connect, reduc-
ing the impact on average latency.

 We could argue that when the heap size decreases, this trick will waste a lot of
memory. But that isn’t the case. On most OSs, allocating this min variable won’t make
our application consume 1 GB of memory. Calling make results in a system call to
mmap(), which leads to a lazy allocation. For example, on Linux, memory is virtually
addressed and mapped through page tables. Using mmap() allocates 1 GB of memory
in the virtual address space, not the physical space. Only a read or a write will cause a
page fault leading to an actual physical memory allocation. So even if the application
starts without any connected clients, it won’t consume 1 GB of physical memory.

NOTE We can validate this behavior using tools such as ps.

It’s essential to understand how the GC behaves in order to optimize it. As Go devel-
opers, we can use GOGC to configure when the next GC cycle is triggered. In most

GC frequency

Time of day
8 AM 4 PM12 PM

Moderate

High

Frequent GC
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cases, keeping it at 100 should be enough. However, if our application may face
request peaks leading to frequent GC and latency impacts, we can increase this value.
Finally, in the event of an exceptional request peak, we can consider using the trick of
keeping the virtual heap size to a minimum.

 The last section of this chapter discusses the impacts of running Go in Docker and
Kubernetes. 

12.10 #100: Not understanding the impacts of running Go in 
Docker and Kubernetes
Writing services with Go is the most common use, according to the 2021 Go developer
survey (https://go.dev/blog/survey2021-results). Meanwhile, Kubernetes is the most
widely used platform to deploy these services. It’s important to understand the impli-
cations of running Go in Docker and Kubernetes, to prevent common situations such
as CPU throttling.

 We mentioned in mistake #56, “Thinking concurrency is always faster,” that the
GOMAXPROCS variable defines the limit of OS threads in charge of executing user-level
code simultaneously. By default, it’s set to the number of OS-apparent logical CPU
cores. What does this mean in the context of Docker and Kubernetes?

 Let’s assume that our Kubernetes cluster is composed of eight-core nodes. When a
container is deployed in Kubernetes, we can define a CPU limit to ensure that an
application won’t consume all the host’s resources. For example, the following config-
uration limits the use of CPU to 4,000 millicpu (or millicores), so four CPU cores:

spec:
containers:
- name: myapp

image: myapp
resources:

limits:
cpu: 4000m

We may assume that when our application is deployed, GOMAXPROCS will be based on
these limits and hence will have a value of 4. But that won’t be the case; it is set to the
number of logical cores on the host: 8. So, what’s the impact?

 Kubernetes uses Completely Fair Scheduler (CFS) as a process scheduler. CFS is
also used to enforce CPU limits for Pod resources. When administrating a Kubernetes
cluster, an administrator can configure these two parameters:

 cpu.cfs_period_us (global setting)
 cpu.cfs_quota_us (setting per Pod)

The former defines a period and the latter a quota. By default, the period is set to 100
ms. Meanwhile, the default quota value is how much CPU time the application can
consume in 100 ms. The limit is set to four cores, which means 400 ms (4 × 100 ms).
Therefore, CFS will ensure that our application never consumes more than 400 ms of
CPU time for 100 ms.

https://go.dev/blog/survey2021-results
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 Let’s imagine a scenario where multiple goroutines are currently being executed
on four different threads. Each thread is scheduled on a different core (1, 3, 4, and
8); see figure 12.48.

During the first period of 100 ms, four threads are busy, so we consume 400 out of 400
ms: 100% of the quota. During the second period, we consume 360 out of 400 ms, and
so on. Everything is fine because the application consumes less than the quota.

 However, let’s remember that GOMAXPROCS is set to 8. Therefore, in the worst-case
scenario, we can have eight threads, each scheduled on a different core (figure 12.49).
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For every 100 ms, the quota is set to 400 ms. If the eight threads are busy executing
goroutines, after 50 ms, we reach the quota of 400 ms (8 × 50 ms = 400 ms). What will
be the consequence? CFS will throttle the CPU resource. Hence, no more CPU
resources will be allocated until the start of another period. In other words, our appli-
cation will be on hold for 50 ms.

 For example, a service with an average latency of 50 ms can take up to 150 ms to
complete. This is a possible 300% penalty on the latency.

 So, what’s the solution? First, keep an eye on Go issue 33803 (https://github.com/
golang/go/issues/33803). Perhaps in a future version of Go, GOMAXPROCS will be
CFS-aware.

 A solution for today is to rely on a library made by Uber called automaxprocs
(github.com/uber-go/automaxprocs). We can use this library by adding a blank
import to go.uber.org/automaxprocs in main.go; it will automatically set GOMAX-
PROCS to match the Linux container CPU quota. In the previous example, GOMAXPROCS
would be set to 4 instead of 8, so we wouldn’t be able to reach a state where the CPU is
throttled.

 In summary, let’s remember that currently, Go isn’t CFS-aware. GOMAXPROCS is based
on the host machine rather than on the defined CPU limits. Consequently, we can
reach a state where the CPU is throttled, leading to long pauses and substantial effects
such as a significant latency increase. Until Go becomes CFS-aware, one solution is to
rely on automaxprocs to automatically set GOMAXPROCS to the defined quota. 

Summary
 Understanding how to use CPU caches is important for optimizing CPU-bound

applications because the L1 cache is about 50 to 100 times faster than the main
memory.

 Being conscious of the cache line concept is critical to understanding how to
organize data in data-intensive applications. A CPU doesn’t fetch memory word
by word; instead, it usually copies a memory block to a 64-byte cache line. To get
the most out of each individual cache line, enforce spatial locality.

 Making code predictable for the CPU can also be an efficient way to optimize
certain functions. For example, a unit or constant stride is predictable for the
CPU, but a non-unit stride (for example, a linked list) isn’t predictable.

 To avoid a critical stride, hence utilizing only a tiny portion of the cache, be
aware that caches are partitioned.

 Knowing that lower levels of CPU caches aren’t shared across all the cores helps
avoid performance-degrading patterns such as false sharing while writing con-
currency code. Sharing memory is an illusion.

 Use instruction-level parallelism (ILP) to optimize specific parts of your code to
allow a CPU to execute as many parallel instructions as possible. Identifying
data hazards is one of the main steps.

 You can avoid common mistakes by remembering that in Go, basic types are
aligned with their own size. For example, keep in mind that reorganizing the

https://github.com/golang/go/issues/33803
https://github.com/golang/go/issues/33803
http://github.com/uber-go/automaxprocs
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fields of a struct by size in descending order can lead to more compact structs
(less memory allocation and potentially a better spatial locality).

 Understanding the fundamental differences between heap and stack should
also be part of your core knowledge when optimizing a Go application. Stack
allocations are almost free, whereas heap allocations are slower and rely on the
GC to clean the memory.

 Reducing allocations is also an essential aspect of optimizing a Go application.
This can be done in different ways, such as designing the API carefully to pre-
vent sharing up, understanding the common Go compiler optimizations, and
using sync.Pool.

 Use the fast-path inlining technique to efficiently reduce the amortized time to
call a function.

 Rely on profiling and the execution tracer to understand how an application
performs and the parts to optimize.

 Understanding how to tune the GC can lead to multiple benefits such as han-
dling sudden load increases more efficiently.

 To help avoid CPU throttling when deployed in Docker and Kubernetes, keep
in mind that Go isn’t CFS-aware.

Final words
Congratulations for reaching the end of 100 Go Mistakes and How to Avoid Them. I gen-
uinely hope that you enjoyed reading this book and that it will help you with your per-
sonal and/or professional projects.

 Remember that making mistakes is part of the learning process, and as I high-
lighted in the preface, it was also a significant source of inspiration for this book. What
matters, in the end, is our capacity to learn from them.

 If you want to continue the discussion, you can follow me on Twitter: @teivah.
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