

Building RESTful Web Services
with Go

Learn how to build powerful RESTful APIs with Golang that
scale gracefully

Naren Yellavula

BIRMINGHAM - MUMBAI

Building RESTful Web Services with Go
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2017

Production reference: 1261217

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-428-7

www.packtpub.com

http://www.packtpub.com

Credits

Author
Naren Yellavula

Copy Editors
Dhanya Baburaj
Safis Editing

Reviewer
Anshul Joshi

Project Coordinator
Sheejal Shah

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Denim Pinto

Indexer
Rekha Nair

Content Development Editor
Sreeja Nair

Graphics
Jason Monteiro

Technical Editor
Rutuja Vaze

Production Coordinator
Nilesh Mohite

About the Author
Naren Yellavula—fondly called by the developer community as Naren Arya—started his
programming career in the funniest way. He ditched mechanical engineering for computer
science after watching The Matrix for the first time. With dreams of coding a mini world, he
continuously sharpened his practical skills. Initially, he built few a mobile applications.
Then, he completely moved into the space of full stack development. He always believed
that computers and software can help make this world a better place. He wrote 120+
development articles on various open source technologies, including Go and Python. He is
also one of the few young speakers at the PyCon India conference (he spoke at Bangalore in
2015 and Delhi in 2017). With detailed knowledge of web scraping and REST APIs, he dived
into multiple domains such as cloud telephony and cloud-based web services. On this
journey, he bathed in a lot of design decisions. He currently works as a software engineer
for Citrix R&D, India. Naren is a great fan of Go personally because of the speed and
intuitiveness of the language. In his spare time, he tries to educate the youth in
programming and software development. He loves reading nonfiction most of the time, and
Victorian and Russian fiction sometimes.

Acknowledgments
I would like to thank my grandmother, Tayamma, for raising me to be helpful to others by
sharing my knowledge in every possible way. She was the one who always taught me how
to put in serious effort with 100% dedication, and not worry much about results.
Therefore, I dedicate this book to her, to my inspiration.

I also cannot understate the support given by my father, Venkataiah Yellavula; mother,
ShobaRani Dasyam; and lovely younger brother Saikiran, who understood the value of the
time I spent on this book and always encouraged me with their positive wishes. I am
grateful to my mentor, Chandrashekar MuniBudha, Solutions Architect, Amazon Web
Services, whom I am deeply indebted to. I also thank Ashwin Baskaran, Senior Director,
Citrix, who encouraged and pushed me forward in all possible ways. Thank you!

I cannot name everyone here; the list is so big. However, I sincerely thank all my friends
who always wished success for this book.

About the Reviewer
Anshul Joshi is a data scientist with experience in recommendation systems, predictive
modeling, neural networks, and high-performance computing. His research interests
encompass deep learning, artificial intelligence, and computational physics. Most of the
time, he can be found exploring GitHub or trying anything new he can get his hands on.
His blog can be found at https:/ ​/​anshuljoshi. ​com/​.

https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/
https://anshuljoshi.com/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1788294289.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289
https://www.amazon.com/dp/1788294289

Table of Contents
Preface 1

Chapter 1: Getting Started with REST API Development 7

Types of web services 8
REST API 9

Characteristics of REST services 10
REST verbs and status codes 11

GET 13
POST, PUT, and PATCH 14
DELETE and OPTIONS 15
Cross-Origin Resource Sharing (CORS) 16
Types of status codes 17

2xx family (successful) 18
3xx family (redirection) 18
4xx family (client error) 18
5xx family (server error) 19

Rise of REST API with Single Page Applications 19
Old and new ways of data flow in SPA 20
Why Go for REST API development? 22

Setting up the project and running the development server 22
Demystifying GOPATH 23

Building our first service – finding the Roman numeral 25
Breaking down the code 29
Live reloading the application with supervisord and Gulp 30

Monitoring your Go web server with supervisord 30
Installing supervisord 30

Using Gulp for creating auto code compiling and server reloading 32
Understanding the gulpfile 34

Summary 35

Chapter 2: Handling Routing for Our REST Services 36

Getting the code 37
Understanding Go's net/http package 37

Running the code 38
ServeMux, a basic router in Go 38

Running the code 40
Adding multiple handlers using ServeMux 40

Table of Contents

[ii]

Running the code 41
Introducing httprouter, a lightweight HTTP router 42

Installation 42
Program explanation 44

Building the simple static file server in minutes 46
Introducing Gorilla Mux, a powerful HTTP router 47

Installation 48
Fundamentals of Gorilla Mux 48
Reverse mapping URL 50

Custom paths 50
Path Prefix 51
Strict Slash 51
Encoded paths 52

Query-based matching 52
Host-based matching 53

SQL injections in URLs and ways to avoid them 55
Creating a basic API layout for URL shortening services 56
Summary 57

Chapter 3: Working with Middleware and RPC 58

Getting the code 58
What is middleware? 59

Creating a basic middleware 60
Multiple middleware and chaining 63
Painless middleware chaining with Alice 69
Using Gorilla's Handlers middleware for Logging 70
What is RPC? 72

Creating an RPC server 73
Creating an RPC client 74

JSON RPC using Gorilla RPC 76
Summary 79

Chapter 4: Simplifying RESTful Services with Popular Go Frameworks 80

Getting the code 80
go-restful, a framework for REST API creation 81
CRUD operations and SQLite3 basics 83
Building a Metro Rail API with go-restful 85

Design specification 86
Creating database models 86

Building RESTful APIs with the Gin framework 96
Building a RESTful API with Revel.go 102

Table of Contents

[iii]

Summary 107

Chapter 5: Working with MongoDB and Go to Create REST APIs 109

Getting the code 109
Introduction to MongoDB 110
Installing MongoDB and using the shell 110

Working with the Mongo shell 112
Introducing mgo, a MongoDB driver for Go 117
RESTful API with Gorilla Mux and MongoDB 120
Boosting the querying performance with indexing 125
Designing an e-commerce data document model 128
Summary 131

Chapter 6: Working with Protocol Buffers and GRPC 132

Getting the code 132
Introduction to protocol buffers 133
Protocol buffer language 134

Scalar values 135
Enumerations and repeated fields 136

Compiling a protocol buffer with protoc 138
Introduction to GRPC 144
Bidirectional streaming with GRPC 151
Summary 156

Chapter 7: Working with PostgreSQL, JSON, and Go 158

Getting the code 158
Installing the PostgreSQL database 159

Adding users and databases in PostgreSQL 160
pq, a pure PostgreSQL database driver for Go 162
Implementing a URL shortening service using Postgres and pq 165

Defining the Base62 algorithm 165
Exploring the JSON store in PostgreSQL 172

GORM, a powerful ORM for Go 172
Implementing the e-commerce REST API 174

Summary 180

Chapter 8: Building a REST API Client in Go and Unit Testing 181

Getting the code 182
Plan for building a REST API client 182
Basics for writing a command-line tool in Go 182

CLI – a library for building beautiful clients 186

Table of Contents

[iv]

Collecting command-line arguments in CLI 188
grequests – a REST API package for Go 191

API overview of grequests 192
Getting comfortable with the GitHub REST API 193
Creating a CLI tool as an API client for the GitHub REST API 196
Using Redis for caching the API data 201
Creating a unit testing tool for our URL shortening service 203
Summary 204

Chapter 9: Scaling Our REST API Using Microservices 205

Getting the code 206
What are microservices? 206
Monolith versus microservices 208
Go Kit, a package for building microservices 209

Building a REST microservice with Go Kit 212
Adding logging to your microservice 219
Adding instrumentation to your microservice 222

Summary 228

Chapter 10: Deploying Our REST services 229

Getting the code 229
Installing and configuring Nginx 230

What is a proxy server? 231
Important Nginx paths 233
Using server blocks 234
Creating a sample Go application and proxying it 234
Load balancing with Nginx 238
Rate limiting our REST API 240
Securing our Nginx proxy server 242

Monitoring our Go API server with Supervisord 243
Installing Supervisord 243

Summary 245

Chapter 11: Using an API Gateway to Monitor and Metricize REST API 247

Getting the code 248
Why is an API gateway required? 248
Kong, an open-source API gateway 250

Introducing Docker 251
Installing a Kong database and Kong 252

Adding API to Kong 255
API logging in Kong 258

Table of Contents

[v]

API authentication in Kong 260
API rate limiting in Kong 263
Kong CLI 265
Other API gateways 266
Summary 266

Chapter 12: Handling Authentication for Our REST Services 267

Getting the code 267
How authentication works 268

Session-based authentication 269
Introducing Postman, a tool for testing REST API 273
Persisting client sessions with Redis 275
Introduction to JSON Web Tokens (JWT) and OAuth2 279

JSON web token format 281
Reserved claims 282
Private claims 282

Creating a JWT in Go 283
Reading a JWT in Go 284

OAuth 2 architecture and basics 285
Authentication versus authorization 285

Summary 292

Index 293

Preface
Initially, SOAP-based web services became more popular with XML. Then, since 2012,
REST picked up the pace and gulped SOAP in whole. The rise of a new generation of web
languages, such as Python, JavaScript (Node.js), and Go, showed a different approach to
web development compared to the traditional ones, such as ASP.NET and Spring. Since this
decade, Go has become more and more popular due to its speed and intuitiveness. Less
verbose code, strict type checking, and support for concurrency make Go a better choice for
writing any web backend. Some of the best tools, such as Docker and Kubernetes, are
written in Go. Google uses Go a lot in its daily activities. You can see a list of Go-using
companies at https:/ ​/​github. ​com/ ​golang/ ​go/ ​wiki/ ​GoUsers.

For any internet company, the web development department is crucial. Data that the
company accumulates needs to be served to the clients in form of an API or web service.
Various clients (browser, mobile application, and server) consume API every day. REST is
an architectural pattern that defines resource consumption in the form of methods.

Go is a better language to write web servers. It is the responsibility of an intermediate Go
developer to know how to create RESTful services using the constructs available in the
language. Once the basics are understood, the developer should learn other things, such as
testing, optimizing, and deploying services. This book is an attempt to make the reader
comfortable with developing web services.

Experts think that in the near future, as Python is moving into the Data Science space and
competing with R, Go can emerge as the single go-to language in the web
development space by competing with NodeJS. This book is not a cookbook. However, it
offers many tips and tricks throughout your journey. By the end of the book, the reader will
be comfortable with REST API development through a multitude of examples. They will
also come to know about the latest practices, such as protocol buffers/gRPC/API Gateway,
which will move their knowledge to the next level.

What this book covers
Chapter 1, Getting Started with REST API Development, discusses the fundamentals of REST
architecture and verbs.

Chapter 2, Handling Routing for Our REST Services, describes how to add routing to our
API.

https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers
https://github.com/golang/go/wiki/GoUsers

Preface

[2]

Chapter 3, Working with Middleware and RPC, is about working with middleware handlers
and basic RPC.

Chapter 4, Simplifying RESTful Services with Popular Go Frameworks, presents quick
prototyping API with frameworks.

Chapter 5, Working with MongoDB and Go to Create REST API, explains how to use
MongoDB as the database for our API.

Chapter 6, Working with Protocol Buffers and gRPC, shows how to use Protocol buffers and
gRPC to obtain performance boost over HTTP/JSON.

Chapter 7, Working with PostgreSQL, JSON, and Go, explains the benefits of PostgreSQL and
a JSON store for creating APIs.

Chapter 8, Building a REST API Client in Go and Unit Testing, presents techniques for
building client software and API testing with unit tests in Go.

Chapter 9, Scaling Our REST API Using Microservices, is about breaking our API service into
microservices using Go Kit.

Chapter 10, Deploying Our REST Services, shows how we can deploy services built on Nginx
and monitor them using supervisord.

Chapter 11, Using an API Gateway to Monitor and Metricize REST API, explains how to make
our services production grade by adding multiple APIs behind API Gateway.

Chapter 12, Handling Authentication for Our REST Services, discusses securing our API with
basic authentication and JSON Web Tokens (JWT).

What you need for this book
For this book, you need a laptop/PC with Linux (Ubuntu 16.04), macOS X, or Windows
installed. We will use Go 1.8+ as the version of our compiler and install many third-party
packages, so a working internet connection is required.

We will also use Docker in the final chapters to explain concepts of API Gateway. Docker
V17.0+ is recommended. If Windows users have problems with the native Go installation
for any examples, use Docker for Windows and run Ubuntu container, which gives more
flexibility; refer to https:/ ​/ ​www. ​docker. ​com/​docker- ​windows for more details.

https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows

Preface

[3]

Before diving into the book, refresh your language basics at https:/ ​/​tour. ​golang. ​org/
welcome/​1.

Even though these are the basic requirements, we will guide you through the installations
wherever required.

Who this book is for
This book is for all the Go developers who are comfortable with the language and seeking
to learn REST API development. Even senior engineers can enjoy this book, as it has many
cutting-edge concepts, such as microservices, protocol buffers, and gRPC.

Developers who are already familiar with REST concepts and stepping into the Go world
from other platforms, such as Python and Ruby, can also benefit a lot.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Name
the preceding program as basicHandler.go."

A block of code is set as follows:

{
 "ID": 1,
 "DriverName": "Menaka",
 "OperatingStatus": true
 }

Any command-line input or output is written as follows:

go run customMux.go

https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1
https://tour.golang.org/welcome/1

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "It returns message
saying Logged In successfully."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ ​/​www.
packtpub.​com. If you purchased this book elsewhere, you can visit http:/ ​/​www. ​packtpub.
com/​support and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Building-RESTful-Web-Services-with-Go. We
also have other code bundles from our rich catalog of books and videos available at https:/
/​github.​com/​PacktPublishing/ ​. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​BuildingRESTfulWebServiceswithGo_ ​ColorImages. ​pdf.

https://github.com/PacktPublishing/Building-RESTful-Web-Services-with-Go
https://github.com/PacktPublishing/Building-RESTful-Web-Services-with-Go
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/BuildingRESTfulWebServiceswithGo_ColorImages.pdf

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/ ​books/
content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Getting Started with REST API

Development
A web service is a communication mechanism defined between different computer systems.
Without web services, custom peer-to-peer communication becomes cumbersome and
platform specific. It is like a hundred different kinds of things that the web needs to
understand and interpret. If computer systems align with the protocols that the web can
understand easily, it is a great help.

A web service is a software system designed to support interoperable machine-to-machine
interaction over a network, World Wide Web Consortium (W3C), https:/ ​/​www. ​w3.​org/
TR/​ws-​arch/​.

Now, in simple words, a web service is a road between two endpoints where messages are
transferred smoothly. Here, this transfer is usually one way. Two individual programmable
entities can also communicate with each other through their own APIs. Two people
communicate through language. Two applications communicate through the Application
Programming Interface (API).

The reader might be wondering; what is the importance of the API in the current digital
world? The rise of the Internet of Things (IoT) made API usage heavier than before.
Consciousness about the API is growing day by day, and there are hundreds of APIs that
are being developed and documented all over the world every day. Notable major
businesses are seeing futures in the API as a Service (AAAS). A bright example is Amazon
Web Services (AWS). It is a huge success in the cloud world. Developers write their own
applications using the REST API provided by the AWS.

https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/
https://www.w3.org/TR/ws-arch/

Getting Started with REST API Development Chapter 1

[8]

A few more hidden use cases are from travel sites like Ibibo and Expedia, which fetch real-
time prices by calling the APIs of third-party gateways and data vendors. Web services are
often charged these days.

Topics to be covered in this chapter are:

The different Web Services available
Representational State Transfer (REST) architecture in detail
Introduction to Single Page Applications (SPA) with REST
Setting up a Go project and running a development server
Building our first service for finding Roman numerals
Using Gulp to auto-compile Go code

Types of web services
There are many types of web services which have evolved over time. Prominent ones are :

SOAP
UDDI
WSDL
REST

Out of these, SOAP became popular in the early 2000s, when XML was on the top wave.
The XML data format is used by various distributed systems to communicate with each
other. SOAP is too complex to implement. Criticizers of SOAP point out how bulky the
SOAP HTTP request is.

A SOAP request usually consists of these three basic components:

Envelope
Header
Body

Getting Started with REST API Development Chapter 1

[9]

Just to perform an HTTP request and response cycle, we have to attach a lot of additional
data in SOAP. A sample SOAP request looks like this:

POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This is a standard example of SOAP from the W3C standard (https:/ ​/​www. ​w3. ​org/ ​TR/
2000/​NOTE-​SOAP-​20000508/ ​). If we observe carefully, it is in XML format, with special tags
specifying the envelope and body. Since XML operates on a lot of namespaces to function,
additional information comes into play.

REST API
The name Representational state transfer (REST) was coined by Roy Fielding from the
University of California. It is a very simplified and lightweight web service compared to
SOAP. Performance, scalability, simplicity, portability, and modifiability are the main
principles behind the REST design.

The REST API allows different systems to communicate and send/receive data in a very
simple way. Each and every REST API call has a relation between an HTTP verb and the
URL. The resources in the database in an application can be mapped with an API endpoint
in the REST.

When you are using a mobile app on your phone, your phone might be secretly talking to
many cloud services to retrieve, update, or delete your data. REST services have a huge
impact on our daily lives.

REST is a stateless, cacheable, and simple architecture that is not a protocol but a pattern.

https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Getting Started with REST API Development Chapter 1

[10]

Characteristics of REST services
These are the main properties that make REST simple and unique compared to its
predecessors:

Client-server based architecture: This architecture is most essential for the
modern web to communicate over HTTP. A single client-server may look naive
initially, but many hybrid architectures are evolving. We will discuss more of
these shortly.
Stateless: This is the most important characteristic of a REST service. A REST
HTTP request consists of all the data needed by the server to understand and
give back the response. Once a request is served, the server doesn't remember if
the request has arrived after a while. So the operation will be a stateless one.
Cacheable: Many developers think a technology stack is blocking their web
application or API. But in reality, their architecture is the reason. The database
can be a potential tuning piece in a web application. In order to scale an
application well, we need to cache content and deliver it as a response. If the
cache is not valid, it is our responsibility to bust it. REST services should be
properly cached for scaling.
Scripts on demand: Have you ever designed a REST service which serves the
JavaScript files and you execute them on the fly? This code on demand is also the
main characteristic REST can provide. It is more common to request scripts and
data from the server.
Multiple layered system: The REST API can be served from multiple servers.
One server can request the other, and so forth. So when a request comes from the
client, request and response can be passed between many servers to finally
supply a response back to the client. This easily implementable multi-layered
system is always a good strategy for keeping the web application loosely
coupled.
Representation of resources: The REST API provides the uniform interface to
talk to. It uses a Uniform Resource Identifier (URI) to map the resources (data).
It also has the advantage of requesting a specific data format as the response. The
Internet Media Type (MIME type) can tell the server that the requested resource
is of that particular type.

Getting Started with REST API Development Chapter 1

[11]

Implementational freedom: REST is just a mechanism to define your web
services. It is an architectural style that can be implemented in multiple ways.
Because of this flexibility, you can create REST services in the way you wish to.
Until it follows the principles of REST, your server has the freedom to choose the
platform or technology.

 Thoughtful caching is essential for the REST services to scale.

REST verbs and status codes
REST verbs specify an action to be performed on a specific resource or a collection of
resources. When a request is made by the client, it should send this information in the
HTTP request:

REST verb
Header information
Body (optional)

As we mentioned previously, REST uses the URI to decode its resource to be
handled. There are quite a few REST verbs available, but six of them are used frequently.
They are as follows:

GET

POST

PUT

PATCH

DELETE

OPTIONS

Getting Started with REST API Development Chapter 1

[12]

If you are a software developer, you will be dealing with these six most of the time. The
following table explains the operation, target resource, and what happens if the request
succeeds or fails:

REST Verb Action Success Failure

GET Fetches a record or set of resources from the server 200 404

OPTIONS Fetches all available REST operations 200 -

POST Creates a new set of resources or a resource 201 404, 409

PUT Updates or replaces the given record 200, 204 404

PATCH Modifies the given record 200, 204 404

DELETE Deletes the given resource 200 404

The numbers in the Success and Failure columns of the preceding table are HTTP status
codes. Whenever a client initiates a REST operation, since REST is stateless, the client
should know a way to find out whether the operation was successful or not. For that reason,
HTTP has status codes for the response. REST defines the preceding status code types for a
given operation. This means a REST API should strictly follow the preceding rules to
achieve client-server communication.

All defined REST services have the following format. It consists of the host and API
endpoint. The API endpoint is the URL path which is predefined by the server. Every REST
request should hit that path.

A trivial REST API URI: http://HostName/API
endpoint/Query(optional)

Let us look at all the verbs in more detail. The REST API design starts with the defining of
operations and API endpoints. Before implementing the API, the design document should
list all the endpoints for the given resources. In the following section, we carefully observe
the REST API endpoints using PayPal's REST API as a use case.

Getting Started with REST API Development Chapter 1

[13]

GET
A GET method fetches the given resource from the server. To specify a resource, GET uses a
few types of URI queries:

Query parameters
Path-based parameters

In case you didn't know, all of your browsing of the web is done by performing a GET
request to the server. For example, if you type www.google.com, you are actually making a
GET request to fetch the search page. Here, your browser is the client and Google's web
server is the backend implementer of web services. A successful GET operation returns a 200
status code.

Examples of path parameters:

Everyone knows PayPal. PayPal creates billing agreements with companies. If you register
with PayPal for a payment system, they provide you with a REST API for all your billing
needs. The sample GET request for getting the information of a billing agreement looks like
this: /v1/payments/billing-agreements/agreement_id.

Here, the resource query is with the path parameter. When the server sees this line, it
interprets it as I got an HTTP request with a need for agreement_id from the billing agreements.
Then it searches through the database, goes to the billing-agreements table, and finds
an agreement with the given agreement_id. If that resource exists it sends the details to
copy back in response (200 OK). Or else it sends a response saying resource not found (404).

Using GET, you can also query a list of resources, instead of a single one like the preceding
example. PayPal's API for getting billing transactions related to an agreement can be
fetched with /v1/payments/billing-agreements/transactions. This line fetches all
transactions that occurred on that billing agreement. In both, the case's data is retrieved in
the form of a JSON response. The response format should be designed beforehand so that
the client can consume it in the agreement.

http://www.google.com

Getting Started with REST API Development Chapter 1

[14]

Examples of query parameters are as follows:

Query parameters are intended to add detailed information to identify a resource
from the server. For example, take this sample fictitious API. Let us assume this
API is created for fetching, creating, and updating the details of the book. A
query parameter based GET request will be in this format:

 /v1/books/?category=fiction&publish_date=2017

The preceding URI has few query parameters. The URI is requesting a book from
the book's resource that satisfies the following conditions:

It should be a fiction book
The book should have been published in the year 2017

Get all the fiction books that are released in the year 2017 is the question the
client is posing to the server.

Path vs Query parameters—When to use them? It is a common rule of thumb that Query
parameters are used to fetch multiple resources based on the query parameters. If a client
needs a single resource with exact URI information, it can use Path parameters to specify
the resource. For example, a user dashboard can be requested with Path parameters and
fetch data on filtering can be modeled with Query parameters.

Use Path parameters for a single resource and Query parameters for
multiple resources in a GET request.

POST, PUT, and PATCH
The POST method is used to create a resource on the server. In the previous book's API, this
operation creates a new book with the given details. A successful POST operation returns a
201 status code. The POST request can update multiple resources: /v1/books.

The POST request has a body like this:

{"name" : "Lord of the rings", "year": 1954, "author" : "J. R. R. Tolkien"}

Getting Started with REST API Development Chapter 1

[15]

This actually creates a new book in the database. An ID is assigned to this record so that
when we GET the resource, the URL is created. So POST should be done only once, in the
beginning. In fact, Lord of the Rings was published in 1955. So we entered the published date
incorrectly. In order to update the resource, let us use the PUT request.

The PUT method is similar to POST. It is used to replace the resource that already exists. The
main difference is that PUT is idempotent. A POST call creates two instances with the same
data. But PUT updates a single resource that already exists:

/v1/books/1256

with body that is JSON like this:

{"name" : "Lord of the rings", "year": 1955, "author" : "J. R. R. Tolkien"}

1256 is the ID of the book. It updates the preceding book by year:1955. Did you observe
the drawback of PUT? It actually replaced the entire old record with the new one. We
needed to change a single column. But PUT replaced the whole record. That is bad. For this
reason, the PATCH request was introduced.

The PATCH method is similar to PUT, except it won't replace the whole record. PATCH, as the
name suggests, patches the column that is being modified. Let us update the book 1256
with a new column called ISBN:

/v1/books/1256

with the JSON body like this:

{"isbn" : "0618640150"}

It tells the server, Search for the book with id 1256. Then add/modify this column with the given
value.

 PUT and PATCH both return the 200 status for success and 404 for not
found.

DELETE and OPTIONS
The DELETE API method is used to delete a resource from the database. It is similar to PUT
but without any body. It just needs an ID of the resource to be deleted. Once a resource gets
deleted, subsequent GET requests return a 404 not found status.

Getting Started with REST API Development Chapter 1

[16]

Responses to this method are not cacheable (in case caching is
implemented) because the DELETE method is idempotent.

The OPTIONS API method is the most underrated in the API development. Given the
resource, this method tries to know all possible methods (GET, POST, and so on) defined on
the server. It is like looking at the menu card at a restaurant and then ordering an item
which is available (whereas if you randomly order a dish, the waiter will tell you it is not
available). It is best practice to implement the OPTIONS method on the server. From the
client, make sure OPTIONS is called first, and if the method is available, then proceed with
it.

Cross-Origin Resource Sharing (CORS)
The most important application of this OPTIONS method is Cross-Origin Resource
Sharing (CORS). Initially, browser security prevented the client from making cross-origin
requests. It means a site loaded with the URL www.foo.com can only make API calls to that
host. If the client code needs to request files or data from www.bar.com, then the second
server, bar.com, should have a mechanism to recognize foo.com to get its resources.

This process explains the CORS:

foo.com requests the OPTIONS method on bar.com.1.
bar.com sends a header like Access-Control-Allow-Origin:2.
http://foo.com in response to the client.
Next, foo.com can access the resources on bar.com without any restrictions that3.
call any REST method.

If bar.com feels like supplying resources to any host after one initial request, it can set
Access control to * (that is, any).

http://www.foo.com
http://www.bar.com
https://bar.com/
http://foo.com
http://foo.com
http://bar.com
http://bar.com
http://foo.com
https://bar.com/
http://bar.com

Getting Started with REST API Development Chapter 1

[17]

The following is the diagram depicting the process happening one after the other:

Types of status codes
There are a few families of status codes. Each family globally explains an operation status.
Each member of that family may have a deeper meeting. So a REST API should strictly tell
the client what exactly happened after the operation. There are 60+ status codes available.
But for REST, we concentrate on a few families of codes.

Getting Started with REST API Development Chapter 1

[18]

2xx family (successful)
200 and 201 fall under the success family. They indicate that an operation was successful.
Plain 200 (Operation Successful) is a successful CRUD Operation:

200 (Successful Operation) is the most common type of response status code in
REST
201 (Successfully Created) is returned when a POST operation successfully
creates a resource on the server
204 (No content) is issued when a client needs a status but not any data back

3xx family (redirection)
These status codes are used to convey redirection messages. The most important ones are
301 and 304:

301 is issued when a resource is moved permanently to a new URL endpoint. It is
essential when an old API is deprecated. It returns the new endpoint in the
response with the 301 status. By seeing that, the client should use the new URL in
response to achieving its target.
The 304 status code indicates that content is cached and no modification
happened for the resource on the server. This helps in caching content at the
client and only requests data when the cache is modified.

4xx family (client error)
These are the standard error status codes which the client needs to interpret and handle
further actions. These have nothing to do with the server. A wrong request format or ill-
formed REST method can cause these errors. Of these, the most frequent status codes API
developers use are 400, 401, 403, 404, and 405:

400 (Bad Request) is returned when the server cannot understand the client
request.
401 (Unauthorized) is returned when the client is not sending the authorization
information in the header.
403 (Forbidden) is returned when the client has no access to a certain type of
resources.

Getting Started with REST API Development Chapter 1

[19]

404 (Not Found) is returned when the client request is on a resource that is
nonexisting.
405 (Method Not Allowed) is returned if the server bans a few methods on
resources. GET and HEAD are exceptions.

5xx family (server error)
These are the errors from the server. The client request may be perfect, but due to a bug in
the server code, these errors can arise. The commonly used status codes are 500, 501, 502,
503, and 504:

500 (Internal Server Error) status code gives the development error which is
caused by some buggy code or some unexpected condition
501 (Not Implemented) is returned when the server is no longer supporting the
method on a resource
502 (Bad Gateway) is returned when the server itself got an error response from
another service vendor
503 (Service Unavailable) is returned when the server is down due to multiple
reasons, like a heavy load or for maintenance
504 (Gateway Timeout) is returned when the server is waiting a long time for a
response from another vendor and is taking too much time to serve the client

For more details on status codes, visit this link: https:/ ​/​developer. ​mozilla. ​org/​en- ​US/
docs/​Web/​HTTP/​Status

Rise of REST API with Single Page
Applications
You need to understand why Single Page Applications (SPA) are the hot topic today.
Instead of building the UI in a traditional way (request web pages), these SPA designs make
developers write code in a totally different way. There are many MVC frameworks, like
AngularJS, Angular2, React JS, Knockout JS, Aurelia, and so on, to develop web UIs rapidly,
but the essence of each of them is pretty simple. All MVC frameworks help us to implement
one design pattern. That design pattern is No requesting of web pages, only REST API.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Getting Started with REST API Development Chapter 1

[20]

The modern web frontend development has advanced a lot since 2010. In order to exploit
the features of Model-View-Controller (MVC) architecture, we need to consider the
frontend as a separate entity which talks to the backend only using the REST API (most
preferably, REST JSON).

Old and new ways of data flow in SPA
All websites go through the following steps:

Request a web page from the server.1.
Authenticate and show the Dashboard UI.2.
Allow the user to modify and save.3.
Request as many web pages from the server as needed to show individual pages4.
on the site.

But in the SPA, the flow is quite different:

Request the HTML template/s to the browser in one single go.1.
Then, query the JSON REST API to fill a model (data object).2.
Adjust the UI according to the data in the model (JSON).3.
When users modify the UI, the model (data object) should change automatically.4.
For example, in AngularJS, it is possible with two-way data binding. Finally,
make REST API calls to notify the server about changes whenever you want.

In this way, communication happens only in the form of the REST API. The client takes care
of logically representing the data. This causes systems to move from Response Oriented
Architecture (ROA) to Service Oriented Architecture (SOA). Take a look at the following
diagram:

Getting Started with REST API Development Chapter 1

[21]

SPA reduces the bandwidth and improves the site performance.

Getting Started with REST API Development Chapter 1

[22]

Why Go for REST API development?
REST services are trivial in the modern web. SOA (which we discuss in more detail later)
created an activity space for REST services to take web development to the next level. Go is
a programming language from the house of Google for solving the bigger problems they
have. It has been eight-plus years since its first appearance. It matured along the way with a
developer community jumping in and creating huge scale systems in it.

Go is the darling of the web. It solves bigger problems in an easy way.

One can choose Python or JavaScript (Node) for their REST API development. The main
advantage of Go lies in its speed and compile-time error detection. Go is proved to be faster
than dynamic programming languages in terms of computational performance by various
benchmarks. These are the three reasons why a company should write their next API in Go:

To scale your API for a wider audience
To enable your developers to build robust systems
To invest in the future viability of your projects

You can look at the neverending online debates for more information about REST services
with Go. In later chapters, we try to build the fundamentals of designing and writing the
REST services.

Setting up the project and running the
development server
This is a building series book. It assumes you already know the basics of Go. If not, no
worries. You can jump start and learn them quickly from Go's official site at https:/ ​/
golang.​org/​. Go uses a different way of developing projects. Writing a standalone, simple
program doesn't bother you much. But after learning the basics, people try to advance a
step further. For that reason, as a Go developer, you should know how Go projects are laid
out and the best practices to keep your code clean.

https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/
https://golang.org/

Getting Started with REST API Development Chapter 1

[23]

Make sure you have done the following things before proceeding:

Install Go compiler on your machine
Set GOROOT and GOPATH environment variables

There are many online references from which you can get to know the preceding details.
Depending on your machine type (Windows, Linux, or macOS X), set up a working Go
compiler. We see more details about GOPATH in the following section.

Demystifying GOPATH
GOPATH is nothing but the current appointed workspace on your machine. It is an
environment variable that tells the Go compiler about where your source code, binaries,
and packages are placed.

The programmers coming from a Python background may know the Virtualenv tool to
create multiple projects (with different Python interpreter versions) at the same time. But at
a given time, one activates the environment and develops his project. Similarly, you can
have any number of Go projects on your machine. While developing, set the GOPATH to one
of your projects. The Go compiler now activates that project.

It is a common practice to create a project under the home directory and set the GOPATH
environment variable like this:

>mkdir /home/naren/myproject
export GOPATH=/home/naren/myproject

Now we install external packages like this:

go get -u -v github.com/gorilla/mux

 Go copies the project called mux into the currently activated project myproject.

For Go get, use the -u flag to install updated dependencies of the external
package and -v to see the verbose details of installation.

Getting Started with REST API Development Chapter 1

[24]

A typical Go project has the following structure, as mentioned on the official Go website:

Let us understand this structure before digging further:

bin: Stores the binary of our project; a shippable binary which can be run directly
pkg: Contains the package objects; a compiled program which supplies package
methods
src: The place for your project source code, tests, and user packages

In Go, all the packages which you import into your main program have an identical
structure, github.com/user/project. But who creates all these directories? Should the
developer do that? Nope. It is the developer's responsibility to create directories for his/her
project. It means he/she only creates the directory src/github.com/user/hello.

When a developer runs the following command, the directories bin and package are created
if they did not exist before. .bin consists of the binary of our project source code
and .pkg consists of all internal and external packages we use in our Go programs:

 go install github.com/user/project

Getting Started with REST API Development Chapter 1

[25]

Building our first service – finding the
Roman numeral
With the concepts we have built upto now, let us write our first basic REST service. This
service takes the number range (1-10) from the client and returns its Roman string. Very
primitive, but better than Hello World.

Design:

Our REST API should take an integer number from the client and serve back the Roman
equivalent.

The block of the API design document may look like this:

HTTP Verb PATH Action Resource

GET /roman_number/2 show roman_number

Implementation:

Now we are going to implement the preceding simple API step-by-step.

Code for this project is available at https:/ ​/​github. ​com/ ​narenaryan/
gorestful.

As we previously discussed, you should set the GOPATH first. Let us assume the GOPATH
is /home/naren/go. Create a directory called romanserver in the following path. Replace
narenaryan with your GitHub username (this is just a namespace for the code belonging to
different users):

mkdir -p $GOPATH/src/github.com/narenaryan/romanserver

Our project is ready. We don't have any database configured yet. Create an empty file called
main.go:

touch $GOPATH/src/github.com/narenaryan/romanserver/main.go

https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful
https://github.com/narenaryan/gorestful

Getting Started with REST API Development Chapter 1

[26]

Our main logic for the API server goes into this file. For now, we can create a data file
which works as a data service for our main program. Create one more directory for
packaging the Roman numeral data:

mkdir $GOPATH/src/github.com/narenaryan/romanNumerals

Now, create an empty file called data.go in the romanNumerals directory. The src
directory structure so far looks like this:

 ;

Now let us start adding code to the files. Create data for the Roman numerals:

// data.go
package romanNumerals

var Numerals = map[int]string{
 10: "X",
 9: "IX",
 8: "VIII",
 7: "VII",
 6: "VI",
 5: "V",
 4: "IV",
 3: "III",
 2: "II",
 1: "I",
}

We are creating a map called Numerals. This map holds information for converting a given
integer to its Roman equivalent. We are going to import this variable into our main
program to serve the request from the client.

Open main.go and add the following code:

// main.go
package main

import (
 "fmt"

Getting Started with REST API Development Chapter 1

[27]

 "github.com/narenaryan/romanNumerals"
 "html"
 "net/http"
 "strconv"
 "strings"
 "time"
)

func main() {
 // http package has methods for dealing with requests
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 urlPathElements := strings.Split(r.URL.Path, "/")
 // If request is GET with correct syntax
 if urlPathElements[1] == "roman_number" {
 number, _ := strconv.Atoi(strings.TrimSpace(urlPathElements[2]))
 if number == 0 || number > 10 {
 // If resource is not in the list, send Not Found status
 w.WriteHeader(http.StatusNotFound)
 w.Write([]byte("404 - Not Found"))
 } else {
 fmt.Fprintf(w, "%q",
html.EscapeString(romanNumerals.Numerals[number]))
 }
 } else {
 // For all other requests, tell that Client sent a bad request
 w.WriteHeader(http.StatusBadRequest)
 w.Write([]byte("400 - Bad request"))
 }
 })
 // Create a server and run it on 8000 port
 s := &http.Server{
 Addr: ":8000",
 ReadTimeout: 10 * time.Second,
 WriteTimeout: 10 * time.Second,
 MaxHeaderBytes: 1 << 20,
 }
 s.ListenAndServe()
}

Always use the Go fmt tool to format your Go code.

Usage example: go fmt github.com/narenaryan/romanserver

Now, install this project with the Go command install:

go install github.com/narenaryan/romanserver

Getting Started with REST API Development Chapter 1

[28]

This step does two things:

Compiles the package romanNumerals and places a copy in the $GOPATH/pkg
directory
Places a binary in the $GOPATH/bin

We can run the preceding API server as this:

$GOPATH/bin/romanserver

The server is up and running on http://localhost:8000. Now we can make a GET
request to the API using a client like Browser or the CURL command. Let us fire a CURL
command with a proper API GET request.

Request one is as follows:

curl -X GET "http://localhost:8000/roman_number/5" # Valid request

The response is as follows:

HTTP/1.1 200 OK
Date: Sun, 07 May 2017 11:24:32 GMT
Content-Length: 3
Content-Type: text/plain; charset=utf-8

"V"

Let us try a few incorrectly formed requests.

Request two is as follows:

curl -X GET "http://localhost:8000/roman_number/12" # Resource out of range

The response is as follows:

HTTP/1.1 404 Not Found
Date: Sun, 07 May 2017 11:22:38 GMT
Content-Length: 15
Content-Type: text/plain; charset=utf-8

404 - Not Found

Request three is as follows:

curl -X GET "http://localhost:8000/random_resource/3" # Invalid resource

Getting Started with REST API Development Chapter 1

[29]

The response is as follows:

"HTTP/1.1 400 Bad request
Date: Sun, 07 May 2017 11:22:38 GMT
Content-Length: 15
Content-Type: text/plain; charset=utf-8
400 - Bad request

Our little Roman numerals API is doing the right thing. The right status codes are being
returned. That is the point all API developers should keep in mind. The client should be
informed why something went wrong.

Breaking down the code
We just updated the empty files in one single go and started running the server. Let me now
explain each and every piece of the file main.go:

Imported a few packages. github.com/narenaryan/romanNumerals is the
data service we created before.
net/http is the core package we used to handle an HTTP request through its
HandleFunc function. That function's arguments are http.Request
and http.ResponseWriter. Those two deal with the request and response of an
HTTP request.
r.URL.Path is the URL path of the HTTP request. For the CURL Request one, it
is /roman_number/5. We are splitting this path and using the second argument
as a resource and the third argument as a value to get the Roman numeral.
The Split function is in a core package called strings.
The Atoi function converts an alphanumeric string to an integer. For the
numerals map to consume, we need to convert the integer string to an integer.
The Atoi function comes from a core package called strconv.
 We use http.StatusXXX to set the status code of the response header.
The WriteHeader and Write functions are available on the response object for
writing the header and body, respectively.
Next, we created an HTTP server using &http while initializing a few parameters
like address, port, timeout, and so on.
The time package is used to define seconds in the program. It says, after 10
seconds of inactivity, automatically return a 408 request timeout back to the
client.

Getting Started with REST API Development Chapter 1

[30]

EscapeString escapes special characters to become valid HTML characters. For
example, Fran & Freddie's becomes Fran & Freddie's".
Finally, start the server with the ListenAndServe function. It keeps your web
server running until you kill it.

One should write unit tests for their API. In the upcoming chapters, we
will see how to test an API end to end.

Live reloading the application with supervisord
and Gulp
Gulp is a nice tool for creating workflows. A workflow is a step-by-step process. It is
nothing but a task streamlining application. You need NPM and Node installed on your
machine. We use Gulp to watch the files and then update the binary and restart the API
server. Sounds cool, right?

The supervisor is an application to reload your server whenever the application gets killed.
A process ID will be assigned to your server. To restart the app properly, we need to kill the
existing instances and restart the application. We can write one such program in Go. But in
order to not reinvent the wheel, we are using a popular program called supervisord.

Monitoring your Go web server with supervisord
Sometimes your web application may stop due to operating system restarts or crashes.
Whenever your web server gets killed, it is supervisor's job to bring it back to life. Even the
system restart cannot take your web server away from the customers. So, strictly use
supervisord for your app monitoring.

Installing supervisord
We can easily install supervisord on Ubuntu 16.04, with the apt-get command:

sudo apt-get install -y supervisor

This installs two tools, supervisor and supervisorctl. supervisorctl is intended to
control the supervisord and add tasks, restart tasks, and so on.

Getting Started with REST API Development Chapter 1

[31]

On macOS X, we can install supervisor using the brew command:

brew install supervisor

Now, create a configuration file at:

/etc/supervisor/conf.d/goproject.conf

You can add any number of configuration files, and supervisord treats them as separate
processes to run. Add the following content to the preceding file:

[supervisord]
logfile = /tmp/supervisord.log

[program:myserver]
command=$GOPATH/bin/romanserver
autostart=true
autorestart=true
redirect_stderr=true

By default, we have a file called .supervisord.conf at /etc/supervisor/. Look at it for
more reference. In macOS X, the same file will be located
at /usr/local/etc/supervisord.ini.

Coming to the preceding configuration:

The [supervisord] section tells the location of the log file for supervisord
[program:myserver] is the task block which traverses to the given directory
and executes the command given

Now we can ask our supervisorctl to re-read the configuration and restart the tasks
(process). For that, just say:

supervisorctl reread

supervisorctl update

Then, launch supervisorctl with the command:

supervisorctl

Getting Started with REST API Development Chapter 1

[32]

You will see something like this:

supervisorctl is a great tool for controlling supervisor programs.

Since we named our romanserver myserver in the supervisor configuration file, we can
start, stop, and restart that program from supervisorctl.

Using Gulp for creating auto code compiling
and server reloading
With the little introduction we gave about Gulp in the preceding section, we are going to
write a gulpfile for telling the computer to execute a few tasks.

I install Gulp and Gulp-shell using npm:

npm install gulp gulp-shell

Getting Started with REST API Development Chapter 1

[33]

After this, create a gulpfile.js in the root directory of the project. Here, it is
github.com/src/narenaryan/romanserver. Now add this content to gulpfile.js.
First, whenever a file changes, install binary task gets executed. Then, the supervisor will be
restarted. The watch task looks for any file change and executes the preceding tasks. We are
also ordering the tasks so that they occur one after the other synchronously. All of these
tasks are Gulp tasks and can be defined by the gulp.task function. It takes two arguments
with task name, task. sell.task allows Gulp to execute system commands:

var gulp = require("gulp");
var shell = require('gulp-shell');

// This compiles new binary with source change
gulp.task("install-binary", shell.task([
 'go install github.com/narenaryan/romanserver'
]));

// Second argument tells install-binary is a deapendency for restart-
supervisor
gulp.task("restart-supervisor", ["install-binary"], shell.task([
 'supervisorctl restart myserver'
]))

gulp.task('watch', function() {
 // Watch the source code for all changes
 gulp.watch("*", ['install-binary', 'restart-supervisor']);

});

gulp.task('default', ['watch']);

Now, if you run the gulp command in the source directory, it starts watching your source
code changes:

gulp

Getting Started with REST API Development Chapter 1

[34]

Now, if we modify the code, then the code is compiled, installed, and the server restarted in
a flash:

Understanding the gulpfile
In the gulpfile, we are performing the following instructions:

Import Gulp and Gulp-shell.1.
Create tasks with shell.task as the function to execute.2.
shell.task can execute a command-line instruction. Keep your shell commands3.
inside that function.
Add a watch task for watching source files. The task list will be executed when4.
files are modified.
Create a default task for running. Add a watch to it.5.

Gulp is a great tool for these kinds of use cases. So, please go through the official
documentation of Gulp at http:/ ​/ ​gulpjs. ​com/​.

http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/
http://gulpjs.com/

Getting Started with REST API Development Chapter 1

[35]

Summary
In this chapter, we gave an introduction to the REST API. We saw that REST is not a
protocol, but an architectural pattern. HTTP is the actual protocol on which we can
implement our REST service. We jumped into the fundamentals of the REST API to be clear
about what they actually are. Then we explored types of web services. Before REST, we
have something called SOAP, which uses XML as the data format. REST operates on JSON
as the primary format. REST has verbs and status codes. We saw what a given status code
refers to. We built a simple service which serves the Roman numerals for given numbers. In
this process, we also saw how to package a Go project. We understood the GOPATH
environment variable. It is a workspace defining a variable in Go. All packages and projects
reside in that path. We then saw how to reload a development project on the fly with the
help of supervisord and Gulp. These are node tools but can help us to keep our Go project
up and running.

In the next chapter, we dig deeper into URL routing. Starting from the built-in router, we
explore Gorilla Mux, a powerful URL routing library.

2
Handling Routing for Our REST

Services
In this chapter, we will discuss routing of the application. For creating an API, the first step
is to define routes. So, to define routes, we need to figure out available constructs in Go. We
begin with the basic internal routing mechanism in Go. Then, we see how to create a custom
Multiplexer. Since ServeMux's capabilities are very limited, we will explore a few other
frameworks built to serve this purpose. This chapter also includes creating routes using
third-party libraries such as httprouter and Gorilla Mux. We are going to build a URL-
shortening API throughout this book. In this chapter, we define routes for the API. Then,
we discuss topics like SQL injection of an URL. A web framework allows the developer to
create a route as the first step and then attach handlers to it. Those handlers hold the
business logic of the application. The crux of this chapter is teaching you how to create
HTTP routers in Go using Gorilla Mux. We also discuss how URL-shortening service
functions and try to design a logical implementation.

We will cover the following topics:

Building a basic web server in Go
Understanding the net/http package
ServeMux, a basic router in Go
Understanding httprouter, a router package
Introducing Gorilla Mux, a powerful HTTP router
Introducing URL shortening service design

Handling Routing for Our REST Services Chapter 2

[37]

Getting the code
You can download the code for this chapter from https:/ ​/​github. ​com/ ​narenaryan/
gorestful/​tree/​master/ ​chapter2. Feel free to add the comments and pull requests. Clone
the code and use the code samples in the chapter2 directory.

Understanding Go's net/http package
Go's net/http package deals with HTTP client and server implementations. Here, we are
mainly interested in the server implementation. Let us create a small Go program called
basicHandler.go that defines the route and a function handler:

package main
import (
 "io"
 "net/http"
 "log"
)
// hello world, the web server
func MyServer(w http.ResponseWriter, req *http.Request) {
 io.WriteString(w, "hello, world!\n")
}
func main() {
 http.HandleFunc("/hello", MyServer)
 log.Fatal(http.ListenAndServe(":8000", nil))
}

This code does the following things:

Create a route called /hello. 1.
Create a handler called MyServer.2.
Whenever the request comes on the route (/hello), the handler function will be3.
executed.
Write hello, world to the response.4.
Start the server on port 8000. ListenAndServe returns error if something goes5.
wrong. So log it using log.Fatal.
The http package has a function called HandleFunc, using which we can map6.
an URL to a function.

https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2
https://github.com/narenaryan/gorestful/tree/master/chapter2

Handling Routing for Our REST Services Chapter 2

[38]

Here, w is a response writer. A ResponseWriter interface is used by an HTTP7.
handler to construct an HTTP response.
req is a request object, which deals with all the properties and methods of an8.
HTTP request.

Use the log function to debug potential errors. The ListenAndServe
function returns an error if there are any.

Running the code
We can run the preceding code as a standalone program. Name the preceding
program basicHandler.go. Store it anywhere you wish to, then run it using the following
command:

go run basicHandler.go

Now fire up a shell or browser to see the server in action. Here, I use the CURL request:

curl -X GET http://localhost:8000/hello

The response is:

hello, world

Go has a different concept for handling request and response. We used the io library to
write to the response. For web development, we can use a template to automatically fill in
the details. Go's internal URL handlers use a ServeMux multiplexer.

ServeMux, a basic router in Go
ServeMux is an HTTP request multiplexer. The HandleFunc we used in the preceding
section is actually a method of ServeMux. By creating a new ServeMux, we can handle
multiple routes. Before that, we can also create our own multiplexer. A multiplexer just
handles the logic of separating routes with a function called ServeHTTP. So if we create a
new struct with the ServeHTTP method, it can do the job.

Handling Routing for Our REST Services Chapter 2

[39]

Consider a route as a key in a dictionary (map), then the handler as its value. The router
finds the handler from the route and tries to execute the ServeHTTP function. Let us create
a program called customMux.go and see this implementation in action:

package main
import (
 "fmt"
 "math/rand"
 "net/http"
)
// CustomServeMux is a struct which can be a multiplexer
type CustomServeMux struct {
}
// This is the function handler to be overridden
func (p *CustomServeMux) ServeHTTP(w http.ResponseWriter, r *http.Request)
{
 if r.URL.Path == "/" {
 giveRandom(w, r)
 return
 }
 http.NotFound(w, r)
 return
}
func giveRandom(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintf(w, "Your random number is: %f", rand.Float64())
}
func main() {
 // Any struct that has serveHTTP function can be a multiplexer
 mux := &CustomServeMux{}
 http.ListenAndServe(":8000", mux)
}

In this code, we are creating a custom struct called CustomServeMux, which is going to take
care of our routing. We implemented a function called ServeHTTP in order to capture the
request and write a response back to it. The fmt package is usually used to create strings.
Fprinf composes the string out of supplied parameters.

In the main function, we are creating an instance of our CustomServeMux and passing it to
the ListenAndServe function on http. "math/rand" is the library that takes care of
generating random numbers. This basic foundation is going to be helpful for us when we
discuss adding authentication to our API server.

Handling Routing for Our REST Services Chapter 2

[40]

Running the code
Let us fire a CURL request and see what the response is for various routes:

go run customMux.go

Now, fire up a shell or browser to see the server in action. Here, I use the CURL request:

curl -X GET http://localhost:8000/

The response is:

Your random number is: 0.096970

Use Ctrl + C or Cmd + C to stop your Go server. If you are running it as a
background process, use pgrep go to find the processID and kill it
using kill pid.

Adding multiple handlers using ServeMux
The preceding custom Mux that we created can be cumbersome when we have different
endpoints with different functionalities. To add that logic, we need to add many if/else
conditions to manually check the URL route. We can instantiate a new ServeMux and
define many handlers like this:

newMux := http.NewServeMux()

newMux.HandleFunc("/randomFloat", func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, rand.Float64())
})

newMux.HandleFunc("/randomInt", func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, rand.Int(100))
})

This code snippet shows how to create a ServerMux and attach multiple handlers to it.
randomFloat and randomInt are the two routes we created for returning a random float
and random int, respectively. Now we can pass this to the ListenAndServe
function. Intn(100) returns a random integer number from the range 0-100. For more
details on random functions, visit the Go random package page at http:/ ​/ ​golang. ​org.

http.ListenAndServe(":8000", newMux)

http://golang.org
http://golang.org
http://golang.org
http://golang.org
http://golang.org
http://golang.org
http://golang.org

Handling Routing for Our REST Services Chapter 2

[41]

The complete code looks like this:

package main
import (
 "fmt"
 "math/rand"
 "net/http"
)
func main() {
 newMux := http.NewServeMux()
 newMux.HandleFunc("/randomFloat", func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, rand.Float64())
 })
 newMux.HandleFunc("/randomInt", func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, rand.Intn(100))
 })
 http.ListenAndServe(":8000", newMux)
}

Running the code
We can run the program directly using the run command:

go run customMux.go

 Now, let us fire two CURL commands and see the output:

curl -X GET http://localhost:8000/randomFloat
curl -X GET http://localhost:8000/randomInt

The responses will be:

0.6046602879796196
87

Your response may change due to the random number generator.

We saw how we can create a URL router with basic Go constructs. Now we are going to
look at a few popular URL routing frameworks that are widely used by the Go community
for their API servers.

Handling Routing for Our REST Services Chapter 2

[42]

Introducing httprouter, a lightweight HTTP
router
httprouter, as the name suggests, routes the HTTP requests to particular handlers.
Compared to the basic router, it has the following features:

Allows variables in the route paths
It matches the REST methods (GET, POST, PUT, and so on)
No compromising on performance

We are going to discuss these qualities in more detail in the following section. Before that,
there are a few noteworthy points that make httprouter an even better URL router:

httprouter plays well with the inbuilt http.Handler
httprouter explicitly says that a request can only match to one route or none
The router's design encourages building sensible, hierarchical RESTful APIs
 You can build efficient static file servers

Installation
To install httprouter, we just need to run the get command:

go get github.com/julienschmidt/httprouter

So, now we have httprouter. We can refer to the library in our source code as this:

import "github.com/julienschmidt/httprouter"

The basic usage of httprouter can be understood through an example. In this example, let us
create a small API to get information about files and programs installed from the server.
Before jumping straight into the program, you should know how to execute system
commands on Go. There is a package called os/exec. It allows us to execute system
commands and get the output back to the program.

import "os/exec"

Then it can be accessed in the code as this:

// arguments... means an array of strings unpacked as arguments in Go
cmd := exec.Command(command, arguments...)

Handling Routing for Our REST Services Chapter 2

[43]

exec.Command is the function that takes a command and an additional arguments
array. Additional arguments are the options or input for the command. It can then be
executed in two ways:

Run the command instantly
Start and wait for it to finish

We can collect the output of the command by attaching Stdout to a custom string. Get that
string and send it back to the client. The code makes more sense here. Let us write a Go
program to create a REST service that does two things:

Gets the Go version
Gets the file contents of a given file

This program uses Hhttprouter to create the service. Let us name it as execService.go:

package main
import (
 "bytes"
 "fmt"
 "log"
 "net/http"
 "os/exec"
 "github.com/julienschmidt/httprouter"
)
// This is a function to execute a system command and return output
func getCommandOutput(command string, arguments ...string) string {
 // args... unpacks arguments array into elements
 cmd := exec.Command(command, arguments...)
 var out bytes.Buffer
 var stderr bytes.Buffer
 cmd.Stdout = &out
 cmd.Stderr = &stderr
 err := cmd.Start()
 if err != nil {
 log.Fatal(fmt.Sprint(err) + ": " + stderr.String())
 }
 err = cmd.Wait()
 if err != nil {
 log.Fatal(fmt.Sprint(err) + ": " + stderr.String())
 }
 return out.String()
}
func goVersion(w http.ResponseWriter, r *http.Request, params
httprouter.Params) {

Handling Routing for Our REST Services Chapter 2

[44]

 fmt.Fprintf(w, getCommandOutput("/usr/local/bin/go", "version"))
}
func getFileContent(w http.ResponseWriter, r *http.Request, params
httprouter.Params) {
 fmt.Fprintf(w, getCommandOutput("/bin/cat",
params.ByName("name")))
}
func main() {
 router := httprouter.New()
 // Mapping to methods is possible with HttpRouter
 router.GET("/api/v1/go-version", goVersion)
 // Path variable called name used here
 router.GET("/api/v1/show-file/:name", getFileContent)
 log.Fatal(http.ListenAndServe(":8000", router))
}

Program explanation
The preceding program is trying to implement a REST service using httprouter. We are
defining two routes here:

/api/v1/go-version

/api/v1/show-file/:name

The :name here is the path parameter. It indicates the API that shows the file named xyz.
The basic Go router cannot handle these parameters, by using httprouter, we can also
match the REST methods. In the program, we matched GET requests.

In a step-by-step process, the preceding program:

Imported the httprouter and other necessary Go packages
Created a new router using the New() method of httprouter
The router has methods like GET, POST, DELETE, and so on
The GET method takes two arguments, URL path expression and Handler
function

This router can be passed to the ListenAndServe function of http
Now, coming to the handlers, they look similar to the ones belonging to
ServeMux, but a third argument called httprouter.Params holds information
about all parameters that are supplied with a GET request
We defined the path parameter (a variable in the URL path) called name and used
it in our program

Handling Routing for Our REST Services Chapter 2

[45]

The getCommandOutput function takes commands and arguments and returns
output
The first API calls the Go version and returns the output to the client
The second API performs a cat command of the file and returns it to the client

If you observe the code, I used /usr/local/bin/go as the Go executable
location because it is the Go compiler location on my MacBook. While
executing exec.Command, you should give the absolute path of the
executable. So if you are working on an Ubuntu machine or Windows, use
the path to your executable. On Linux machines, you can easily find that
out by using the $ which go command.

Now create two new files in the same directory. These files will be served by our file server
program. You can create any custom files in this directory for testing:

Latin.txt:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec,
pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec
pede justo, fringilla vel, aliquet nec, vulputate eget, arcu.

Greek.txt:

Οἱ δὲ Φοίνιϰες οὗτοι οἱ σὺν Κάδμῳ ἀπιϰόμενοι.. ἐσήγαγον διδασϰάλια ἐς τοὺς ῞Ελληνας ϰαὶ
δὴ ϰαὶ γράμματα, οὐϰ ἐόντα πρὶν ῞Ελλησι ὡς ἐμοὶ δοϰέειν, πρῶτα μὲν τοῖσι ϰαὶ ἅπαντες
χρέωνται Φοίνιϰες· μετὰ δὲ χρόνου προβαίνοντος ἅμα τῇ ϕωνῇ μετέβαλον ϰαὶ τὸν ϱυϑμὸν τῶν
γραμμάτων. Περιοίϰεον δέ σϕεας τὰ πολλὰ τῶν χώρων τοῦτον τὸν χρόνον ῾Ελλήνων ῎Ιωνες· οἳ
παραλαβόντες διδαχῇ παρὰ τῶν Φοινίϰων τὰ γράμματα, μεταρρυϑμίσαντές σϕεων ὀλίγα
ἐχρέωντο, χρεώμενοι δὲ ἐϕάτισαν, ὥσπερ ϰαὶ τὸ δίϰαιον ἔϕερε ἐσαγαγόντων Φοινίϰων ἐς τὴν
῾Ελλάδα, ϕοινιϰήια ϰεϰλῆσϑαι.

Now run the program with this command. This time, instead of firing a CURL command,
let us use the browser as our output for GET. Windows users may not have CURL as the
firsthand application. They can use API testing software like the postman client while
developing the REST API. Take a look at the following command:

go run execService.go

The output for the first GET request looks like this:
curl -X GET http://localhost:8000/api/v1/go-version

Handling Routing for Our REST Services Chapter 2

[46]

The result will be this:

go version go1.8.3 darwin/amd64

The second GET request requesting Greek.txt is:

curl -X GET http://localhost:8000/api/v1/show-file/greek.txt

Now, we will see the file output in Greek as this:

Οἱ δὲ Φοίνιϰες οὗτοι οἱ σὺν Κάδμῳ ἀπιϰόμενοι.. ἐσήγαγον διδασϰάλια ἐς τοὺς ῞Ελληνας
ϰαὶ δὴ ϰαὶ γράμματα, οὐϰ ἐόντα πρὶν ῞Ελλησι ὡς ἐμοὶ δοϰέειν, πρῶτα μὲν τοῖσι ϰαὶ
ἅπαντες χρέωνται Φοίνιϰες· μετὰ δὲ χρόνου προβαίνοντος ἅμα τῇ ϕωνῇ μετέβαλον ϰαὶ τὸν
ϱυϑμὸν τῶν γραμμάτων. Περιοίϰεον δέ σϕεας τὰ πολλὰ τῶν χώρων τοῦτον τὸν χρόνον
῾Ελλήνων ῎Ιωνες· οἳ παραλαβόντες διδαχῇ παρὰ τῶν Φοινίϰων τὰ γράμματα,
μεταρρυϑμίσαντές σϕεων ὀλίγα ἐχρέωντο, χρεώμενοι δὲ ἐϕάτισαν, ὥσπερ ϰαὶ τὸ δίϰαιον
ἔϕερε ἐσαγαγόντων Φοινίϰων ἐς τὴν ῾Ελλάδα, ϕοινιϰήια ϰεϰλῆσϑαι.

Building the simple static file server in minutes
Sometimes, as part of the API, we should serve static files. The other application of
httprouter is building scalable file servers. It means that we can build a Content Delivery
Platform of our own. Some of the clients need static files from the server. Traditionally, we
use Apache2 or Nginx for that purpose. But, from within the Go server, in order to serve the
static files, we need to route them through a universal route like this:

/static/*

See the following code snippet for our implementation. The idea is to use the http.Dir
method to load the filesystem, and then use the ServeFiles function of the httprouter
instance. It should serve all the files in the given public directory. Usually, static files are
kept in the folder /var/public/www on a Linux machine. Since I am using OS X, I create a
folder called static in my home directory:

mkdir /users/naren/static

Now, I copy the Latin.txt and Greek.txt files, which we created for the previous
example, to the preceding static directory. After doing this, let us write the program for the
file server. You will be amazed at the simplicity of httprouter. Create a program called
fileserver.go:

package main
import (
 "github.com/julienschmidt/httprouter"

Handling Routing for Our REST Services Chapter 2

[47]

 "log"
 "net/http"
)
func main() {
 router := httprouter.New()
 // Mapping to methods is possible with HttpRouter
 router.ServeFiles("/static/*filepath",
http.Dir("/Users/naren/static"))
 log.Fatal(http.ListenAndServe(":8000", router))
}

Now run the server and see the output:

go run fileserver.go

 Now, let us open another terminal and fire this CURL request:

http://localhost:8000/static/latin.txt

Now, the output will be a static file content server from our file server:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis
parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec,
pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec
pede justo, fringilla vel, aliquet nec, vulputate eget, arcu.

Introducing Gorilla Mux, a powerful HTTP
router
Mux stands for the multiplexer. Similarly, Gorilla Mux is a multiplexer designed to
multiplex HTTP routes (URLs) to different handlers. Handlers are the functions which can
handle the given requests. Gorilla Mux is a wonderful package for writing beautiful routes
for our web applications and API servers.

Gorilla Mux provides tons of options to control how routing is done to your web
application. It allows a lot of features. Some of them are:

Path-based matching
Query-based matching
Domain-based matching

Handling Routing for Our REST Services Chapter 2

[48]

Sub-domain based matching
Reverse URL generation

Installation
Installing the Mux package is fairly simple. You need to run this command in the Terminal
(Mac and Linux):

go get -u github.com/gorilla/mux

If you get any errors saying package github.com/gorilla/mux: cannot download,
$GOPATH not set. For more details see--go help gopath, set the $GOPATH
environment variable using the following command:

export GOPATH=~/go

As we discussed in the previous chapter, this says that all the packages and programs go
into this directory. It has three folders: bin, pkg, and src. Now, add GOPATH to the PATH
variable, to use the installed bin files as system utilities that have no ./executable style.
Refer to the following command:

PATH="$GOPATH/bin:$PATH"

These settings stay until you turn off your machine. So, to make it a permanent change, add
the preceding lines to your bash profile:

vi ~/.profile
(or)
vi ~/.zshrc

Now, we are ready to go. Assuming Gorilla Mux is installed, proceed to the basics.

Fundamentals of Gorilla Mux
Gorilla Mux allows us to create a new router, similar to httprouter. But the attachment of
the handler function to a given URL route is different in both. If we observe, Mux's way of
attaching a handler is similar to that of basic ServeMux. Unlike httprouter, it modifies the
request object instead of using an additional argument to pass the URL parameters to the
handler function. We can access parameters using the Vars method.

Handling Routing for Our REST Services Chapter 2

[49]

I am going to take an example from the Gorilla Mux homepage to explain how useful it is.
Create a file called muxRouter.go and add the following code:

package main
import (
 "fmt"
 "log"
 "net/http"
 "time"
 "github.com/gorilla/mux"
)
// ArticleHandler is a function handler
func ArticleHandler(w http.ResponseWriter, r *http.Request) {
 // mux.Vars returns all path parameters as a map
 vars := mux.Vars(r)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "Category is: %v\n", vars["category"])
 fmt.Fprintf(w, "ID is: %v\n", vars["id"])
}
func main() {
 // Create a new router
 r := mux.NewRouter()
 // Attach a path with handler
 r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

Now run the file using the following command:

go run muxRouter.go

By running the CURL command this way, we can get the output as follows:

curl http://localhost:8000/articles/books/123

Category is: books
ID is: 123

Handling Routing for Our REST Services Chapter 2

[50]

Mux parses the variables in the path. All the variables that are parsed are available calling
the Vars function. Don't get caught up in the custom server details of the preceding
program. Just observe the Mux code. We attached a handler to the URL. We have written
the parsed variables back to the HTTP response. This line is crucial. Here, an id has a
regular expression saying that id is a number (0–9) with one or more digits:

r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

Let us call it a route. With this flexibility of pattern matching, we can design the RESTful
API very comfortably.

Use http.StatusOK to write to the header of a response to announce that
an API request is successful. Similarly, http has many status codes for
various types of HTTP request. Use the appropriate one to convey the
right message. For example, 404 - Not found, 500 - Server error, and so on.

Reverse mapping URL
In simple words, a reverse-mapping URL is just getting the URL for an API resource.
Reverse-mapping is quite useful when we need to share links to our web application or
API. But in order to create a URL from the data, we should associate a Name with the Mux
route:

r.HandlerFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
 Name("articleRoute")

Now, if we have data, we can form an URL:

url, err := r.Get("articleRoute").URL("category", "books", "id", "123")
fmt.Printf(url.URL) // prints /articles/books/123

Gorilla Mux provides a lot of flexibility in creating custom routes. It also allows method
chaining to add properties to a created route.

Custom paths
We can define the preceding route in two steps:

First, define the path on the router:

 r := mux.NewRouter()

Handling Routing for Our REST Services Chapter 2

[51]

Next, define the handler on the router:

 r.Path("/articles/{category}/{id:[0-
9]+}").HandlerFunc(ArticleHandler) //chaining is possible

Be aware that the method chained here is HandlerFunc and not HandleFunc, as shown in
the preceding code. We can create a top-level path and add subpaths to different handlers
easily in Mux using Subrouter:

r := mux.NewRouter()
s := r.PathPrefix("/articles").Subrouter()
s.HandleFunc("{id}/settings", settingsHandler)
s.HandleFunc("{id}/details", detailsHandler)

So all the URLs of the form http://localhost:8000/articles/123/settings redirect
to settingsHandler and URLs of the
form http://localhost:8000/articles/123/details redirect to the
detailsHandler. This might be useful when we create a namespace for grouping
particular URL paths.

Path Prefix
Path Prefix is a wildcard for matching after a defined path. The general use case is when we
serve files from our static folder and all URLs should be served as-is. From the official Mux
documentation, we can use this for serving static files. This is the Mux version of the static
file server that we created in the preceding program using httprouter:

r.PathPrefix("/static/").Handler(http.StripPrefix("/static/",
http.FileServer(http.Dir("/tmp/static"))))

This can serve all kinds of files in the directory:

http://localhost:8000/static/js/jquery.min.js

Strict Slash
Strict Slash is a parameter on the Mux router by which we can order the router to redirect
URL routes with trailing slashes to those without them. For example, /articles/ can be
the original path, but routes coming with /path will be redirected to the original path:

r := mux.NewRouter()
r.StrictSlash(true)
r.Path("/articles/").Handler(ArticleHandler)

Handling Routing for Our REST Services Chapter 2

[52]

This URL redirects to the preceding ArticleHandler if the StrictSlash parameter is set
to true:

http://localhost:8000/articles

Encoded paths
We can have encoded paths from a few clients. To handle these encoded paths, Mux
provides a method called UseEncodedPath. If we call this method on the router variable,
we can even match the encoded URL route and forward it to the given handler:

r := NewRouter()
r.UseEncodedPath()
r.NewRoute().Path("/category/id")

This can match the URL:

http://localhost:8000/books/1%2F2

%2F stands for / in the un-encoded form. If the method UseEncodedPath is not used, the
router might understand it as /v1/1/2.

Query-based matching
Query parameters are those that get passed along with the URL. This is what we commonly
see in a REST GET request. Gorilla Mux can create a route for matching a URL with the
given query parameters:

http://localhost:8000/articles/?id=123&category=books

Let us add functionality to our program:

// Add this in your main program
r := mux.NewRouter()
r.HandleFunc("/articles", QueryHandler)
r.Queries("id", "category")

Handling Routing for Our REST Services Chapter 2

[53]

It limits the query with the preceding URL. The id and category match with the Queries
list. Empty values are allowed for parameters. QueryHandler looks like this. You can use
request.URL.Query() to obtain query parameters in your handler function:

func QueryHandler(w http.ResponseWriter, r *http.Request){
 queryParams := r.URL.Query()
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "Got parameter id:%s!\n", queryParams["id"])
 fmt.Fprintf(w, "Got parameter category:%s!", queryParams["category"])
}

Host-based matching
Sometimes we need to allow requests from specific hosts. If the host is matched, then the
request proceeds to the route handlers. This could be very helpful if we have multiple
domains and subdomains and match them with the custom routes.

Using the Host method on the router variable, we can regulate from which hosts routes can
be directed:

r := mux.NewRouter()
r.Host("aaa.bbb.ccc")
r.HandleFunc("/id1/id2/id3", MyHandler)

If we set this, all requests coming from the host aaa.bbb.ccc of the form
http://aaa.bbb.ccc/111/222/333 will be matched. Similarly, we can regulate HTTP
schemes (http, https) using Schemes and REST methods like (GET, POST) using Methods
Mux functions. The program queryParameters.go explains how to use query parameters
in the handler:

package main
import (
 "fmt"
 "log"
 "net/http"
 "time"
 "github.com/gorilla/mux"
)
func QueryHandler(w http.ResponseWriter, r *http.Request) {
 // Fetch query parameters as a map
 queryParams := r.URL.Query()
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "Got parameter id:%s!\n", queryParams["id"][0])
 fmt.Fprintf(w, "Got parameter category:%s!",
queryParams["category"][0])

Handling Routing for Our REST Services Chapter 2

[54]

}
func main() {
 // Create a new router
 r := mux.NewRouter()
 // Attach a path with handler
 r.HandleFunc("/articles", QueryHandler)
 r.Queries("id", "category")
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

The output looks like this:

go run queryParameters.go

Let us fire a CURL request in this format in a terminal:

curl -X GET http://localhost:8000/articles\?id\=1345\&category\=birds

We need to escape special characters in the shell. If it is in the browser, there is no problem
escaping. The output is like this:

Got parameter id:1345!
Got parameter category:birds!

The r.URL.Query() function returns a map with all the parameter and value pairs. They
are basically strings, and in order to use them in our program logic we need to convert the
number strings to integers. We can use Go's strconv package to convert a string to an
integer, and vice versa.

Its pattern matching features and simplicity push Gorilla Mux as a
popular choice for an HTTP router in projects. Many successful projects
worldwide are already using Mux for their routing needs.

Handling Routing for Our REST Services Chapter 2

[55]

SQL injections in URLs and ways to avoid them
SQL injection is the process of attacking a database with malicious scripts. If we are not
careful while writing secure URL routes, there may be an opportunity for SQL injection.
These attacks usually happen for the POST, PUT, and DELETE HTTP verbs. For example, if
we are allowing the client to pass variables to the server, then there is a chance for an
attacker to append a string to those variables. If we are inserting those users sending
parameters directly into an SQL query, then it could be injectable. The right way to talk to
DB is to allow driver functions to check the parameters before inserting the string and
executing it in the database:

username := r.Form.Get("id")
password := r.Form.Get("category")
sql := "SELECT * FROM article WHERE id='" + username + "' AND category='" +
password + "'"
Db.Exec(sql)

In this snippet, we are trying to get information about an article by id and category. We are
executing an SQL query. But since we are appending the values directly, we may include
malicious SQL statements like (--) comments and (ORDER BY n) range clauses in the
query:

?category=books&id=10 ORDER BY 10--

This will leak information about columns the table has. We can change the number and see
the breaking point where we get an error message from the database saying:

Unknown column '10' in 'order clause'

 We will see more about this in our upcoming chapters, where we build full-fledged REST
services with other methods, like POST, PUT, and so on:

Now, how to avoid these injections. There are a few ways:

Set the user level permissions to various tables
While using URL parameters, carefully observe the pattern
Use the HTMLEscapeString function from Go's text/template package to
escape special characters in the API parameters, like body and path
Use a driver program instead of executing raw SQL queries
Stop database debug messages getting relayed back to the client
Use security tools like sqlmap to find out vulnerabilities

Handling Routing for Our REST Services Chapter 2

[56]

Creating a basic API layout for URL
shortening services
Have you ever wondered how URL shortening services work? They take a very long URL
and give a shortened, crisp, and memorable URL back to the user. At first sight, it looks like
magic, but it is a simple math trick.

In a single statement, URL shortening services are built upon two things:

 A string mapping algorithm to map long strings to short strings (Base 62)
 A simple web server that redirects a short URL to the original URL

There are a few obvious advantages of URL shortening:

Users can remember the URL; easy to maintain
Users can use the links where there are restrictions on text length; for example,
Twitter
Predictable shortened URL length

Take a look at the following diagram:

Under the hood, these things happen silently in a URL shortening service:

Take the original URL.
Apply Base62 encoding on it. It generates a shortened URL.

Handling Routing for Our REST Services Chapter 2

[57]

Store that URL in the database. Map it to the original URl ([shortened_url:
orignial_url]).
Whenever a request comes to the shortened URL, just do an HTTP redirect to the
original URL.

We will implement the complete logic in upcoming chapters when we integrate databases
to our API server, but before that, though, we should specify the API design
documentation. Let us do that. Take a look at the following table:

URL REST Verb Action Success Failure

/api/v1/new POST Create a shortened URL 200 500, 404

/api/v1/:url GET Redirect to original URL 301 404

As an exercise, the reader is allowed to implement this from the fundamentals we have
built thus far. You can use a dummy JSON file instead of a database like we did in the first
chapter. We will implement this in upcoming chapters, anyway.

Summary
In this chapter, we first introduced the HTTP router. We tried to build a basic application
using Go's http package. Then we briefly discussed ServeMux, with an example. We saw
how to add multiple handlers to multiple routes. Then we introduced a lightweight router
package called httprouter. httprouter allows developers to create scalable routes, with
the option of parsing parameters passed in the URL path. We can also serve files over the
HTTP using httprouter. We built a small service to get the Go version and file contents
(read-only). That example can be extended to any system information.

Next, we introduced the popular Go routing library: Gorilla Mux. We discussed how it is
different from httprouter and explored its functionality by implementing solid examples.
We explained how Vars can be used to get path parameters and r.URL.Query to parse
query parameters. Then we discussed SQL injection and how it can happen in our
applications. We gave a few pointers on how to avoid it. We will see some of these
measures in upcoming chapters when we build a complete REST service, which includes a
database. Finally, we laid down the logic for URL shortening and created an API design
document.

In the next chapter, we look at Middleware functions, which act as tamperers for HTTP
requests and responses. That phenomenon will help us modify the API response on-the-fly.
The next chapter also features RPC (Remote Procedure Call).

3
Working with Middleware and

RPC
In this chapter, we are going to look at middleware functionality. What is middleware, and
how can we build it from scratch? Next, we will move to a better middleware solution
written for us, called Gorilla Handlers. We will then try to understand a few use cases
where middleware can be helpful. After that, we will start building our RPC services with
Go's internal RPC and JSON RPC. Then we will move to an advanced RPC framework, such
Gorilla HTTP RPC.

The topics we cover in this chapter are:

What is middleware?
What is an RPC (Remote Procedure Call)?
How can we implement RPC and JSON RPC in Go?

Getting the code
All the code for this chapter is available at https:/ ​/​github. ​com/ ​narenaryan/ ​gorestful/
tree/​master/​chapter3. Please refer to Chapter 1, Getting Started with the REST API
Development, for setting up Go projects and running the programs. It is better to clone the
entire gorestful repository from GitHub.

https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3
https://github.com/narenaryan/gorestful/tree/master/chapter3

Working with Middleware and RPC Chapter 3

[59]

What is middleware?
Middleware is an entity that hooks into a server's request/response processing. The
middleware can be defined in many components. Each component has a specific function to
perform. Whenever we define the handlers for our URL patterns (as in the last chapter), the
request hits the handler and executes the business logic. So virtually all middleware should
perform these functions in order:

Process the request before hitting the handler (function)1.
Process the handler function2.
Process the response before giving it to the client3.

We can see the previous points in the form of a visual illustration:

If we observe the diagram carefully, the journey of the request starts with the client. In an
application with no middleware, a request reaches the API server and will get handled by
some function handler. The response is immediately sent back from the server and the
client receives it. But in applications with middleware, it passes through a set of stages, like
logging, authentication, session validation, and so on, and then proceeds to the business
logic. This is to filter the wrong requests from interacting with the business logic. The most
common use cases are:

Use a logger to log each and every request hitting the REST API
Validate the session of the user and keep the communication alive

Working with Middleware and RPC Chapter 3

[60]

Authenticate the user, if not identified
Write custom logic to scrap the request data
Attach properties to responses while serving the client

With the help of middleware, we can keep the housekeeping work, like authentication, in
its proper place. Let us create a basic middleware and tamper an HTTP request in Go.

Middleware functions should be defined when a piece of code needs to be executed for
every request or subset of HTTP requests. Without them, we need to duplicate the logic in
each and every handler.

Creating a basic middleware
Building middleware is simple and straightforward. Let us build a program based on the
knowledge gained from the second chapter. If you are not familiar with closure functions, a
closure function returns another function. This principle helps us write middleware. The
first thing we should do is implement a function that satisfies the http.Handler interface.

A sample closure called closure.go looks like this:

package main
import (
 "fmt"
)
func main() {
 numGenerator := generator()
 for i := 0; i < 5; i++ {
 fmt.Print(numGenerator(), "\t")
 }
}
// This function returns another function
func generator() func() int {
 var i = 0
 return func() int {
 i++
 return i
 }
}

If we run this code:

go run closure.go

Working with Middleware and RPC Chapter 3

[61]

Numbers will be generated and printed using tab spaces:

1 2 3 4 5

We are creating a closure function called generator and calling it to get a new number. A
generator pattern generates a new item each time, based on given conditions. The inner
function getting returned is an anonymous function with no arguments and one return type
of integer. The variable i that is defined inside the outer function is available to the
anonymous function, making it useful to compute logic in the future. The other good
example application of closure is creating a counter. You can implement it by following the
same logic applied in the preceding code.

In Go, the function signature of the outer function should exactly match the anonymous
function's signature. In the previous example, func() int is the signature for both the
outer and inner functions.

This example is given to understand how closure works in Go. Now, let us use this concept
to compose our first middleware:

package main
import (
 "fmt"
 "net/http"
)
func middleware(handler http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 fmt.Println("Executing middleware before request phase!")
 // Pass control back to the handler
 handler.ServeHTTP(w, r)
 fmt.Println("Executing middleware after response phase!")
 })
}
func mainLogic(w http.ResponseWriter, r *http.Request) {
 // Business logic goes here
 fmt.Println("Executing mainHandler...")
 w.Write([]byte("OK"))
}
func main() {
 // HandlerFunc returns a HTTP Handler
 mainLogicHandler := http.HandlerFunc(mainLogic)
 http.Handle("/", middleware(mainLogicHandler))
 http.ListenAndServe(":8000", nil)
}

Working with Middleware and RPC Chapter 3

[62]

Let us run the code:

go run customMiddleware.go

If you do a CURL request or see http://localhost:8000 in your browser, the console
will receive this message:

Executing middleware before request phase!
Executing mainHandler...
Executing middleware after response phase!

 If you observe the middleware illustration diagram provided before, the request phase is
pointed to by the right arrow, and the response is the left one. This program is actually the
one in the rightmost rectangle, that is, CustomMiddleware.

In simple steps, the preceding program breaks down into this:

Create a handler function by passing the main handler function (mainLogic)
to http.HandlerFunc().
Create a middleware function that accepts a handler and returns a handler.
The method ServeHTTP allows a handler to execute the handler logic that
is mainLogic.
The http.Handle function expects an HTTP handler. By taking that into
consideration, we wrapped up our logic in such a way that, finally, a handler gets
returned, but the execution is modified.
We are passing the main handler into the middleware. Then middleware takes it
and returns a function while embedding this main handler logic in it. This makes
all the requests coming to the handler pass through the middleware logic.
The order of the print statement explains the request's journey.
Finally, we are serving the server on the 8000 port.

Go web frameworks like Martini, Gin provide middleware by default. We will see more
about them in upcoming chapters. It is good for a developer to understand the low-level
details of middleware.

Working with Middleware and RPC Chapter 3

[63]

The following diagram can help you understand how the logic flow happens in the
middleware:

Multiple middleware and chaining
In the previous section, we built a single middleware to perform an action before or after
the request hits the handler. It is also possible to chain a group of middleware. In order to
do that, we should follow the same closure logic as the preceding section. Let us create a
city API for saving city details. For simplicity's sake, the API will have one POST method,
and the body consists of two fields: city name and city area.

Let us think about a scenario where an API developer only allows the JSON media type
from clients and also needs to send the server time in UTC back to the client for every
request. Using middleware, we can do that.

The functions of two middleware are:

In the first middleware, check whether the content type is JSON. If not, don't
allow the request to proceed
In the second middleware, add a timestamp called Server-Time (UTC) to the
response cookie

Working with Middleware and RPC Chapter 3

[64]

First, let us create the POST API:

package main

 import (
 "encoding/json"
 "fmt"
 "net/http"
)

 type city struct {
 Name string
 Area uint64
 }

 func mainLogic(w http.ResponseWriter, r *http.Request) {
 // Check if method is POST
 if r.Method == "POST" {
 var tempCity city
 decoder := json.NewDecoder(r.Body)
 err := decoder.Decode(&tempCity)
 if err != nil {
 panic(err)
 }
 defer r.Body.Close()
 // Your resource creation logic goes here. For now it is plain
print to console
 fmt.Printf("Got %s city with area of %d sq miles!\n",
tempCity.Name, tempCity.Area)
 // Tell everything is fine
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("201 - Created"))
 } else {
 // Say method not allowed
 w.WriteHeader(http.StatusMethodNotAllowed)
 w.Write([]byte("405 - Method Not Allowed"))
 }
 }

 func main() {
 http.HandleFunc("/city", mainLogic)
 http.ListenAndServe(":8000", nil)
 }

Working with Middleware and RPC Chapter 3

[65]

If we run this:

go run cityAPI.go

Then give a CURL request:

curl -H "Content-Type: application/json" -X POST http://localhost:8000/city
-d '{"name":"New York", "area":304}'

curl -H "Content-Type: application/json" -X POST http://localhost:8000/city
-d '{"name":"Boston", "area":89}'

Go gives us the following:

Got New York city with area of 304 sq miles!
Got Boston city with area of 89 sq miles!

CURL responses will be:

201 - Created
201 - Created

In order to chain, we need to pass the handler between multiple middlewares.

Here is the program in simple steps:

We created a REST API with a POST as the allowed method. It is not complete
because we are not storing data to a database or file.
We imported the json package and used it to decode the POST body given by the
client. Next, we created a structure that maps the JSON body.
Then, JSON got decoded and printed the information to the console.

Only one handler is involved in the preceding example. But now, for the upcoming task, the
idea is to pass the main handler to multiple middleware handlers. The complete code looks
like this:

package main
import (
 "encoding/json"
 "log"
 "net/http"
 "strconv"
 "time"
)
type city struct {
 Name string
 Area uint64

Working with Middleware and RPC Chapter 3

[66]

}
// Middleware to check content type as JSON
func filterContentType(handler http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 log.Println("Currently in the check content type middleware")
 // Filtering requests by MIME type
 if r.Header.Get("Content-type") != "application/json" {
 w.WriteHeader(http.StatusUnsupportedMediaType)
 w.Write([]byte("415 - Unsupported Media Type. Please send
JSON"))
 return
 }
 handler.ServeHTTP(w, r)
 })
}
// Middleware to add server timestamp for response cookie
func setServerTimeCookie(handler http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 handler.ServeHTTP(w, r)
 // Setting cookie to each and every response
 cookie := http.Cookie{Name: "Server-Time(UTC)", Value:
strconv.FormatInt(time.Now().Unix(), 10)}
 http.SetCookie(w, &cookie)
 log.Println("Currently in the set server time middleware")
 })
}
func mainLogic(w http.ResponseWriter, r *http.Request) {
 // Check if method is POST
 if r.Method == "POST" {
 var tempCity city
 decoder := json.NewDecoder(r.Body)
 err := decoder.Decode(&tempCity)
 if err != nil {
 panic(err)
 }
 defer r.Body.Close()
 // Your resource creation logic goes here. For now it is plain
print to console
 log.Printf("Got %s city with area of %d sq miles!\n",
tempCity.Name, tempCity.Area)
 // Tell everything is fine
 w.WriteHeader(http.StatusOK)
 w.Write([]byte("201 - Created"))
 } else {
 // Say method not allowed
 w.WriteHeader(http.StatusMethodNotAllowed)
 w.Write([]byte("405 - Method Not Allowed"))
 }

Working with Middleware and RPC Chapter 3

[67]

}
func main() {
 mainLogicHandler := http.HandlerFunc(mainLogic)
 http.Handle("/city",
filterContentType(setServerTimeCookie(mainLogicHandler)))
 http.ListenAndServe(":8000", nil)
}

Now, if we run this:

go run multipleMiddleware.go

And run this for the CURL command:

curl -i -H "Content-Type: application/json" -X POST
http://localhost:8000/city -d '{"name":"Boston", "area":89}'

The output is:

HTTP/1.1 200 OK
Date: Sat, 27 May 2017 14:35:46 GMT
Content-Length: 13
Content-Type: text/plain; charset=utf-8

201 - Created

But if we try to remove Content-Type:application/json from the CURL command, the
middleware blocks us from executing the main handler:

curl -i -X POST http://localhost:8000/city -d '{"name":"New York",
"area":304}'

HTTP/1.1 415 Unsupported Media Type
Date: Sat, 27 May 2017 15:36:58 GMT
Content-Length: 46
Content-Type: text/plain; charset=utf-8

415 - Unsupported Media Type. Please send JSON

And the cookie will be set from the other middleware.

Working with Middleware and RPC Chapter 3

[68]

In the preceding program, we used log instead of the fmt package. Even though both do the
same thing, log formats the output by attaching a timestamp of the log. It can also be easily
directed to a file.

There are a few interesting things in this program. The middleware functions we defined
have quite common use cases. We can extend them to perform any action. The program is
composed of many elements. If you read it function by function, the logic can be easily
unwound. Take a look at the following points:

A struct called city was created to store city details, as in the last example.
filterContentType is the first middleware we added. It actually checks the
content type of the request and allows or blocks the request from proceeding
further. For checking, we are using r.Header.GET (content type). If it is
application/json, we are allowing the request to call the handler.ServeHTTP
function, which executes the mainLogicHandler code.
setServerTimeCookie is the second middleware that we designed to add a
cookie to the response with a value of the server time. We are using
Go's time package to find the current UTC time in the Unix epoch.
For the cookie, we are setting Name and Value. The cookie also accepts another
parameter called Expire, which tells the expiry time of the cookie.
If the content type is not application/json, our application returns the 415-Media
type not supported status code.
In the mainhandler, we are using json.NewDecoder to parse the JSON and fill
them into the city struct.
strconv.FormatInt allows us to convert an int64 number to a string. If it is a
normal int, then we use strconv.Itoa.
201 is the correct status code to be returned when the operation is successful. For
all other methods, we are returning 405, that is, a method not allowed.

The form of chaining we did here is readable for two to three middleware:

http.Handle("/city",
filterContentType(setServerTimeCookie(mainLogicHandler)))

Working with Middleware and RPC Chapter 3

[69]

If an API server wishes a request to go through many middlewares, then how can we make
that chaining simple and readable? There is a very good library called Alice to solve this
problem. It allows you to semantically order and attach your middleware to the main
handler. We will see it briefly in the next chapter.

Painless middleware chaining with Alice
The Alice library reduces the complexity of chaining the middleware when the list of
middleware is big. It provides us with a clean API to pass the handler to the middleware. In
order to install it, use the go get command, like this:

go get github.com/justinas/alice

Now we can import the Alice package in our program and use it straight away. We can
modify the sections of the preceding program to bring the same functionality with
improved chaining. In the import section, add github.com/justinas/alice, like the
following code snippet:

import (
 "encoding/json"
 "github.com/justinas/alice"
 "log"
 "net/http"
 "strconv"
 "time"
)

Now, in the main function, we can modify the handler part like this:

func main() {
 mainLogicHandler := http.HandlerFunc(mainLogic)
 chain := alice.New(filterContentType,
setServerTimeCookie).Then(mainLogicHandler)
 http.Handle("/city", chain)
 http.ListenAndServe(":8000", nil)
}

Working with Middleware and RPC Chapter 3

[70]

The complete code with these added changes is available as a file
called multipleMiddlewareWithAlice.go in the chapter 3 folder from the book's
GitHub repository. With the knowledge of the preceding concepts, let us build a logging
middleware with a library from the Gorilla toolkit called Handlers.

Using Gorilla's Handlers middleware for
Logging
The Gorilla Handlers package provides various kinds of middleware for common tasks.
The most important ones in the list are:

LoggingHandler: For logging in Apache Common Log Format
CompressionHandler: For zipping the responses
RecoveryHandler: For recovering from unexpected panics

Here, we use the LoggingHandler to perform API-wide logging. First, install this library
using go get:

go get "github.com/gorilla/handlers"

This logging server enables us to create a server like a log with time and option. For
example, when you see apache.log, you find something like this:

192.168.2.20 - - [28/Jul/2006:10:27:10 -0300] "GET /cgi-bin/try/ HTTP/1.0"
200 3395
127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216

 The format is IP-Date-Method:Endpoint-ResponseStatus. Writing our own such
middleware will take some effort. But Gorilla Handlers already implements it for us. Take a
look at the following code snippet:

package main
import (
 "github.com/gorilla/handlers"
 "github.com/gorilla/mux"
 "log"
 "os"
 "net/http"
)
func mainLogic(w http.ResponseWriter, r *http.Request) {
 log.Println("Processing request!")
 w.Write([]byte("OK"))

Working with Middleware and RPC Chapter 3

[71]

 log.Println("Finished processing request")
}
func main() {
 r := mux.NewRouter()
 r.HandleFunc("/", mainLogic)
 loggedRouter := handlers.LoggingHandler(os.Stdout, r)
 http.ListenAndServe(":8000", loggedRouter)
}

Now run the server:

go run loggingMiddleware.go

Now, let us open http://127.0.0.1:8000 in the browser, or do a CURL, and you will
see the following output:

2017/05/28 10:51:44 Processing request!
2017/05/28 10:51:44 Finished processing request
127.0.0.1 - - [28/May/2017:10:51:44 +0530] "GET / HTTP/1.1" 200 2
127.0.0.1 - - [28/May/2017:10:51:44 +0530] "GET /favicon.ico HTTP/1.1" 404
19

If you observe, the last two logs are generated by the middleware. Gorilla
LoggingMiddleware writes them at response time.

In the previous example, we always checked the API on localhost. In this example, we
explicitly specified replacing localhost with 127.0.0.1 because the former will show as an
empty IP in the logs.

Coming to the program, we are importing the Gorilla Mux router and Gorilla handlers.
Then we are attaching a handler called mainLogic to the router. Next, we are wrapping the
router in the handlers.LoggingHandler middleware. It returns one more handler, which
we can pass safely to http.ListenAndServe.

You can try other middleware from handlers, too. This section's motto is to introduce you to
Gorilla Handlers. There are many other external packages available for Go. There is one
library worth mentioning for writing middleware directly on net/http. It is Negroni
(github.com/urfave/negroni). It also provides the functionality of Alice, the Gorilla
LoggingHandler. So please have a look at it.

We can easily build cookie-based authentication middleware using a library called go.uuid
(github.com/satori/go.uuid) and cookies.

http://github.com/urfave/negroni
http://github.com/satori/go.uuid

Working with Middleware and RPC Chapter 3

[72]

What is RPC?
Remote Procedure Call (RPC) is an interprocess communication that exchanges information
between various distributed systems. A computer called Alice can call functions
(procedures) in another computer called Bob in protocol format and can get the computed
result back. Without implementing the functionality locally, we can request things from a
network that lies in another place or geographical region.

The entire process can be broken down into the following steps:

Clients prepare function name and arguments to send
Clients send them to an RPC server by dialing the connection
The server receives the function name and arguments
The server executes the remote process
The message will be sent back to the client
The client collects the data from the request and uses it appropriately

The server needs to expose its service for the client to connect and request a remote
procedure. Take a look at the following diagram:

Working with Middleware and RPC Chapter 3

[73]

Go provides a library to implement both the RPC server and RPC client. In the preceding
diagram, the RPC client dials the connection with the details like the host and port. It sends
two things along with the request. One is arguments and the reply pointer. Since it is a
pointer, the server can modify it and send it back. Then the client can use the data filled into
the pointer. Go has two libraries, net/rpc, and net/rpc/jsonrpc, for working with RPC. Let us
write an RPC server that talks to the client and serves the server time.

Creating an RPC server
Let us create a simple RPC server that sends the UTC server time back to the RPC client.
First, we start with the server.

The RPC server and RPC client should agree upon two things:

Arguments passed1.
Value returned2.

The types for the preceding two parameters should exactly match for both server and client:

package main
import (
 "log"
 "net"
 "net/http"
 "net/rpc"
 "time"
)
type Args struct{}
type TimeServer int64
func (t *TimeServer) GiveServerTime(args *Args, reply *int64) error {
 // Fill reply pointer to send the data back
 *reply = time.Now().Unix()
 return nil
}
func main() {
 // Create a new RPC server
 timeserver := new(TimeServer)
 // Register RPC server
 rpc.Register(timeserver)
 rpc.HandleHTTP()
 // Listen for requests on port 1234
 l, e := net.Listen("tcp", ":1234")
 if e != nil {
 log.Fatal("listen error:", e)

Working with Middleware and RPC Chapter 3

[74]

 }
 http.Serve(l, nil)
}

We first create the Args struct. This holds information about arguments passed from the
client (RPC) to the server. Then, we created a TimeServer number to register with the
rpc.Register. Here, the server wishes to export an object of type TimeServer(int64).
HandleHTTP registers an HTTP handler for RPC messages to DefaultServer. Then we
started a TCP server that listens on port 1234. The http.Serve function is used to serve it
as a running program. GiveServerTime is the function that will be called by the client, and
the current server time is returned.

There are a few points to note from the preceding example:

GiveServerTime takes the Args object as the first argument and a reply pointer
object
It sets the reply pointer object but does not return anything except an error
The Args struct here has no fields because this server is not expecting the client to
send any arguments

Before running this program, let us write the RPC client, too. Both can be run
simultaneously.

Creating an RPC client
Now, the client also uses the same net/rpc package but uses different methods to dial to the
server and get the remote function executed. The only way to get data back is to pass the
reply pointer object along with the request, as shown in the following code snippet:

package main
import (
 "log"
 "net/rpc"
)
type Args struct {
}
func main() {
 var reply int64
 args := Args{}
 client, err := rpc.DialHTTP("tcp", "localhost"+":1234")
 if err != nil {
 log.Fatal("dialing:", err)
 }

Working with Middleware and RPC Chapter 3

[75]

 err = client.Call("TimeServer.GiveServerTime", args, &reply)
 if err != nil {
 log.Fatal("arith error:", err)
 }
 log.Printf("%d", reply)}

The client is performing the following things here:

Do a DialHTTP to connect to the RPC server, which is running on the localhost1.
on port 1234.
Call the Remote function with the Name:Function format with args and reply2.
with the pointer object.
Get the data collected into the reply object. 3.
The Call function is sequential in nature.4.

Now we can run both the server and client to see them in action:

go run RPCServer.go

This runs the server. Now open another shell tab and run this:

go run RPCClient.go

Now the server console will output the following UNIX time string:

2017/05/28 19:26:31 1495979791

See the magic? The client is running as an independent program. Here, both the programs
can be on different machines and the computing can still be shared. This is the core concept
of distributed systems. The tasks are divided and given to various RPC servers. Finally, the
client collects the results and uses them for further actions.

Custom RPC code is only useful when the client and server are both written in Go. So in
order to have the RPC server consumed by multiple services, we need to define the JSON
RPC over HTTP. Then, any other programming language can send a JSON string and get
JSON as a result.

RPC should be secured because it is executing the remote functions.
Authorization is needed while collecting requests from the client.

Working with Middleware and RPC Chapter 3

[76]

JSON RPC using Gorilla RPC
We saw that the Gorilla toolkit helps us by providing many useful libraries. Then we
explored Mux, Handlers, and now, the Gorilla RPC library. Using this, we can create RPC
servers and clients that talk using a JSON instead of a custom reply pointer. Let us convert
the preceding example into a much more useful one.

Consider this scenario. We have a JSON file on the server that has details of books (name,
ID, author). The client requests book information by making an HTTP request. When the
RPC server receives the request, it reads the file from the filesystem and parses it. If the
given ID matches any book, then the server sends the information back to the client in the
JSON format. We can install Gorilla RPC with the following command:

go get github.com/gorilla/rpc

This package derives from the standard net/rpc package but uses a single HTTP request
per call instead of persistent connections. Other differences compared to net/rpc: are
explained in the following sections.

Multiple codecs can be registered in the same server. A codec is chosen based on the
Content-Type header from the request. Service methods also receive the http.Request
as a parameter. This package can be used on Google App Engine. Now, let us write an RPC
JSON server. Here we are implementing the JSON1.0 specification. For 2.0, you should use
Gorilla JSON2:

package main
import (
 jsonparse "encoding/json"
 "io/ioutil"
 "log"
 "net/http"
 "os"
 "github.com/gorilla/mux"
 "github.com/gorilla/rpc"
 "github.com/gorilla/rpc/json"
)
// Args holds arguments passed to JSON RPC service
type Args struct {
 Id string
}
// Book struct holds Book JSON structure
type Book struct {
 Id string `"json:string,omitempty"`
 Name string `"json:name,omitempty"`
 Author string `"json:author,omitempty"`

Working with Middleware and RPC Chapter 3

[77]

}
type JSONServer struct{}
// GiveBookDetail
func (t *JSONServer) GiveBookDetail(r *http.Request, args *Args, reply
*Book) error {
 var books []Book
 // Read JSON file and load data
 raw, readerr := ioutil.ReadFile("./books.json")
 if readerr != nil {
 log.Println("error:", readerr)
 os.Exit(1)
 }
 // Unmarshal JSON raw data into books array
 marshalerr := jsonparse.Unmarshal(raw, &books)
 if marshalerr != nil {
 log.Println("error:", marshalerr)
 os.Exit(1)
 }
 // Iterate over each book to find the given book
 for _, book := range books {
 if book.Id == args.Id {
 // If book found, fill reply with it
 *reply = book
 break
 }
 }
 return nil
}
func main() {
 // Create a new RPC server
 s := rpc.NewServer() // Register the type of data requested as JSON
 s.RegisterCodec(json.NewCodec(), "application/json")
 // Register the service by creating a new JSON server
 s.RegisterService(new(JSONServer), "")
 r := mux.NewRouter()
 r.Handle("/rpc", s)
 http.ListenAndServe(":1234", r)
}

This program might look different from the preceding RPC server implementation. It is
because of the inclusion of the Gorilla Mux, Gorilla rpc, and jsonrpc packages. Let us run
the preceding program before explaining what is happening. Run the server with the
following command:

go run jsonRPCServer.go

Working with Middleware and RPC Chapter 3

[78]

Now where it the client? Here the client can be a CURL command since the RPC server is
serving requests over HTTP. We need to post JSON with a book ID to get the details. So fire
up another shell and execute this CURL request:

curl -X POST \
 http://localhost:1234/rpc \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{
 "method": "JSONServer.GiveBookDetail",
 "params": [{
 "Id": "1234"
 }],
 "id": "1"
}'

The output will be nice JSON, that served directly from the JSON RPC server:

{"result":{"Id":"1234","Name":"In the sunburned country","Author":"Bill
Bryson"},"error":null,"id":"1"}

Now, coming to the program, we have a lot to understand. The documentation for creating
RPC services is very limited. So the technique we used in the program can be applied to a
wide variety of use cases. First, we are creating the Args and Book structs to hold the
information about the JSON arguments passed and the book structure, respectively. We are
defining a remote function called GiveBookDetail on a resource called JSONServer. This
struct is a service created to register with the RegisterService function of the RPC server.
If you notice, we are also registering the codec as JSON.

Whenever we get a request from the client, we load the JSON file called books.json into
memory and then into the Book struct using JSON's Unmarshal method. jsonparse is the
alias given for the Go package encoding/json because the JSON package from the Gorilla
import has the same name. In order to remove conflict, we used an alias.

The reply reference is passed to the remote function. In the remote function, we are setting
the value of the reply with the matched book. If the ID sent by the client matches with any
of the books in JSON, then the data is filled. If there is no match, then empty data will be
sent back by the RPC server. In this way, one can create a JSON RPC to allow clients to be
universal. Here, we didn't write a Go client. Any client can access data from the service.

Prefer JSON RPC when multiple client technologies need to connect to
your RPC service.

Working with Middleware and RPC Chapter 3

[79]

Summary
In this chapter, we first looked into what middleware is, exactly, including how middleware
processes a request and response. We then explored middleware code with a few practical
examples. After that, we saw how to chain our middleware by passing one middleware to
another. Then, we used a package called Alice for intuitive chaining. We also took a look
at the Gorilla handlers middleware for logging. Next, we learned what an RPC is and how
an RPC server and client can be built. After that, we explained what a JSON RPC is, and we
saw how one can create a JSON RPC using Gorilla toolkit. We introduced many third-party
packages for middleware and RPC, with examples.

In the next chapter, we are going to explore few famous web frameworks those further
simplify the REST API creation. They have batteries included by possessing inbuilt
middleware and HTTP routers.

4
Simplifying RESTful Services
with Popular Go Frameworks

In this chapter, we are going to cover topics related to using a framework for simplifying
building REST services. First, we will take a quick look at go-restful, a REST API creation
framework, and then move on to a framework called Gin. We will try to build a Metro Rail
API in this chapter. The frameworks we are about to discuss are fully-fledged web
frameworks which can also be used to create REST APIs in a short time. We will talk a lot
about resources and REST verbs in this chapter. We will try to integrate a small database
called Sqlite3 with our API. Finally, we will inspect Revel.go and see how to prototype
our REST API with it.

Overall, the topics we will cover in this chapter are as follows:

How to use SQLite3 in Go
Creating a REST API with the go-restful package
Introducing the Gin framework for creating a REST API
Introducing Revel.go for creating a REST API
Basics for building CRUD operations

Getting the code
 You can get the code samples for this chapter from https:/ ​/​github. ​com/​narenaryan/
gorestful/​tree/​master/ ​chapter4. This chapter's examples are in the form of a project
instead of single programs. So, copy the respective directory to your GOPATH to run the code
samples properly.

https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4
https://github.com/narenaryan/gorestful/tree/master/chapter4

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[81]

go-restful, a framework for REST API
creation
go-restful is a package for building REST-style web services in Go. REST, as we
discussed in the preceding section, asks developers to follow a set of design protocols. We
have already discussed how the REST verbs should be defined and what they do to the
resources.

Using go-restful, we can separate the logic for API handlers and attach REST verbs. The
benefit of this is that it clearly tells us by looking at the code what API we are creating.
Before jumping into an example, we need to install a database called SQLite3 for our REST
API with go-restful. The installation steps are as follows:

On Ubuntu, run this command:

 apt-get install sqlite3 libsqlite3-dev

On OS X, you can use the brew command to install SQLite3:

 brew install sqlite3

Now, install the go-restful package with the following get command:

 go get github.com/emicklei/go-restful

We are ready to go. First, let us write a simple program showing what go-restful can do
in a few lines of code. Let us create a simple ping server that echoes the server time back to
the client:

package main
import (
 "fmt"
 "github.com/emicklei/go-restful"
 "io"
 "net/http"
 "time"
)
func main() {
 // Create a web service
 webservice := new(restful.WebService)
 // Create a route and attach it to handler in the service
 webservice.Route(webservice.GET("/ping").To(pingTime))
 // Add the service to application
 restful.Add(webservice)

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[82]

 http.ListenAndServe(":8000", nil)
}
func pingTime(req *restful.Request, resp *restful.Response) {
 // Write to the response
 io.WriteString(resp, fmt.Sprintf("%s", time.Now()))
}

If we run this program:

go run basicExample.go

The server will be running on port 8000 of localhost. So, we can either make a curl request
or use a browser to see the GET request output:

curl -X GET "http://localhost:8000/ping"
2017-06-06 07:37:26.238146296 +0530 IST

In the preceding program, we imported the go-restful library and we created a new
service using a new instance of the restful.WebService struct. Next, we can create a
REST verb using the following statement:

webservice.GET("/ping")

We can attach a function handler to execute this verb; pingTime is one such function. These
chained functions are passed to a Route function to create a router. Then comes the
following important statement:

restful.Add(webservice)

This registers the newly created webservice with the go-restful. If you observe, we are
not passing any ServeMux objects to the http.ListenServe function; go-restful will
take care of it. The main concept here is to use the resource-based REST API creation in go-
restful. Going from the basic example, let us build something practical.

Take a scenario where your city is getting a new Metro Rail and you need to develop a
REST API for other developers to consume and create an app accordingly. We will create
one such API in this chapter and use various frameworks to show the implementation.
Before that, for Create, Read, Update, Delete (CRUD) operations, we should know how to
query or insert them into the SQLite DB with Go code.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[83]

CRUD operations and SQLite3 basics
All SQLite3 operations are going to be done using a library called go-sqlite3. We can
install that package using the following command:

go get github.com/mattn/go-sqlite3

The special thing about this library is that it uses the internal sql package of Go. We
usually import database/sql and use sql to execute database queries on the database
(here, SQLite3):

import "database/sql"

Now, we can create a database driver and then execute the SQL commands on it using a
method called Query:

sqliteFundamentals.go:

package main
import (
 "database/sql"
 "log"
 _ "github.com/mattn/go-sqlite3"
)
// Book is a placeholder for book
type Book struct {
 id int
 name string
 author string
}
func main() {
 db, err := sql.Open("sqlite3", "./books.db")
 log.Println(db)
 if err != nil {
 log.Println(err)
 }
 // Create table
 statement, err := db.Prepare("CREATE TABLE IF NOT EXISTS books (id
INTEGER PRIMARY KEY, isbn INTEGER, author VARCHAR(64), name VARCHAR(64)
NULL)")
 if err != nil {
 log.Println("Error in creating table")
 } else {
 log.Println("Successfully created table books!")
 }
 statement.Exec()

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[84]

 // Create
 statement, _ = db.Prepare("INSERT INTO books (name, author, isbn)
VALUES (?, ?, ?)")
 statement.Exec("A Tale of Two Cities", "Charles Dickens", 140430547)
 log.Println("Inserted the book into database!")
 // Read
 rows, _ := db.Query("SELECT id, name, author FROM books")
 var tempBook Book
 for rows.Next() {
 rows.Scan(&tempBook.id, &tempBook.name, &tempBook.author)
 log.Printf("ID:%d, Book:%s, Author:%s\n", tempBook.id,
tempBook.name, tempBook.author)
 }
 // Update
 statement, _ = db.Prepare("update books set name=? where id=?")
 statement.Exec("The Tale of Two Cities", 1)
 log.Println("Successfully updated the book in database!")
 //Delete
 statement, _ = db.Prepare("delete from books where id=?")
 statement.Exec(1)
 log.Println("Successfully deleted the book in database!")
}

This program explains how we can perform CRUD operations on a SQL database.
Currently, the database is SQLite3. Let us run this using the following command:

go run sqliteFundamentals.go

And the output looks like the following, printing all the log statements:

2017/06/10 08:04:31 Successfully created table books!
2017/06/10 08:04:31 Inserted the book into database!
2017/06/10 08:04:31 ID:1, Book:A Tale of Two Cities, Author:Charles Dickens
2017/06/10 08:04:31 Successfully updated the book in database!
2017/06/10 08:04:31 Successfully deleted the book in database!

This program runs on Windows and Linux without any problem. In Go
versions less than 1.8.1, you may see problems on macOS X such as Signal
Killed. This is because of the Xcode version; please keep this in mind.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[85]

Coming to the program, we are first importing database/sql and go-sqlite3. Then, we
are opening a db file on the filesystem using the sql.Open() function. It takes two
arguments, type of database and filename. It returns an error if something goes wrong, or
else, a database driver. In the sql library, in order to escape the SQL injection vulnerability,
the package provides a function called Prepare on the database driver:

statement, err := db.Prepare("CREATE TABLE IF NOT EXISTS books (id INTEGER
PRIMARY KEY, isbn INTEGER, author VARCHAR(64), name VARCHAR(64) NULL)")

The preceding statement just creates a statement without filling in any details. Actual data
passed to the SQL query uses an Exec function in the statement. For example, in the
preceding code snippet we used:

statement, _ = db.Prepare("INSERT INTO books (name, author, isbn) VALUES
(?, ?, ?)")
statement.Exec("A Tale of Two Cities", "Charles Dickens", 140430547)

If you pass incorrect values, such as strings that cause SQL injection, the driver rejects the
SQL operation instantly. For getting data back from the database, use the Query method. It
returns an iterator that returns all the rows for the matched query using the Next method.
We should use that iterator in a loop to process, as shown in the following code:

rows, _ := db.Query("SELECT id, name, author FROM books")
var tempBook Book
for rows.Next() {
 rows.Scan(&tempBook.id, &tempBook.name, &tempBook.author)
 log.Printf("ID:%d, Book:%s, Author:%s\n", tempBook.id, tempBook.name,
tempBook.author)
}

What if we need to pass criteria to the SELECT statement? Then, you should prepare a
statement and then pass wildcard(?) data to it.

Building a Metro Rail API with go-restful
Let us use the knowledge we gained in the previous section and create an API for the City
Metro Rail project we talked about in the preceding section. The roadmap is as follows:

 Design a REST API document.1.
 Create models for a database.2.
 Implement the API logic.3.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[86]

Design specification
Before creating any API, we should know what the specifications of APIs are in the form of
a document. We showed a few examples in the previous chapters, including the URL
shortener API design document. Let us try to create one for this Metro Rail project. Take a
look at the following table:

HTTP verb Path Action Resource

POST /v1/train (details as JSON body) Create Train

POST /v1/station (details as JSON body) Create Station

GET /v1/train/id Read Train

GET /v1/station/id Read Station

POST /v1/schedule (source and destination) Create Route

We can also include the UPDATE and DELETE methods. By implementing the preceding
design, it will be obvious for users to implement them on their own.

Creating database models
Let us write a few SQL strings for creating the tables for the preceding train, station, and
route resources. We are going to create a project layout for this API. The project layout will
look like the following screenshot:

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[87]

We create our projects in $GOPATH/src/github.com/user/. Here, the user is
narenaryan, railAPI is our project source, and dbutils is our own package for handling
database initialization utility functions. Let us start with the dbutils/models.go file. I
will add three models each for train, station, and schedule in the models.go file:

package dbutils

const train = `
 CREATE TABLE IF NOT EXISTS train (
 ID INTEGER PRIMARY KEY AUTOINCREMENT,
 DRIVER_NAME VARCHAR(64) NULL,
 OPERATING_STATUS BOOLEAN
)
`

const station = `
 CREATE TABLE IF NOT EXISTS station (
 ID INTEGER PRIMARY KEY AUTOINCREMENT,
 NAME VARCHAR(64) NULL,
 OPENING_TIME TIME NULL,
 CLOSING_TIME TIME NULL
)
`
const schedule = `
 CREATE TABLE IF NOT EXISTS schedule (
 ID INTEGER PRIMARY KEY AUTOINCREMENT,
 TRAIN_ID INT,
 STATION_ID INT,
 ARRIVAL_TIME TIME,
 FOREIGN KEY (TRAIN_ID) REFERENCES train(ID),
 FOREIGN KEY (STATION_ID) REFERENCES station(ID)
)
`

These are plain multi-line strings that are delimited by the backtick (`) character. The
schedule holds the information of a train arriving at a particular station at a given time.
Here, train and station are foreign keys to the schedule table. For train, the details related to
it are columns. The package name is dbutils. When we mention the package names, all the
Go programs in that package can share variables and functions exported without any need
of actual importing.

Now, let us add code to initialize the (create tables) database in the init-tables.go file:

package dbutils
import "log"
import "database/sql"

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[88]

func Initialize(dbDriver *sql.DB) {
 statement, driverError := dbDriver.Prepare(train)
 if driverError != nil {
 log.Println(driverError)
 }
 // Create train table
 _, statementError := statement.Exec()
 if statementError != nil {
 log.Println("Table already exists!")
 }
 statement, _ = dbDriver.Prepare(station)
 statement.Exec()
 statement, _ = dbDriver.Prepare(schedule)
 statement.Exec()
 log.Println("All tables created/initialized successfully!")
}

We are importing database/sql to pass the type of argument in the function. All other
statements in the function are similar to the SQLite3 example we gave in the preceding
code. It is just creating three tables in the SQLite3 database. Our main program should pass
the database driver to this function. If you observe here, we are not importing train, station,
and schedule. But, since this file is in the db utils package, variables in models.go are
accessible here.

Now our initial package is finished. You can build the object code for this package using the
following command:

go build github.com/narenaryan/dbutils

It is not useful until we create and run our main program. So, let us write a simple main
program that imports the Initialize function from the dbutils package. Let us call the
file main.go:

package main

import (
 "database/sql"
 "log"

 _ "github.com/mattn/go-sqlite3"
 "github.com/narenaryan/dbutils"
)

func main() {
 // Connect to Database
 db, err := sql.Open("sqlite3", "./railapi.db")

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[89]

 if err != nil {
 log.Println("Driver creation failed!")
 }
 // Create tables
 dbutils.Initialize(db)
}

And run the program from the railAPI directory using the following command:

go run main.go

The output you see should be something like the following:

2017/06/10 14:05:36 All tables created/initialized successfully!

In the preceding program, we added the code for creating a database driver and passed the
table creation task to the Initialize function from the dbutils package. We can do that
straight away in our main program, but it is good to decompose the logic into multiple
packages and components. Now, we will extend this simple layout to create an API using
the go-restful package. The API should implement all the functions of our API design
document.

The railapi.db file from the preceding directory tree picture gets
created once we run our main program. SQLite3 will take care of creating
the database file if it doesn't exist. SQLite3 databases are simple files. You
can enter into the SQLite shell using the $ sqlite3 file_name
command.

Let us modify the main program into a new one. We will go step by step and understand
how to build REST services using go-restful in this example. First, add the necessary
imports to the program:

package main
import (
 "database/sql"
 "encoding/json"
 "log"
 "net/http"
 "time"
 "github.com/emicklei/go-restful"
 _ "github.com/mattn/go-sqlite3"
 "github.com/narenaryan/dbutils"
)

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[90]

We need two external packages, go-restful and go-sqlite3, for building the API logic.
The first one is for handlers and the second package is for adding persistence features.
dbutils is the one we previously created. The time and net/http packages are for
general purpose tasks.

Even though concrete names are given to the columns in the SQLite database's tables, in GO
programming we need a few structs to handle data coming in and out of the database.
There should be data holders for all the models, so we will define them next. Take a look at
the following code snippet:

// DB Driver visible to whole program
var DB *sql.DB
// TrainResource is the model for holding rail information
type TrainResource struct {
 ID int
 DriverName string
 OperatingStatus bool
}
// StationResource holds information about locations
type StationResource struct {
 ID int
 Name string
 OpeningTime time.Time
 ClosingTime time.Time
}
// ScheduleResource links both trains and stations
type ScheduleResource struct {
 ID int
 TrainID int
 StationID int
 ArrivalTime time.Time
}

The DB variable is allocated to hold the global database driver. All the above structs are
exact representations of the database models in the SQL. Go's time.Time struct type can
actually hold the TIME field from the database.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[91]

Now comes the actual go-restful implementation. We need to create a container for our
API in go-restful. Then, we should register the web services to that container. Let us
write the Register function, as shown in the following code snippet:

// Register adds paths and routes to container
func (t *TrainResource) Register(container *restful.Container) {
 ws := new(restful.WebService)
 ws.
 Path("/v1/trains").
 Consumes(restful.MIME_JSON).
 Produces(restful.MIME_JSON) // you can specify this per route as
well
 ws.Route(ws.GET("/{train-id}").To(t.getTrain))
 ws.Route(ws.POST("").To(t.createTrain))
 ws.Route(ws.DELETE("/{train-id}").To(t.removeTrain))
 container.Add(ws)
}

Web services in go-restful mainly work based on resources. So here, we are defining a
function called Register on TrainResource, taking containers as arguments. We create a
new WebService and add paths to it. A path is the URL endpoint and routes are the path
parameters or query parameters attached to the function handlers. ws is the web service
created to serve the Train resource. We attached three REST methods, namely GET, POST,
and DELETE to three function handlers, getTrain, createTrain, and removeTrain
respectively:

Path("/v1/trains").
Consumes(restful.MIME_JSON).
Produces(restful.MIME_JSON)

These statements say that API will only entertain Content-Type as application/JSON in the
request. For all other types, it automatically returns a 415--Media Not Supported error. The
returned response is automatically converted to a pretty JSON. We can also have a list of
formats such as XML, JSON, and so on. go-restful provides this feature out of the box.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[92]

Now, let us define the function handlers:

// GET http://localhost:8000/v1/trains/1
func (t TrainResource) getTrain(request *restful.Request, response
*restful.Response) {
 id := request.PathParameter("train-id")
 err := DB.QueryRow("select ID, DRIVER_NAME, OPERATING_STATUS FROM train
where id=?", id).Scan(&t.ID, &t.DriverName, &t.OperatingStatus)
 if err != nil {
 log.Println(err)
 response.AddHeader("Content-Type", "text/plain")
 response.WriteErrorString(http.StatusNotFound, "Train could not be
found.")
 } else {
 response.WriteEntity(t)
 }
}
// POST http://localhost:8000/v1/trains
func (t TrainResource) createTrain(request *restful.Request, response
*restful.Response) {
 log.Println(request.Request.Body)
 decoder := json.NewDecoder(request.Request.Body)
 var b TrainResource
 err := decoder.Decode(&b)
 log.Println(b.DriverName, b.OperatingStatus)
 // Error handling is obvious here. So omitting...
 statement, _ := DB.Prepare("insert into train (DRIVER_NAME,
OPERATING_STATUS) values (?, ?)")
 result, err := statement.Exec(b.DriverName, b.OperatingStatus)
 if err == nil {
 newID, _ := result.LastInsertId()
 b.ID = int(newID)
 response.WriteHeaderAndEntity(http.StatusCreated, b)
 } else {
 response.AddHeader("Content-Type", "text/plain")
 response.WriteErrorString(http.StatusInternalServerError,
err.Error())
 }
}
// DELETE http://localhost:8000/v1/trains/1
func (t TrainResource) removeTrain(request *restful.Request, response
*restful.Response) {
 id := request.PathParameter("train-id")
 statement, _ := DB.Prepare("delete from train where id=?")
 _, err := statement.Exec(id)
 if err == nil {
 response.WriteHeader(http.StatusOK)
 } else {

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[93]

 response.AddHeader("Content-Type", "text/plain")
 response.WriteErrorString(http.StatusInternalServerError,
err.Error())
 }
}

All these REST methods are defined on the instance of the TimeResource struct. Coming to
the GET handler, it is passing Request and Response as its arguments. The path
parameters can be fetched using the request.PathParameter function. The argument
passed to it will be in agreement with the route we added in the preceding code snippet.
That is, train-id will be returned into the handler so that we can strip it and use it as
criteria to fetch a record from our SQLite database.

In the POST handler function, we are parsing the request body with the JSON package's
NewDecoder function. go-restful doesn't have a function to parse raw data posted from
the client. There are functions available to strip query parameters and form parameters, but
this one is missing. So, we wrote our own logic to strip and parsed the JSON body, and
used those results to insert data into our SQLite database. That handler is creating a db
record for the train with the supplied details in the request.

The DELETE function is quite obvious if you understand the previous two handlers. We are
making a DELETE SQL command using DB.Prepare and returning a 201 Status OK back,
telling us the delete operation was successful. Otherwise, we are sending back the actual
error as a server error. Now, let us write the main function handler, which is an entry point
for our program:

func main() {
 var err error
 DB, err = sql.Open("sqlite3", "./railapi.db")
 if err != nil {
 log.Println("Driver creation failed!")
 }
 dbutils.Initialize(DB)
 wsContainer := restful.NewContainer()
 wsContainer.Router(restful.CurlyRouter{})
 t := TrainResource{}
 t.Register(wsContainer)
 log.Printf("start listening on localhost:8000")
 server := &http.Server{Addr: ":8000", Handler: wsContainer}
 log.Fatal(server.ListenAndServe())
}

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[94]

The first four lines here are performing the database-related housekeeping. Then, we are
creating a new container using restful.NewContainer. Then, we are using a router called
CurlyRouter (which allows us to use {train_id} syntax in paths while setting routes) for
our container. Then, we created an instance of the TimeResource struct and passed this
container to the Register method. That container can indeed act as an HTTP handler; so,
we can pass it to the http.Server easily.

Use request.QueryParameter to fetch the query parameters from an
HTTP request in the go-restful handler.

This code is available in the GitHub repo. Now, when we run the main.go file within the
$GOPATH/src/github.com/narenaryan directory, we see this:

go run railAPI/main.go

And make a curl POST request to create a train:

 curl -X POST \
 http://localhost:8000/v1/trains \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{"driverName": "Menaka", "operatingStatus": true}'

This creates a new train with the driver and operation status details. The response is the
newly created resource with the train ID allocated:

{
 "ID": 1,
 "DriverName": "Menaka",
 "OperatingStatus": true
 }

Now, let us make a curl request to check the GET:

CURL -X GET "http://localhost:8000/v1/trains/1"

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[95]

You will see the JSON output, as follows:

{
 "ID": 1,
 "DriverName": "Menaka",
 "OperatingStatus": true
 }

We can use the same names for both posting data and JSON returned, but in order to show
the difference between two operations, different variable names are used. Now, delete the
resource we created in the preceding code snippet with the DELETE API call:

CURL -X DELETE "http://localhost:8000/v1/trains/1"

It won't return any response body; it returns Status 200 ok if the operation was
successful. Now, if we try to do a GET on the ID 1 train, then it returns us this response:

Train could not be found.

These implementations can be extended to PUT and PATCH. We need to add two more
routes to the web service in the Register method and define respective handlers. Here, we
created a web service for the Train resource. In a similar way, web services can be created
for doing CRUD operations on the Station and Schedule tables. That task is left for the
readers to explore.

go-restful is a lightweight library that is powerful in creating RESTful
services in an elegant way. The main theme is to convert resources
(models) into consumable APIs. Using other heavy frameworks may
speed up the development, but the API can end up slower because of the
wrapping of code. go-restful is a lean and low-level package for API
creation.

go-restful also provides built-in support for documenting the REST API with swagger.
It is a tool that runs and generates templates for documenting the REST API we build. By
integrating it with our go-restful-based web services, we can generate documentation on
the fly. For more information, visit https:/ ​/​github. ​com/ ​emicklei/ ​go- ​restful- ​swagger12.

https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12
https://github.com/emicklei/go-restful-swagger12

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[96]

Building RESTful APIs with the Gin
framework
Gin-gonic is a framework based on the httprouter. We learned about the httprouter
in Chapter 2, Handling Routing for Our REST Services. It is an HTTP multiplexer like Gorilla
Mux, but it is faster. Gin allows a high-level API to create REST services in a clean way. Gin
compares itself with another web framework called martini. All web frameworks allow us
to do a lot more things such as templating and web server design, additional to service
creation. Install the Gin package using the following command:

go get gopkg.in/gin-gonic/gin.v1

Let us write a simple hello world program in Gin to get familiarized with the Gin
constructs. The file is ginBasic.go:

package main
import (
 "time"
 "github.com/gin-gonic/gin"
)
func main() {
 r := gin.Default()
 /* GET takes a route and a handler function
 Handler takes the gin context object
 */
 r.GET("/pingTime", func(c *gin.Context) {
 // JSON serializer is available on gin context
 c.JSON(200, gin.H{
 "serverTime": time.Now().UTC(),
 })
 })
 r.Run(":8000") // Listen and serve on 0.0.0.0:8080
}

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[97]

This simple server tries to implement a service that provides the UTC server time to the
clients. We implemented one such service in Chapter 3, Working with Middleware and RPC.
But here, if you look, Gin allows you to do a lot of stuff with just a few lines of code; all the
boilerplate details are taken away. Coming to the preceding program, we are creating a
router with the gin.Default function. Then, we are attaching routes with REST verbs as
we did in go-restful; a route to the function handler. Then, we are calling the
Run function by passing the port to run. The default port will be 8080.

c is the gin.Context that holds the information of the individual request. We can serialize
data into JSON before sending it back to the client using the context.JSON function. Now,
if we run and see the preceding program:

go run ginExamples/ginBasic.go

Make a curl request:

CURL -X GET "http://localhost:8000/pingTime"

Output
=======
{"serverTime":"2017-06-11T03:59:44.135062688Z"}

At the same time, the console where we are running the Gin server is beautifully presented
with debug messages:

It is Apache-style debug logging showing the endpoint, the latency of the request, and the
REST method.

In order to run Gin in production mode, set the GIN_MODE = release
environment variable. Then the console output will be muted and log files
can be used for monitoring the logs.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[98]

Now, let us write our Rail API in Gin to show how to implement exactly the same thing
using the Gin framework. I will use the same project layout, name my new
project railAPIGin, and use the dbutils as it is. First, let us prepare the imports for our
program:

package main
import (
 "database/sql"
 "log"
 "net/http"
 "github.com/gin-gonic/gin"
 _ "github.com/mattn/go-sqlite3"
 "github.com/narenaryan/dbutils"
)

We imported sqlite3 and dbutils for database-related actions. We imported gin for
creating our API server. net/http is useful in providing the intuitive status codes to be
sent along with the response. Take a look at the following code snippet:

// DB Driver visible to whole program
var DB *sql.DB
// StationResource holds information about locations
type StationResource struct {
 ID int `json:"id"`
 Name string `json:"name"`
 OpeningTime string `json:"opening_time"`
 ClosingTime string `json:"closing_time"`
}

We created a database driver that is available to all handler functions. StationResource is
the placeholder for our JSON that decoded from both request body and data coming from
the database. In case you noticed, it is slightly modified from the example of go-restful.
Now, let us write the handlers implementing GET, POST, and DELETE methods for the
station resource:

// GetStation returns the station detail
func GetStation(c *gin.Context) {
 var station StationResource
 id := c.Param("station_id")
 err := DB.QueryRow("select ID, NAME, CAST(OPENING_TIME as CHAR),
CAST(CLOSING_TIME as CHAR) from station where id=?", id).Scan(&station.ID,
&station.Name, &station.OpeningTime, &station.ClosingTime)
 if err != nil {
 log.Println(err)
 c.JSON(500, gin.H{
 "error": err.Error(),

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[99]

 })
 } else {
 c.JSON(200, gin.H{
 "result": station,
 })
 }
}
// CreateStation handles the POST
func CreateStation(c *gin.Context) {
 var station StationResource
 // Parse the body into our resrource
 if err := c.BindJSON(&station); err == nil {
 // Format Time to Go time format
 statement, _ := DB.Prepare("insert into station (NAME,
OPENING_TIME, CLOSING_TIME) values (?, ?, ?)")
 result, _ := statement.Exec(station.Name,
station.OpeningTime, station.ClosingTime)
 if err == nil {
 newID, _ := result.LastInsertId()
 station.ID = int(newID)
 c.JSON(http.StatusOK, gin.H{
 "result": station,
 })
 } else {
 c.String(http.StatusInternalServerError, err.Error())
 }
 } else {
 c.String(http.StatusInternalServerError, err.Error())
 }
}
// RemoveStation handles the removing of resource
func RemoveStation(c *gin.Context) {
 id := c.Param("station-id")
 statement, _ := DB.Prepare("delete from station where id=?")
 _, err := statement.Exec(id)
 if err != nil {
 log.Println(err)
 c.JSON(500, gin.H{
 "error": err.Error(),
 })
 } else {
 c.String(http.StatusOK, "")
 }
}

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[100]

In GetStation, we are using the c.Param to strip the station_id path parameter. After
that, we are using that ID to fetch a database record from the SQLite3 station table. If you
observed carefully, the SQL query is bit different. We are using the CAST method to retrieve
the SQL TIME field as a string for Go to consume properly. If you remove the casting, a
panic error will be raised because we are trying to load a TIME field into the Go string at
runtime. To give you an idea, the TIME field looks like 8:00:00, 17:31:12, and so on. Next, we
are returning back the result using the gin.H method if there is no error.

In CreateStation, we are trying to perform an insert query. But before that, in order to get
data from the body of the POST request, we are using a function called c.BindJSON. This
function loads the data into the struct that is passed as the argument. It means the station
struct will be loaded with the data supplied from the body. That is why StationResource
has the JSON inference strings to tell what key values are expected. For example, this is
such field of StationResource struct with inference string.

ID int `json:"id"`

After collecting the data, we are preparing a database insert statement and executing it. The
result is the ID of the inserted record. We are using that ID to send station details back to
the client. In RemoveStation, we are performing a DELETE SQL query. If the operation was
successful, we return a 200 OK status back. Otherwise, we are sending the appropriate
reason for a 500 Internal Server Error.

Now comes the main program, which runs the database logic first to make sure tables are
created. Then, it tries to create a Gin router and adds routes to it:

func main() {
 var err error
 DB, err = sql.Open("sqlite3", "./railapi.db")
 if err != nil {
 log.Println("Driver creation failed!")
 }
 dbutils.Initialize(DB)
 r := gin.Default()
 // Add routes to REST verbs
 r.GET("/v1/stations/:station_id", GetStation)
 r.POST("/v1/stations", CreateStation)
 r.DELETE("/v1/stations/:station_id", RemoveStation)
 r.Run(":8000") // Default listen and serve on 0.0.0.0:8080
}

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[101]

We are registering the GET, POST, and DELETE routes with the Gin router. Then, we are
passing routes and handlers to them. Finally, we are starting the server using the
Run function of Gin with 8000 as the port. Run the preceding program, as follows:

go run railAPIGin/main.go

Now, we can insert a new record by performing a POST request:

curl -X POST \
 http://localhost:8000/v1/stations \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{"name":"Brooklyn", "opening_time":"8:12:00",
"closing_time":"18:23:00"}'

It returns:

{"result":{"id":1,"name":"Brooklyn","opening_time":"8:12:00","closing_time"
:"18:23:00"}}

And now try to fetch the details using GET:

CURL -X GET "http://10.102.78.140:8000/v1/stations/1"

Output
======
{"result":{"id":1,"name":"Brooklyn","opening_time":"8:12:00","closing_time"
:"18:23:00"}}

We can also delete the station record using the following command:

CURL -X DELETE "http://10.102.78.140:8000/v1/stations/1"

It returns a 200 OK status, confirming the resource was successfully deleted. As we already
discussed, Gin provides intuitive debugging on the console, showing the attached handler
and highlighting the latency and REST verbs with colors:

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[102]

For example, a 200 is green, a 404 is yellow, DELETE is red, and so on. Gin provides many
other features such as the categorization of routes, redirects, and middleware functions.

Use the Gin framework if you are quickly prototyping a REST web
service. You can also use it for many other things such as static file serving
and so on. Remember that it is a fully-fledged web framework. For
fetching the query parameters in Gin, use the following method on
the Gin context object: c.Query("param").

Building a RESTful API with Revel.go
Revel.go is also a fully-fledged web framework like Python's Django. It is older than Gin,
and is termed as a high productivity web framework. It is an asynchronous, modular, and
stateless framework. Unlike the go-restful and Gin frameworks where we created the
project ourselves, Revel generates a scaffold for working directly.

Install Revel.go using the following command:

go get github.com/revel/revel

In order to run the scaffold tool, we should install one more supplementary package:

go get github.com/revel/cmd/revel

Make sure that $GOPATH/bin is in your PATH variable. Some external packages install the
binary in the $GOPATH/bin directory. If it is in the path, we can access executables system-
wide. Here, Revel installs a binary called revel. On Ubuntu or macOS X, you can do it
using the following command:

export PATH=$PATH:$GOPATH/bin

Add the preceding line to ~/.bashrc to save the setting. On Windows, you need to directly
call the executable by its location. Now we are ready to start with Revel. Let us create a new
project called railAPIRevel in github.com/narenaryan:

revel new railAPIRevel

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[103]

This creates a project scaffold without writing a single line of code. This is how web
frameworks abstract things for quick prototyping. A Revel project layout tree looks like
this:

 conf/ Configuration directory
 app.conf Main app configuration file
 routes Routes definition file

 app/ App sources
 init.go Interceptor registration
 controllers/ App controllers go here
 views/ Templates directory

 messages/ Message files

 public/ Public static assets
 css/ CSS files
 js/ Javascript files
 images/ Image files

 tests/ Test suites

Out of all those boilerplate directories, three things are important for creating an API. Those
are:

app/controllers

conf/app.conf

conf/routes

Controllers are the logic containers that execute the API logic. app.conf allows us to set the
host, port, and dev mode/production mode and so on. routes defines the triple of the
endpoint, REST verb, and function handler (here, controller's function). This means to
define a function in the controller and attach it to a route in the routes file.

Let us use the same example we have seen for go-restful, creating an API for trains. But
here, due to the redundancy, we will drop the database logic. We will see shortly how to
build GET, POST, and DELETE actions for the API using Revel. Now, modify the routes file to
this:

Routes Config
#
This file defines all application routes (Higher priority routes first)
#

module:testrunner

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[104]

module:jobs

GET /v1/trains/:train-id App.GetTrain
POST /v1/trains App.CreateTrain
DELETE /v1/trains/:train-id App.RemoveTrain

The syntax may look a bit new. It is a configuration file where we simply define a route in
this format:

VERB END_POINT HANDLER

We haven't defined handlers yet. In the endpoint, the path parameters are accessed using
the :param notation. This means for the GET request in the file, train-id will be passed as
the path parameter. Now, move to the controllers folder and modify the existing
controller in app.go file to this:

package controllers
import (
 "log"
 "net/http"
 "strconv"
 "github.com/revel/revel"
)
type App struct {
 *revel.Controller
}
// TrainResource is the model for holding rail information
type TrainResource struct {
 ID int `json:"id"`
 DriverName string `json:"driver_name"`
 OperatingStatus bool `json:"operating_status"`
}
// GetTrain handles GET on train resource
func (c App) GetTrain() revel.Result {
 var train TrainResource
 // Getting the values from path parameters.
 id := c.Params.Route.Get("train-id")
 // use this ID to query from database and fill train table....
 train.ID, _ = strconv.Atoi(id)
 train.DriverName = "Logan" // Comes from DB
 train.OperatingStatus = true // Comes from DB
 c.Response.Status = http.StatusOK
 return c.RenderJSON(train)
}
// CreateTrain handles POST on train resource
func (c App) CreateTrain() revel.Result {

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[105]

 var train TrainResource
 c.Params.BindJSON(&train)
 // Use train.DriverName and train.OperatingStatus to insert into train
table....
 train.ID = 2
 c.Response.Status = http.StatusCreated
 return c.RenderJSON(train)
}
// RemoveTrain implements DELETE on train resource
func (c App) RemoveTrain() revel.Result {
 id := c.Params.Route.Get("train-id")
 // Use ID to delete record from train table....
 log.Println("Successfully deleted the resource:", id)
 c.Response.Status = http.StatusOK
 return c.RenderText("")
}

We created API handlers in the file app.go. Those handler names should match the ones
we mentioned in the routes file. We can create a Revel controller using a struct with
*revel.Controller as its member. Then, we can attach any number of handlers to it. The
controller holds the information of incoming HTTP requests so that we can use the
information such as query parameters, path parameters, JSON body, form data, and so on
in our handler.

We are defining TrainResource to work as a data holder. In GetTrain, we are fetching
the path parameters using the c.Params.Route.Get function. The argument to that
function is the path parameter we specified in the route file (here, train-id). The value
will be a string. We need to convert it to Int type to map it with train.ID. Then, we are
setting the response status as 200 OK using the c.Response.Status variable (not
function). c.RenderJSON takes a struct and transforms it into the JSON body.

In CreateTrain, we are adding the POST request logic. We are creating a new
TrainResource struct and passing it to a function called c.Params.BindJSON. What
BindJSON does is it plucks the parameters from the JSON POST body and tries to find
matching fields in the struct and fill them. When we marshal a Go struct to JSON, field
names will be translated to keys as it is. But, if we attach the `jason:"id"` string format to
any struct field, it explicitly says that the JSON that is marshaled from this struct should
have the key id, not ID. This is a good practice in Go while working with JSON. Then, we
are adding a status of 201 created to the HTTP response. We are returning the train struct,
which will be converted into JSON internally.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[106]

The RemoveTrain handler logic is similar to that of GET. A subtle difference is that nothing
is sent in the body. As we previously mentioned, database CRUD logic is omitted from the
preceding example. It is an exercise for readers to try adding SQLite3 logic by observing
what we have done in the go-restful and Gin sections.

Finally, the default port on which the Revel server runs is 9000. The configuration to
change the port number is in the conf/app.conf file. Let us follow the tradition of running
our app on 8000. So, modify the http port section of the file to the following. This tells the
Revel server to run on a different port:

......
The IP address on which to listen.
http.addr =

The port on which to listen.
http.port = 8000 # Change from 9000 to 8000 or any port

Whether to use SSL or not.
http.ssl = false
......

Now, we can run our Revel API server using this command:

revel run github.com/narenaryan/railAPIRevel

Our app server starts at http://localhost:8000. Now, let us make a few API requests:

CURL -X GET "http://10.102.78.140:8000/v1/trains/1"

Output
=======
{
 "id": 1,
 "driver_name": "Logan",
 "operating_status": true
}

POST request:

curl -X POST \
 http://10.102.78.140:8000/v1/trains \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{"driver_name":"Magneto", "operating_status": true}'

Output
======

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[107]

{
 "id": 2,
 "driver_name": "Magneto",
 "operating_status": true
}

DELETE is the same as GET but no body is returned. Here, the code is illustrated to show
how to handle the request and response. Remember, Revel is more than a simple API
framework. It is a fully-fledged web framework similar to Django (Python) or Ruby on
Rails. We have got templating, tests, and many more inbuilt in Revel.

Make sure that you create a new Revel project for GOPATH/user.
Otherwise, your Revel command-line tool may not find the project while
running the project.

There is middleware support in all the web frameworks we saw in this chapter. go-
restful names its middleware Filters, whereas Gin names it custom middleware. Revel
calls its middleware interceptors. A middleware reads or writes the request and response
before and after a function handler respectively. In Chapter 3, Working with Middleware and
RPC, we discuss more about middleware.

Summary
In this chapter, we tried to build a Metro Rail API with the help of a few web frameworks
available in Go. The most popular ones are go-restful, Gin Gonic, and Revel.go. We
started by learning our first database integration in our Go applications. We chose SQLite3
and tried to write a sample application using the go-sqlite3 library.

Next, we explored go-restful and looked in detail at how to create routes and handlers.
go-restful has the concept of building APIs on top of resources. It provides an intuitive
way of creating APIs that can consume and produce various formats such as XML and
JSON. We used the train as a resource and built an API that performs CRUD operations on
the database. We explained why go-restful is lightweight and can be used to create low
latency APIs. Next, we saw the Gin framework and tried to repeat the same API, but
created an API around the station resource. We saw how to store time in the SQL database
time field. We suggested Gin for quickly prototyping your API.

Simplifying RESTful Services with Popular Go Frameworks Chapter 4

[108]

Finally, we tried to create another API on the train resource, but this time with
the Revel.go web framework. We started creating a project, inspected the directory
structure, then moved on to write a few services (without db integration). We also saw how
to run the application and change the port using a configuration file.

The main theme of this chapter was to give you a push towards a few wonderful
frameworks for creating RESTful APIs. Each framework may do things differently, choose
the one you are comfortable with. Use Revel.go when you need an end-to-end web
application (templates and UI), use Gin to quickly create REST services, and use go-rest
when the performance of the API is critical.

5
Working with MongoDB and Go

to Create REST APIs
In this chapter, we are going to introduce the NoSQL database called MongoDB. We will
learn how well MongoDB suits modern web services. We will begin by learning about
MongoDB collections and documents. We will try to create an example API with MongoDB as
the database. In this process, we will use a driver package called mgo. We will then try to
design a document model for the e-commerce REST services.

Basically, we are going to discuss the following topics:

Installing and using MongoDB
Working with the Mongo shell
Building REST APIs with MongoDB as the database
Basics of database indexing
Designing an e-commerce document model

Getting the code
 You can get the code samples for this chapter from https:/ ​/​github. ​com/​narenaryan/
gorestful/​tree/​master/ ​chapter5. This chapter's examples are a combination of single
programs and projects. So, copy the respective directory to your GOPATH to run the code
samples properly.

https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5
https://github.com/narenaryan/gorestful/tree/master/chapter5

Working with MongoDB and Go to Create REST APIs Chapter 5

[110]

Introduction to MongoDB
MongoDB is a popular NoSQL database that is attracting a lot of developers worldwide. It
is different from traditional relational databases such as MySQL, PostgreSQL, and SQLite3.
The main big difference of MongoDB compared to other databases is the ease of scalability
at the time of internet traffic. It also has JSON as its data model, which allows us to store
JSON directly into the database.

Many huge companies such as Expedia, Comcast, and Metlife built their applications on
MongoDB. It is already proven as a vital element in modern internet businesses. MongoDB
stores data in a document; think of this as a row in SQL databases. All MongoDB
documents are stored in a collection, and the collection is a table (in SQL analogy). A
sample document for an IMDB movie looks like this:

{
 _id: 5,
 name: 'Star Trek',
 year: 2009,
 directors: ['J.J. Abrams'],
 writers: ['Roberto Orci', 'Alex Kurtzman'],
 boxOffice: {
 budget:150000000,
 gross:257704099
 }
}

The main advantages of MongoDB over relational databases are:

Easy to model (schema free)
Can leverage querying power
Document structure suits modern-day web applications (JSON)
More scalable than relational databases

Installing MongoDB and using the shell
MongoDB can be easily installed on any platform. On Ubuntu 16.04, we need to perform
some processes before running the apt-get command:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv
0C49F3730359A14518585931BC711F9BA15703C6

echo "deb [arch=amd64,arm64] http://repo.mongodb.org/apt/ubuntu

Working with MongoDB and Go to Create REST APIs Chapter 5

[111]

xenial/mongodb-org/3.4 multiverse" | sudo tee
/etc/apt/sources.list.d/mongodb-org-3.4.list

sudo apt-get update && sudo apt-get install mongodb-org

It will ask for confirmation of installation in the last step; press Y. Once the installation is
done, we need to start the MongoDB daemon using the following command:

systemctl start mongod

All the preceding commands are to be run by the root. If the user is not root, use the
prepend sudo keyword before each command.

We can also download MongoDB manually from the website and run the
server with the ~/mongodb/bin/mongod/ command. For this, we need to
create an init script because the server will be killed if we close the
terminal. We can also use nohup for running the server in the background.
Usually, it is better to install it using apt-get.

For installing MongoDB on macOS X, use the Homebrew software. We can easily install it
using the following command:

brew install mongodb

After that, we need to create the db directory where MongoDB stores its database:

mkdir -p /data/db

Then, change the permissions of that file using chown:

chown -R `id -un` /data/db

Now we have MongoDB ready. We can run it in a terminal window with the following
command, which starts the MongoDB daemon:

mongod

Take a look at the following screenshot:

Working with MongoDB and Go to Create REST APIs Chapter 5

[112]

On Windows, we can manually download the installer binary and launch it by adding the
installation bin directory to the PATH variable. Then, we can run it using
the mongod command.

Working with the Mongo shell
Whenever we start using MongoDB, the first thing we should do is play with it for a while.
Looking for available databases, collections, documents, and so on can be done with a
simple tool called Mongo shell. This shell is packaged along with the installation steps we
mentioned in the preceding section. We need to launch it using the following command:

mongo

Refer to the following screenshot:

If you see this screen, everything worked fine. If you are getting any errors, the server is not
running or there is some other issue. For troubleshooting, you can look at the official
MongoDB troubleshooting guide at https:/ ​/​docs. ​mongodb. ​com/ ​manual/ ​faq/​diagnostics.
The client gives the information about MongoDB versions and other warnings. To see all
available shell commands, use the help command.

Now we are ready with our setup. Let us create a new collection called movies and insert
the preceding example document into it. By default, the database will be a test database.
You can switch to a new database using the use command:

> show databases

https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/
https://docs.mongodb.com/manual/faq/diagnostics/

Working with MongoDB and Go to Create REST APIs Chapter 5

[113]

It shows all available databases. By default, admin, test, and local are the three databases
available. In order to create a new database, just use use db_name:

> use appdb

This switches the current database to the appdb database. If you try to see this in the
available databases, it won't show up because MongoDB creates a database only when data
is inserted into it (first collection or document). So, now we can create a new collection by
inserting a document from the shell. Then, we can insert the preceding Star Trek movie
record into a collection called movies, using this command:

> db.movies.insertOne({ _id: 5, name: 'Star Trek', year: 2009, directors:
['J.J. Abrams'], writers: ['Roberto Orci', 'Alex Kurtzman'], boxOffice: {
budget:150000000, gross:257704099 } })
{
 "acknowledged" : true,
 "insertedId" : 5
}

The JSON you inserted has an ID called _id. We can either provide it while inserting a
document or MongoDB can insert one for you itself. In SQL databases, we use auto-
increment along with an ID schema to increment the ID field. Here, MongoDB generates a
unique hash ID rather than a sequence. Let us insert one more document about The Dark
Knight, but this time let us not pass the _id field:

> db.movies.insertOne({ name: 'The Dark Knight ', year: 2008, directors:
['Christopher Nolan'], writers: ['Jonathan Nolan', 'Christopher Nolan'],
boxOffice: { budget:185000000, gross:533316061 } })> db.movies.insertOne({
name: 'The Dark Knight ', year: 2008, directors: ['Christopher Nolan'],
writers: ['Jonathan Nolan', 'Christopher Nolan'], boxOffice: {
budget:185000000, gross:533316061 } })
{
 "acknowledged" : true,
 "insertedId" : ObjectId("59574125bf7a73d140d5ba4a")
}

If you observe the acknowledgement JSON response, insertId has now changed to a very
lengthy 59574125bf7a73d140d5ba4a. This is the unique hash generated by MongoDB.
Now, let us see all the documents in our collection. We can also insert a batch of documents
at a given time using an insertMany function:

> db.movies.find()

{ "_id" : 5, "name" : "Star Trek", "year" : 2009, "directors" : ["J.J.
Abrams"], "writers" : ["Roberto Orci", "Alex Kurtzman"], "boxOffice" : {

Working with MongoDB and Go to Create REST APIs Chapter 5

[114]

"budget" : 150000000, "gross" : 257704099 } }
{ "_id" : ObjectId("59574125bf7a73d140d5ba4a"), "name" : "The Dark Knight
", "year" : 2008, "directors" : ["Christopher Nolan"], "writers" : [
"Jonathan Nolan", "Christopher Nolan"], "boxOffice" : { "budget" :
185000000, "gross" : 533316061 } }

Using the find function on the movies collection returns all matched documents in the
collection. In order to return a single; document, use the findOne function. It returns the
latest document from multiple results:

> db.movies.findOne()

{ "_id" : 5, "name" : "Star Trek", "year" : 2009, "directors" : ["J.J.
Abrams"], "writers" : ["Roberto Orci", "Alex Kurtzman"], "boxOffice" : {
"budget" : 150000000, "gross" : 257704099 }}

How do we fetch a document with some criteria? This means querying. Querying in
MongoDB is known as filtering data and returning a result. If we need to filter for movies
that were released in 2008, then we can do this:

> db.movies.find({year: {$eq: 2008}})

{ "_id" : ObjectId("59574125bf7a73d140d5ba4a"), "name" : "The Dark Knight
", "year" : 2008, "directors" : ["Christopher Nolan"], "writers" : [
"Jonathan Nolan", "Christopher Nolan"], "boxOffice" : { "budget" :
185000000, "gross" : 533316061 } }

The filter query from the preceding mongo statement is:

{year: {$eq: 2008}}

This states that the searching criteria is the year and the value should be 2008. $eq is called a
filtering operator, which helps to relate the condition between the field and data. It is
equivalent to the = operator in SQL. In SQL, the equivalent query can be written as:

SELECT * FROM movies WHERE year=2008;

We can simplify the last written mongo query statement to this:

> db.movies.find({year: 2008})

Working with MongoDB and Go to Create REST APIs Chapter 5

[115]

This find query and above mongo query were the same, returning the same set of
documents. The former syntax is using the $eq which is a query operator. From now on, let
us call a query operator simply an operator. Other operators are:

Operator Function

$lt Less than

$gt Greater than

$in In the

$lte Less than or equal to

$ne Not equal to

Now, let us pose a question to ourselves. We want to fetch all the documents whose budget
is more than $150,000,000. How can we filter it with the knowledge we gained previously?
Take a look at the following code snippet:

> db.movies.find({'boxOffice.budget': {$gt: 150000000}})

{ "_id" : ObjectId("59574125bf7a73d140d5ba4a"), "name" : "The Dark Knight
", "year" : 2008, "directors" : ["Christopher Nolan"], "writers" : [
"Jonathan Nolan", "Christopher Nolan"], "boxOffice" : { "budget" :
185000000, "gross" : 533316061 } }

If you observe, we accessed the budget key within the JSON using
boxOffice.budget. The beauty of MongoDB is that it allows us to query the JSON with a
lot of freedom. Can't we add two or more operators to the criteria while fetching
documents? Yes, we can! Let us find all movies in the database that were released in 2009
with a budget of more than $150,000,000:

> db.movies.find({'boxOffice.budget': {$gt: 150000000}, year: 2009})

This returns nothing because we don't have any documents that match the given criteria.
Comma-separated fields actually combine with the AND operation. Now, let us relax our
condition and find movies that were either released in 2009 or had a budget of more than
$150,000,000:

> db.movies.find({$or: [{'boxOffice.budget': {$gt: 150000000}}, {year:
2009}]})

{ "_id" : 5, "name" : "Star Trek", "year" : 2009, "directors" : ["J.J.
Abrams"], "writers" : ["Roberto Orci", "Alex Kurtzman"], "boxOffice" : {
"budget" : 150000000, "gross" : 257704099 } }

Working with MongoDB and Go to Create REST APIs Chapter 5

[116]

{ "_id" : ObjectId("59574125bf7a73d140d5ba4a"), "name" : "The Dark Knight
", "year" : 2008, "directors" : ["Christopher Nolan"], "writers" : [
"Jonathan Nolan", "Christopher Nolan"], "boxOffice" : { "budget" :
185000000, "gross" : 533316061 } }

Here, the query is bit different. We used an operator called $or for finding the predicate of
two conditions. The result will be the criteria for fetching the documents. $or needs to be
assigned to a list that has a list of JSON condition objects. Since JSON can be nested,
conditions can also be nested. This style of querying might look new to people coming from
an SQL background. The MongoDB team designed it for the intuitive filtering of data. We
can also write advanced queries such as inner joins, outer joins, nested queries, and so on
easily in MongoDB with the clever use of operators.

Unknowingly, we have finished three operations in CRUD. We saw how to create a
database and a collection. Then, we inserted documents and read them using filters. Now it
is time for the delete operation. We can delete a document from a given collection using
the deleteOne and deleteMany functions:

> db.movies.deleteOne({"_id": ObjectId("59574125bf7a73d140d5ba4a")})
{ "acknowledged" : true, "deletedCount" : 1 }

The argument passed to the deleteOne function is the filtering criteria, which is similar to
the read operation. All the documents that match the given criteria will be removed from
the collection. The response has a nice acknowledgment message with a count of documents
that got deleted.

All the preceding sections discuss the basics of MongoDB, but with the shell, which
executes JavaScript statements. It is not quite useful executing db statements from the shell
manually. We need to call the API of Mongo DB in Go using a driver program. In the
upcoming section, we will see such a driver package called mgo. The official MongoDB
drivers include languages such as Python, Java, and Ruby. Go's mgo driver is a third-party
package.

Working with MongoDB and Go to Create REST APIs Chapter 5

[117]

Introducing mgo, a MongoDB driver for Go
mgo is a rich MongoDB driver that facilitates developers to write applications that talk to
MongoDB without the need for the Mongo shell. The Go application can talk easily with
MongoDB for all its CRUD operations using the mgo driver. It is an open-source
implementation that can be used and modified freely. It is maintained by Labix. We can
think it of as a wrapper around the MongoDB API. Installing the package is very simple,
refer to the following command:

go get gopkg.in/mgo.v2

This installs the package in $GOPATH. Now, we can refer the package to our Go programs,
as follows:

import "gopkg.in/mgo.v2"

Let us write a simple program that talks to MongoDB and inserts The Dark Knight
movie record:

package main

import (
 "fmt"
 "log"

 mgo "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

// Movie holds a movie data
type Movie struct {
 Name string `bson:"name"`
 Year string `bson:"year"`
 Directors []string `bson:"directors"`
 Writers []string `bson:"writers"`
 BoxOffice `bson:"boxOffice"`
}

// BoxOffice is nested in Movie
type BoxOffice struct {
 Budget uint64 `bson:"budget"`
 Gross uint64 `bson:"gross"`
}

func main() {
 session, err := mgo.Dial("127.0.0.1")

Working with MongoDB and Go to Create REST APIs Chapter 5

[118]

 if err != nil {
 panic(err)
 }
 defer session.Close()

 c := session.DB("appdb").C("movies")

 // Create a movie
 darkNight := &Movie{
 Name: "The Dark Knight",
 Year: "2008",
 Directors: []string{"Christopher Nolan"},
 Writers: []string{"Jonathan Nolan", "Christopher Nolan"},
 BoxOffice: BoxOffice{
 Budget: 185000000,
 Gross: 533316061,
 },
 }

 // Insert into MongoDB
 err = c.Insert(darkNight)
 if err != nil {
 log.Fatal(err)
 }

 // Now query the movie back
 result := Movie{}
 // bson.M is used for nested fields
 err = c.Find(bson.M{"boxOffice.budget": bson.M{"$gt":
150000000}}).One(&result)
 if err != nil {
 log.Fatal(err)
 }

 fmt.Println("Movie:", result.Name)
}

If you observe the code, we imported the mgo package as well as the bson package. Next,
we created the structs that model our JSON to be inserted into the DB. In the main function,
we created a session using the mgo.Dial function. After that, we fetched a collection using
the DB and C functions in a chained manner:

c := session.DB("appdb").C("movies")

Working with MongoDB and Go to Create REST APIs Chapter 5

[119]

Here, c stands for collection. We are fetching the movies collection from appdb. Then, we
are creating a struct object by filling in data. Next, we used the Insert function on the c
collection to insert darkNight data into the collection. This function can also take a list of
struct objects to insert a batch of movies. Then, we used the Find function on the collection
to read a movie with a given criteria. Here, the criteria (querying) is formed differently
compared to the one we used in the shell. Since Go is not the JavaScript shell, we need a
translator that can convert a normal filter query to the MongoDB understandable query.
The bson.M function is designed for that in mgo package:

bson.M{"year": "2008"}

But, what if we need to perform advanced queries with operators? We can do this by just
replacing the plain JSON syntax with the bson.M function. We can find a movie from the
database whose budget is more than $150,000,000 with this query:

bson.M{"boxOffice.budget": bson.M{"$gt": 150000000}}

If you contrast this with the shell command, we just added bson.M in front of the JSON
query and wrote the remaining query as it is. The operator symbol should be a string here
("$gt").

One more notable thing in the struct definition is that we added a bson:identifier tag to
each field. Without this, Go stores the BoxOffice as boxoffice. So, in order for Go to maintain
the CamelCase, we add these tags. Now, let us run this program and see the output:

go run mgoIntro.go

The output looks like the following:

Movie: The Dark Knight

The result from a query can be stored in a new struct and can be serialized to JSON for the
client to use.

Working with MongoDB and Go to Create REST APIs Chapter 5

[120]

RESTful API with Gorilla Mux and MongoDB
In the previous chapters, we explored all the possible ways of building a RESTful API. We
first looked into HTTP routers, then web frameworks. But as a personal choice, in order to
make our API lightweight, one prefers Gorilla Mux as the default choice and mgo for the
MongoDB driver. In this section, we are going to build a proper movies API with an end-to-
end integration of the database and HTTP router. We saw how to create a new resource and
retrieve it back using Go and MongoDB. Using that knowledge, let us write this program:

package main

import (
 "encoding/json"
 "io/ioutil"
 "log"
 "net/http"
 "time"

 "github.com/gorilla/mux"
 mgo "gopkg.in/mgo.v2"
 "gopkg.in/mgo.v2/bson"
)

// DB stores the database session imformation. Needs to be initialized once
type DB struct {
 session *mgo.Session
 collection *mgo.Collection
}

type Movie struct {
 ID bson.ObjectId `json:"id" bson:"_id,omitempty"`
 Name string `json:"name" bson:"name"`
 Year string `json:"year" bson:"year"`
 Directors []string `json:"directors" bson:"directors"`
 Writers []string `json:"writers" bson:"writers"`
 BoxOffice BoxOffice `json:"boxOffice" bson:"boxOffice"`
}

type BoxOffice struct {
 Budget uint64 `json:"budget" bson:"budget"`
 Gross uint64 `json:"gross" bson:"gross"`
}

// GetMovie fetches a movie with a given ID
func (db *DB) GetMovie(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)

Working with MongoDB and Go to Create REST APIs Chapter 5

[121]

 w.WriteHeader(http.StatusOK)
 var movie Movie
 err := db.collection.Find(bson.M{"_id":
bson.ObjectIdHex(vars["id"])}).One(&movie)
 if err != nil {
 w.Write([]byte(err.Error()))
 } else {
 w.Header().Set("Content-Type", "application/json")
 response, _ := json.Marshal(movie)
 w.Write(response)
 }

}

// PostMovie adds a new movie to our MongoDB collection
func (db *DB) PostMovie(w http.ResponseWriter, r *http.Request) {
 var movie Movie
 postBody, _ := ioutil.ReadAll(r.Body)
 json.Unmarshal(postBody, &movie)
 // Create a Hash ID to insert
 movie.ID = bson.NewObjectId()
 err := db.collection.Insert(movie)
 if err != nil {
 w.Write([]byte(err.Error()))
 } else {
 w.Header().Set("Content-Type", "application/json")
 response, _ := json.Marshal(movie)
 w.Write(response)
 }
}

func main() {
 session, err := mgo.Dial("127.0.0.1")
 c := session.DB("appdb").C("movies")
 db := &DB{session: session, collection: c}
 if err != nil {
 panic(err)
 }
 defer session.Close()
 // Create a new router
 r := mux.NewRouter()
 // Attach an elegant path with handler
 r.HandleFunc("/v1/movies/{id:[a-zA-Z0-9]*}",
db.GetMovie).Methods("GET")
 r.HandleFunc("/v1/movies", db.PostMovie).Methods("POST")
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",

Working with MongoDB and Go to Create REST APIs Chapter 5

[122]

 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

Let us name this program movieAPI.go and run it:

go run movieAPI.go

Next, we can make a POST API request using curl or Postman to create a new movie:

curl -X POST \
 http://localhost:8000/v1/movies \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -H 'postman-token: 6ef9507e-65b3-c3dd-4748-3a2a3e055c9c' \
 -d '{ "name" : "The Dark Knight", "year" : "2008", "directors" : [
"Christopher Nolan"], "writers" : ["Jonathan Nolan", "Christopher Nolan"
], "boxOffice" : { "budget" : 185000000, "gross" : 533316061 }
}'

This returns the following response:

{"id":"5958be2a057d926f089a9700","name":"The Dark
Knight","year":"2008","directors":["Christopher
Nolan"],"writers":["Jonathan Nolan","Christopher
Nolan"],"boxOffice":{"budget":185000000,"gross":533316061}}

Our movie is successfully created. Here, the ID that is returned is generated by the mgo
package. MongoDB expects the driver to provide the unique ID. If it's not provided, then Db
creates one itself. Now, let us make a GET API request using curl:

curl -X GET \
 http://localhost:8000/v1/movies/5958be2a057d926f089a9700 \
 -H 'cache-control: no-cache' \
 -H 'postman-token: 00282916-e7f8-5977-ea34-d8f89aeb43e2'

It returns the same data that we got while creating the resource:

{"id":"5958be2a057d926f089a9700","name":"The Dark
Knight","year":"2008","directors":["Christopher
Nolan"],"writers":["Jonathan Nolan","Christopher
Nolan"],"boxOffice":{"budget":185000000,"gross":533316061}}

Working with MongoDB and Go to Create REST APIs Chapter 5

[123]

A lot of things are happening in the preceding program. We will explain it in detail in the
upcoming sections.

In the preceding program, the trivial logic for assigning the correct status
codes is skipped in PostMovie for the sake of simplicity. The reader can
feel free to modify the program to add the correct status codes for
operations (200 OK, 201 Created, and so on).

At first, we are importing the necessary packages for our program. We imported mgo and
bson for MongoDB-related implementation, Gorilla Mux for the HTTP router
encoding/JSON, and ioutil for reading and writing JSON in the life cycle of an HTTP
request.

Then, we created a struct called DB that stores the session and collection information of
MongoDB. We need to have this in order to have a global session and use it for multiple
things instead of creating a new session (client connection). Take a look at the following
code snippet:

// DB stores the database session imformation. Needs to be initialized once
type DB struct {
 session *mgo.Session
 collection *mgo.Collection
}

We need this because multiple HTTP handlers of Mux need this information. This is a
simple trick of attaching common data to different functions. In Go, we can create a struct
and add functions to it so that data in the struct is accessible in the functions. Then, we
declared the structs that hold the information of the nested JSON for a movie. In Go, in
order to create a nested JSON structure, we should nest the structures too.

Next, we defined two functions on the DB struct. We will use these functions as handlers for
the Gorilla Mux router later. These two functions can access session and collection
information without creating a new one. The GetMovie handler function reads the data
from MongoDB and returns JSON back to the client. PostMovie creates a new resource
(movie here) in the database in a collection called moviex.

Now, coming to the main function, we are creating the session and collection here. The
session will be constant throughout the program's lifetime. But if needed, handler
functions can override the collection by using a session variable. This allows us to write
reusable database parameters. Then, we created a new router and attached handler
functions and routes using HandleFunc. Then, we created a server that runs on the 8000
port of localhost.

Working with MongoDB and Go to Create REST APIs Chapter 5

[124]

In PostMovie, we are creating a new hash ID using bson.NewObjectId() of the mgo
function. This function returns the new hash each and every time we call it. We then pass
this to the struct that we insert into the DB. We insert a document in the collection using
the collection.Insert movie function. This returns an error if something goes wrong.
For sending a message back, we are marshaling a struct using json.Marshal. If you
carefully observe the structure of the Movie struct, it is like this:

type Movie struct {
 ID bson.ObjectId `json:"id" bson:"_id,omitempty"`
 Name string `json:"name" bson:"name"`
 Year string `json:"year" bson:"year"`
 Directors []string `json:"directors" bson:"directors"`
 Writers []string `json:"writers" bson:"writers"`
 BoxOffice BoxOffice `json:"boxOffice" bson:"boxOffice"`
}

The identifier on the right side, `json:"id" bson:"_id,omitempty"`, is a helper to
show how to serialize when marshaling or unmarshaling is performed on the struct.
The bson tag shows how to insert the fields into MongoDB. json shows what format our
HTTP handler should receive and send data from and to the client respectively.

In GetMovie, we are fetching the ID passed as the path parameter using
the Mux.vars map. We cannot directly pass the ID to MongoDB because it expects a BSON
object instead of a plain string. In order to achieve that, we use
the bson.ObjectIdHex function. Once we get the movie of the given ID, that will be
loaded into the struct object. Next, we serialize it to JSON using the json.Marshal function
and will send it back to the client. We can easily add PUT (update) and DELETE methods to
the preceding code. We just need to define two more handlers, as shown in the following
code:

// UpdateMovie modifies the data of given resource
func (db *DB) UpdateMovie(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 var movie Movie
 putBody, _ := ioutil.ReadAll(r.Body)
 json.Unmarshal(putBody, &movie)
 // Create an Hash ID to insert
 err := db.collection.Update(bson.M{"_id":
bson.ObjectIdHex(vars["id"])}, bson.M{"$set": &movie})
 if err != nil {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte(err.Error()))
 } else {
 w.Header().Set("Content-Type", "text")
 w.Write([]byte("Updated succesfully!"))

Working with MongoDB and Go to Create REST APIs Chapter 5

[125]

 }
}

// DeleteMovie removes the data from the db
func (db *DB) DeleteMovie(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 // Create an Hash ID to insert
 err := db.collection.Remove(bson.M{"_id":
bson.ObjectIdHex(vars["id"])})
 if err != nil {
 w.WriteHeader(http.StatusOK)
 w.Write([]byte(err.Error()))
 } else {
 w.Header().Set("Content-Type", "text")
 w.Write([]byte("Deleted succesfully!"))
 }
}

The approach is exactly the same, except the DB methods of mgo are different. Here, we
used the Update and Remove functions. Since these are not important ones, we can just
send the status back to the client with no body. For those handlers to be active, we need to
add these two lines in the main block of the preceding program:

r.HandleFunc("/v1/movies/{id:[a-zA-Z0-9]*}", db.UpdateMovie).Methods("PUT")
r.HandleFunc("/v1/movies/{id:[a-zA-Z0-9]*}",
db.DeleteMovie).Methods("DELETE")

The complete code for these additions is available in
the chapter5/movieAPI_updated.go file.

Boosting the querying performance with
indexing
We all know that while reading a book, indexes are very important. When we try to search
for a topic in the book, we first roll our eyes through the index page. If the index is found,
then we go to the specific page number for that topic. But there is a drawback here. We are
using additional pages for the sake of this indexing. Similarly, MongoDB needs to go
through all the documents whenever we query for something. If the document stores
indexes for important fields, it can give back data to us quickly. At the same time, we are
wasting extra space for indexing.

Working with MongoDB and Go to Create REST APIs Chapter 5

[126]

In the computing field, the B-tree is an important data structure to implement indexing
because it can categorize nodes. By traversing that tree, we can find the data we need in
fewer steps. We can create an index using the createIndex function provided by
MongoDB. Let us take an example of students and their scores in an examination. We will
be doing GET operations more frequently with the sorting of scores. The indexing for this
scenario can be visualized in this form. Take a look at the following diagram:

This is the official example given by the MongoDB website. The score is the field to be
indexed because of frequent use. Once it is indexed, the database stores the address for each
document in a binary tree. Whenever someone queries this field, it checks for the range
operator (in this case, it's $lt), traverses the binary tree, and gets the addresses of
documents in shorter steps. Since the score is indexed, the sort operations are less costly. So,
the time that it takes for the database to return the sorted (ascending or descending) result is
shorter.

Coming to our previous examples of the movies API, we can create indexes for data. By
default, all _id fields are indexed, here using mongo shell to show that. Previously, we
treated the year field as a string. Let us modify that to an integer and index
it. Launch mongo shell using mongo command. Use a new mongo database and insert one
document into it:

> db.movies.insertOne({ name: 'Star Trek', year: 2009, directors:
['J.J. Abrams'], writers: ['Roberto Orci', 'Alex Kurtzman'], boxOffice:
{ budget:150000000, gross:257704099 } })
{

Working with MongoDB and Go to Create REST APIs Chapter 5

[127]

 "acknowledged" : true,
 "insertedId" : ObjectId("595a6cc01226e5fdf52026a1")
}

Insert one more similar document with the different data:

> db.movies.insertOne({ name: 'The Dark Knight ', year: 2008, directors:
['Christopher Nolan'], writers: ['Jonathan Nolan', 'Christopher Nolan'],
boxOffice: { budget:185000000, gross:533316061 } })
{
 "acknowledged" : true,
 "insertedId" : ObjectId("59603d3b0f41ead96110cf4f")
}

Now, let us add indexing to the year with the createIndex function:

db.movies.createIndex({year: 1})

This single line adds the magic for retrieving the database records faster. Now, all the
queries related to year leverage the indexing:

> db.movies.find({year: {$lt: 2010}})
{ "_id" : ObjectId("5957397f4e5c31eb7a9ed48f"), "name" : "Star Trek",
"year" : 2009, "directors" : ["J.J. Abrams"], "writers" : ["Roberto
Orci", "Alex Kurtzman"], "boxOffice" : { "budget" : 150000000, "gross" :
257704099 } }
{ "_id" : ObjectId("59603d3b0f41ead96110cf4f"), "name" : "The Dark Knight
", "year" : 2008, "directors" : ["Christopher Nolan"], "writers" : [
"Jonathan Nolan", "Christopher Nolan"], "boxOffice" : { "budget" :
185000000, "gross" : 533316061 } }

There is no difference in the query result. But the lookup mechanism for documents by
MongoDB has changed by indexing. For a larger number of documents, that could reduce
the lookup time drastically.

Indexing comes with a cost. Some queries run very slowly on different fields if indexing is
not done properly. We can also have compound indexes in MongoDB that can index
multiple fields.

In order to see the time of execution of a query, use the explain function
after a query function. For example, db.movies.find({year: {$lt:
2010}}).explain("executionStats"). This explains the winning plan
for a query, the time taken in milliseconds, indexes used, and so on.

See the performance of indexed and non-indexed data using the explain function.

Working with MongoDB and Go to Create REST APIs Chapter 5

[128]

Designing an e-commerce data document
model
Up until now, we have seen how to interact with MongoDB and perform CRUD operations
for our REST API. Here, we are going to define a real-world JSON document that can be
implemented by MongoDB. Let us lay down the design of JSON for an e-commerce
problem. These five components are a must for any e-commerce design:

Product
Customer/user
Category
Order
Review

Let us see a schema of each and every component:

Product:

{
 _id: ObjectId("59603d3b0f41ead96110cf4f"),
 sku: 1022,
 slug: "highlander-shirt-223",
 name: "Highlander casual shirt",
 description: "A nice looking casual shirt for men",
 details: {
 model_number: 235476,
 manufacturer: "HighLander",
 color: "light blue",
 mfg_date: new Date(2017, 4, 8),
 size: 40
 },
 reviews: 3,
 pricing: {
 cost: 23,
 retail: 29
 },
 categories: {
 ObjectId("3d3b10f41efad96g110vcf4f"),
 ObjectId("603d3eb0ft41ead96110cf4f")
 },
 tags: ["shirts", "men", "clothing"],
 reviews: {
 ObjectId("3bd310f41efad96g110vcf4f"),
 ObjectId("f4e603d3eb0ft41ead96110c"),

Working with MongoDB and Go to Create REST APIs Chapter 5

[129]

 ObjectId("96g3bd310f41efad110vcf4g")
 }
}

Category:

{
 _id: ObjectId("6d3b56900f41ead96110cf4f"),
 name: "Casual Shirts",
 description: "All casual shirts for men",
 slug: "casual-shirts",
 parent_categories: [{
 slug: "home"
 name: "Home",
 _id: ObjectId("3d3b10f41efad96g110vcf4f"),
 },
 {
 slug: "shirts"
 name: "Shirts",
 _id: ObjectId("603d3eb0ft41ead96110cf4f"),
 }]
}

User:

{
 _id: ObjectId("4fcf3eb0ft41ead96110"),
 username: "John",
 email_address: "john.p@gmail.com",
 password: "5kj64k56hdfjkhdfkgdf98g79df7g9dfg",
 first_name: "John",
 last_name: "Pauling",
 address_multiple: [{
 type: "home"
 street: "601 Sherwood Ave",
 city: "San Bernardino",
 state: "California",
 pincode: 94565
 },
 {
 type: "work"
 street: "241 Indian Spring St",
 city: "Pittsburg",
 state: "California",
 pincode: 94565
 }] ,
 payments: {
 name: "Paypal",

Working with MongoDB and Go to Create REST APIs Chapter 5

[130]

 auth: {
 token: "dfghjvbsclka76asdadn89"
 }
 }
}

Order:

{
 _id: ObjectId(),
 user: ObjectId("4fcf3eb0ft41ead96110"),
 state: "cart",
 item_queue: [{
 item: ObjectId("59603d3b0f41ead96110cf4f"),
 quantity: 1,
 cost: 23
 }],
 shipping_address: {
 type: "work"
 street: "241 Indian Spring St",
 city: "Pittsburg",
 state: "California",
 pincode: 94565
 },
 total: 23,
}

Review:

{
 _id: ObjectId("5tcf3eb0ft41ead96110"),
 product: ObjectId("4fcf3eb0ft41ead96110"),
 posted_date: new Date(2017, 2, 6),
 title: "Overall satisfied with product",
 body: "The product is good and durable. After dry wash, the color hasn't
changed much",
 user: ObjectId(),
 rating: 4,
 upvotes: 3,
 downvotes: 0,
 upvoters: [ObjectId("41ea5tcf3eb0ftd9233476hg"),
 ObjectId("507f1f77bcf86cd799439011"),
 ObjectId("54f113fffba522406c9cc20f")
],
 downvoters: []
}

Working with MongoDB and Go to Create REST APIs Chapter 5

[131]

All the preceding schemas are to give an idea of how an e-commerce REST service can be
designed. All the necessary fields should be included in the final data.

Note that the preceding JSON is not true JSON, but the form used in the
Mongo shell. Please observe that difference while creating the service. The
schema is given so that the reader can see how e-commerce relational data
is designed.

Since we defined the schema, there is a coding exercise for the reader. Can you create a
REST service with the preceding schema by leveraging the knowledge we gained in the
beginning sections of this chapter? Anyway, we will implement this model in other
databases in upcoming chapters.

Summary
First, we started the chapter with an introduction to MongoDB and how it solves the
problems of the modern web. MongoDB is a NoSQL database that is different from
traditional relational databases. Then, we learned how to install MongoDB on all platforms
and how to start the Mongo server. We then explored the features of the Mongo shell. The
Mongo shell is a tool for quick checking or performing CRUD operations and many other
operations in MongoDB. We looked at operator symbols for querying. We next introduced
Go's MongoDB driver called mgo and learned its usages. We created a persistent movies
API with the help of mgo and MongoDB. We saw how to map a Go struct to a JSON
document.

Not all the queries are efficient in MongoDB. So, for boosting the query performance, we
saw the indexing mechanism that reduces the document fetching time by arranging the
documents in the order of a B-tree. We saw how to measure the execution time of a query
using the explain command. Finally, we laid out an e-commerce document design by
providing the BSON (Mongo shell's JSON).

6
Working with Protocol Buffers

and GRPC
In this chapter, we are going to enter the world of protocol buffers. We are going to discover
the benefits of using protocol buffers instead of JSON, and where to use both. We will use
Google's proto library to compile protocol buffers. We will try to write a few web services
with protocol buffers that can talk to either Go, or other applications such as Python,
NodeJS, and so on. Then, we will explain GRPC, an advanced simplified form of RPC. We
will learn how GRPC and protocol buffers can help us build services that can be consumed
by any client. We will also discuss HTTP/2 and its benefits over plain HTTP/1.1 JSON-based
services.

In short, we will cover the following topics:

Protocol buffers introduction
Format of the protocol buffers
Compilation process of a protobuf
GRPC, a modern RPC library
Bidirectional streaming with GRPC

Getting the code
You can get the code samples for this chapter from https:/ ​/​github. ​com/​narenaryan/
gorestful/​tree/​master/ ​chapter6. This chapter's examples are a combination of single
programs and projects. So, copy the respective directory to your GOPATH to run the code
samples properly.

https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6
https://github.com/narenaryan/gorestful/tree/master/chapter6

Working with Protocol Buffers and GRPC Chapter 6

[133]

Introduction to protocol buffers
HTTP/1.1 is the standard that is adopted by the web community. In recent times, HTTP/2 is
becoming more popular because of its advantages. Some of the benefits of using HTTP/2
are:

Encryption of data via TLS (HTTPS)
Compression of headers
Single TCP connection
Fallback to HTTP/1.1
Support from all major browsers

The technical definition from Google about protocol buffers is:

Protocol buffers are a flexible, efficient, automated mechanism for serializing structured
data – think XML, but smaller, faster, and simpler. You define how you want your data to
be structured once, then you can use special generated source code to easily write and read
your structured data to and from a variety of data streams and using a variety of
languages. You can even update your data structure without breaking deployed programs
that are compiled against the "old" format.

In Go, protocol buffers are coupled with HTTP/2. They are a format like JSON but strictly
typed, understandable only from the client to the server. First, we will understand why
protobufs (short form of protocol buffers) exist and how to use them.

Protocol buffers have many advantages over JSON/XML for serializing structured data,
such as:

They are simpler
They are 3 to 10 times smaller
They are 20 to 100 times faster
They are less ambiguous
They generate data access classes that are easier to use programmatically

Working with Protocol Buffers and GRPC Chapter 6

[134]

Protocol buffer language
A protocol buffer is a file with a minimalistic language syntax. We compile a protocol buffer
and the target file is generated for a programming language. For example, in Go, the
compiled file will be a .go file with structs mapping the protobuf file. In Java, a class file
will be created. Think protocol buffer as the skeleton for data with a particular order. We
need to know the types before jumping into the actual code. In order to make things easier,
I am going to first show JSON and its equivalent in protocol buffers. Then, we will
implement a solid example.

Here, we are going to use proto3 as our protocol buffer version. There are
slight variations in versions, but the latest one was released with
improvements.

There are many types of protocol buffer elements. Some of them are:

Scalar values
Enumerations
Default values
Nested values
Unknown types

First, let us see how to define a message type in a protobuf. Here, we try to define a simple
network interface message:

syntax 'proto3';

message NetworkInterface {
 int index = 1;
 int mtu = 2;
 string name = 3;
 string hardwareaddr = 4;
}

Working with Protocol Buffers and GRPC Chapter 6

[135]

The syntax may look new. In the preceding code, we were defining a message type called
NetworkInterface. It has four fields: index, maximum transmission unit (MTU), name, and
hardware address (MAC). If we wish to write the same in JSON, it would look like this:

{
 "networkInterface": {
 "index" : 0,
 "mtu" : 68,
 "name": "eth0",
 "hardwareAddr": "00:A0:C9:14:C8:29"
 }
}

The field names are changed to comply with the JSON style guide, but the essence and
structure are the same. But, what are the sequential numbers (1,2,3,4) given to fields in the
protobuf file? They are the ordering tags given to serialize and deserialize protocol buffer
data between two systems. It is like hinting the protocol buffer encoding/decoding systems
to write/read the data in that particular order, respectively. When the preceding protobuf
file is compiled and the programming language target is generated, the protocol buffer
message will be converted to a Go struct and fields are filled with empty default values.

Scalar values
The types we assigned to the fields in the networkInterface message are scalar types.
These types are similar to Go types and exactly match with them. For other programming
languages, they will be converted to the respective types. A protobuf is designed keeping
Go in mind, so the majority of types such as int, int32, int64, string, and bool are
exactly the same, but a few vary. They are:

Go type Protobuf type

float32 float

float64 double

uint32 fixed32

uint64 fixed64

[]byte bytes

Working with Protocol Buffers and GRPC Chapter 6

[136]

These things should be kept in mind while defining messages in protbuf files. Apart from
that, we are free to use other Go types as normal scalar types. Default values are the values
that will be filled with those types if the user doesn't assign a value to those scalar values.
We all know that in any given programming language, variables are defined and assigned.
Defining allocates memory for the variable and assigning fills the variable with a value. In
analogy, the scalar fields we defined in the preceding message will be assigned with default
values. Let us see the default values for the given types:

Protobuf type Default value

string ""

bytes empty bytes[]

bool false

int, int32, int64, float, double 0

enum 0

Since protocol buffers make an agreement between end systems using a
data structure, they don't take additional space for keys in JSON.

Enumerations and repeated fields
Enumerations provide the ordering of numbers for a given set of elements. The default
order of values is from zero to n. So, in protocol buffer messages, we can have an
enumeration type. Let us see an example of the enum:

syntax 'proto3';

message Schedule{
 enum Days{
 SUNDAY = 0;
 MONDAY = 1;
 TUESDAY = 2;
 WEDNESDAY = 3;
 THURSDAY = 4;
 FRIDAY = 5;
 SATURDAY = 6;
 }
}

Working with Protocol Buffers and GRPC Chapter 6

[137]

What if we need to assign the same values for the multiple enumeration members.
Protobuf3 allows an option called allow aliases to assign two different members the same
value. For example:

enum EnumAllowingAlias {
 option allow_alias = true;
 UNKNOWN = 0;
 STARTED = 1;
 RUNNING = 1;
}

Here, STARTED and RUNNING both have a 1 tag. This means that both can have the same
value in the data. If we try to remove duplicated values, we should also remove
the allow_alias option. Otherwise, the proto compiler throws an error (we will see
shortly what a proto compiler is).

Repeated fields are the fields in the message of a protocol buffer that represent a list of
items. In JSON, we have a list of elements for a given key. Similarly, repeated fields allow
us to define an array/list of elements of a particular type:

message Site{
 string url = 1;
 int latency = 2;
 repeated string proxies = 3;
}

In the preceding code, the third field is a repeated field, which means it is an array/list of
proxies. The value could be something such as ["100.104.112.10",
"100.104.112.12"], and so on. Apart from repeated fields, we can also use other
messages as types. It is analogous to nested JSON. For example, take a look at the following
code:

{
 outerJSON: {
 outerKey1: val1,
 innerJSON: {
 innerKey1: val2
 }
 }
}

Working with Protocol Buffers and GRPC Chapter 6

[138]

We see we have a nested innerJSON as one of the members of outerJSON. How can we
model the same thing in protobufs? We can do it using the nested messages, as shown in
the following code:

message Site {
 string url = 1;
 int latency = 2;
 repeated Proxy proxies = 3;
}

message Proxy {
 string url = 1;
 int latency = 2;
}

Here, we are nesting the Proxy type into the Site. We will soon see a real example with all
these types of fields.

Compiling a protocol buffer with protoc
Until now, we have discussed how to write a protocol buffer file that is previously written
in JSON or another data format. But, how do we actually integrate it into our programs?
Remember that protocol buffers are data formats, no more than that. They are a format of
communication between various systems, similar to JSON. These are the practical steps we
follow for using protobufs in our Go programs:

Install the protoc command-line tool and the proto library.1.
Write a protobuf file with the .proto extension.2.
Compile it to target a programming language (here, it is Go).3.
Import structs from the generated target file and serialize the data.4.
On a remote machine, receive the serialized data and decode it into a struct or5.
class.

Working with Protocol Buffers and GRPC Chapter 6

[139]

Take a look at the following diagram:

The first step is to install the protobuf compiler on our machine. For this, download the
protobuf package from https:/ ​/​github. ​com/​google/ ​protobuf/ ​releases. On macOS X,
we can install protobuf using this command:

brew install protobuf

On Ubuntu or Linux, we can copy protoc to the /usr/bin folder:

Make sure you grab the latest version
curl -OL
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-li
nux-x86_64.zip
Unzip
unzip protoc-3.3.0-linux-x86_64.zip -d protoc3
Move only protoc* to /usr/bin/
sudo mv protoc3/bin/protoc /usr/bin/protoc

https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases
https://github.com/google/protobuf/releases

Working with Protocol Buffers and GRPC Chapter 6

[140]

On Windows, we can just copy the executable (.exe) from https:/ ​/​github. ​com/ ​google/
protobuf/​releases/ ​download/ ​v3. ​3. ​0/ ​protoc- ​3. ​3.​0- ​win32. ​zip to the PATH environment
variable. Let us write a simple protocol buffer to illustrate how to compile and use structs
from the target file. Create a folder called protofiles in
$GOPATH/src/github.com/narenaryan (this is the place for our Go projects) using the
following command:

mkdir $GOPATH/src/github.com/narenaryan/protofiles

Here, create a file called person.proto, which models a person's information. Add a few
messages to it, as shown in the following code snippet:

syntax = "proto3";
package protofiles;

message Person {
 string name = 1;
 int32 id = 2; // Unique ID number for this person.
 string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber phones = 4;
}

// Our address book file is just one of these.
message AddressBook {
 repeated Person people = 1;
}

We created two main messages called AddressBook and Person. AddressBook has a list
of persons. A Person has a name, id, email, and phone Number. In the second line, we
declared the package as protofiles like this:

package protofiles;

https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-win32.zip

Working with Protocol Buffers and GRPC Chapter 6

[141]

This tells the compiler to add the generating file in relation to the given package name. Go
cannot consume this .proto file directly. We need to compile it to a valid Go file. When
compiled, this package name protofiles will be used to set the package of the output file
(Go in this case). To compile this protocol buffer file, traverse to the protofiles directory
and run this command:

protoc --go_out=. *.proto

This command converts the given protocol buffer file(s) to the Go file(s) with the same
name. You will see that, after running this command, there is a new file created in the same
directory:

[16:20:27] naren:protofiles git:(master*) $ ls -l
total 24
-rw-r--r-- 1 naren staff 5657 Jul 15 16:20 person.pb.go
-rw-r--r--@ 1 naren staff 433 Jul 15 15:58 person.proto

The new file name is person.pb.go. If we open and inspect this file, it contains the
following important block:

........
type Person_PhoneType int32

const (
 Person_MOBILE Person_PhoneType = 0
 Person_HOME Person_PhoneType = 1
 Person_WORK Person_PhoneType = 2
)

var Person_PhoneType_name = map[int32]string{
 0: "MOBILE",
 1: "HOME",
 2: "WORK",
}
var Person_PhoneType_value = map[string]int32{
 "MOBILE": 0,
 "HOME": 1,
 "WORK": 2,
}
.......

Working with Protocol Buffers and GRPC Chapter 6

[142]

This is just a part of that file. There will be many getter and setter methods created for the
given structs such as Person and AddressBook in the output file. This code is
automatically generated. We need to consume this code in the main program to create
protocol buffer strings. Now, let us create a new directory called protobufs. This holds the
main.go file that uses the Person struct from the person.pb.go file:

mkdir $GOPATH/src/github.com/narenaryan/protobufs

Now, for Go to serialize a struct to the protobinary format, we need to install the Go proto
driver. Install it using the go get command:

go get github.com/golang/protobuf/proto

After this, let us compose main.go:

package main

import (
 "fmt"

 "github.com/golang/protobuf/proto"
 pb "github.com/narenaryan/protofiles"
)

func main() {
 p := &pb.Person{
 Id: 1234,
 Name: "Roger F",
 Email: "rf@example.com",
 Phones: []*pb.Person_PhoneNumber{
 {Number: "555-4321", Type: pb.Person_HOME},
 },
 }

 p1 := &pb.Person{}
 body, _ := proto.Marshal(p)
 _ = proto.Unmarshal(body, p1)
 fmt.Println("Original struct loaded from proto file:", p, "\n")
 fmt.Println("Marshaled proto data: ", body, "\n")
 fmt.Println("Unmarshaled struct: ", p1)
}

Working with Protocol Buffers and GRPC Chapter 6

[143]

We are importing the protocol buffer (pb) from the protofiles package. There are structs
that are mapped to the given protobuf in the proto files. We used the Person struct
and initialized it. Then, we serialized the struct using the proto.Marshal function. If we
run this program, the output looks like this:

go run main.go
Original struct loaded from proto file: name:"Roger F" id:1234
email:"rf@example.com" phones:<number:"555-4321" type:HOME >

Marshaled proto data: [10 7 82 111 103 101 114 32 70 16 210 9 26 14 114 102
64 101 120 97 109 112 108 101 46 99 111 109 34 12 10 8 53 53 53 45 52 51 50
49 16 1]

Unmarshaled struct: name:"Roger F" id:1234 email:"rf@example.com"
phones:<number:"555-4321" type:HOME >

The second output of marshaled data is not intuitive because the proto library serializes
data into binary bytes. Another good thing about protocol buffers in Go is that the structs
generated by compiling the proto files can be used to generate JSON on the fly. Let us
modify the preceding example to this. Call it main_json.go:

package main

import (
 "fmt"

 "encoding/json"
 pb "github.com/narenaryan/protofiles"
)

func main() {
 p := &pb.Person{
 Id: 1234,
 Name: "Roger F",
 Email: "rf@example.com",
 Phones: []*pb.Person_PhoneNumber{
 {Number: "555-4321", Type: pb.Person_HOME},
 },
 }
 body, _ := json.Marshal(p)
 fmt.Println(string(body))
}

Working with Protocol Buffers and GRPC Chapter 6

[144]

If we run this, it prints a JSON string that can be sent to any client that can understand
JSON:

go run main_json.go

{"name":"Roger
F","id":1234,"email":"rf@example.com","phones":[{"number":"555-4321","type"
:1}]}

Any other language or platform can easily load this JSON string and use the data instantly.
So, what is the benefit of using protocol buffers instead of JSON? First of all, protocol
buffers are intended for two backend systems to communicate with each other with less
overhead. Since the size of the binary is less than text, protocol marshaled data is of less size
than JSON.

By using protocol buffers we map both JSON and protocol buffer formats
to the Go struct. This gives the best of both worlds by converting one
format to another on the fly.

But, protocol buffers are just a data format. They don't have any importance if we don't
communicate. So here, protocol buffers are used to pass messages between two end systems
in the form of RPC. We saw how RPC works and also created an RPC client and server in
the previous chapters. Now, we are going to extend that knowledge to use Google Remote
Procedure Call (GRPC) with protocol buffers to scale our microservice communications. A
server and client, in this case, can talk with each other in protocol buffer format.

Introduction to GRPC
GRPC is a transport mechanism that sends and receives messages between two systems.
These two systems are traditionally a server and a client. As we described in the previous
chapters, RPC can be implemented in Go for transferring JSON. We called it a JSON RPC
service. Similarly, Google RPC is specially designed to transfer data in the form of protocol
buffers.

Working with Protocol Buffers and GRPC Chapter 6

[145]

GRPC makes the service creation easy and elegant. It provides a nice set of APIs to define
services and start running them. In this section, we will mainly focus on how to create a
GRPC service and use it. The main advantage of GRPC is that it can be understood by
multiple programming languages. Protocol buffers provide a common data structure. So,
the combination enables the seamless communication between various tech stacks and
systems. This is the integral concept of distributed computing.

Square, Netflix, and so on leverage this GRPC to scale their huge traffic-prone services.
Google's former product manager, Andrew Jessup, said in a conference that at Google,
billions of GRPC calls are processed every single day. If any business organization needs to
embrace what Google does, it too can handle the traffic demand with these tweaks in the
services.

We need to install the grpc Go library and a protoc-gen plugin before writing the
services. Install them using the following commands:

go get google.golang.org/grpc
go get -u github.com/golang/protobuf/protoc-gen-go

GRPC has the following benefits over traditional HTTP/REST/JSON architecture:

GRPC uses HTTP/2, which is a binary protocol
Header compression is possible in HTTP/2, which means less overhead
We can multiplex many requests on one connection
Usage of protobufs for strict typing of data
Streaming of requests or responses is possible instead of request/response
transactions

Working with Protocol Buffers and GRPC Chapter 6

[146]

Take a look at the following diagram:

The diagram clearly shows that any backend system or mobile app can directly
communicate to a GRPC server by firing a protocol buffer request. Let us write a money
transaction service in Go using GRPC and protocol buffers. Here, we are going to show how
the client and server can be implemented. The steps are:

Create the protocol buffer file for the service and messages.1.
Compile the protocol buffer file.2.
Use the generated Go package for creating a GRPC server.3.
Create a GRPC client that talks to the server.4.

For this project, create a folder called datafiles in your Go workspace (here, it
is $GOPATH/src/github.com/narenaryan/):

mkdir grpc_example
cd grpc_example
mkdir datafiles

Working with Protocol Buffers and GRPC Chapter 6

[147]

Create a file called transaction.proto in it with messages and a service defined. We will
shortly see what a service is:

syntax = "proto3";
package datafiles;

message TransactionRequest {
 string from = 1;
 string to = 2;
 float amount = 3;
}

message TransactionResponse {
 bool confirmation = 1;
}

service MoneyTransaction {
 rpc MakeTransaction(TransactionRequest) returns (TransactionResponse)
{}
}

This is a minimalistic protocol buffer for a money transaction on the server. We already saw
about message keywords in the proto file. The last keyword, service, is new to us.
service tells GRPC to treat it as a service, and all the RPC methods will act as an interface
for a server that implements this. A struct that implements a Go interface should implement
all its functions. Now, let us compile this file:

protoc -I datafiles/ datafiles/transaction.proto --
go_out=plugins=grpc:datafiles

This command is slightly bigger than the one we used previously. This is because here we
are using the protoc-gen-go plugin. The command simply says to use data files as the
input directory for proto files and use the same directory for outputting the target Go files.
Now, if we see the filesystem, there will be two files:

-rw-r--r-- 1 naren staff 6215 Jul 16 17:28 transaction.pb.go
-rw-r--r-- 1 naren staff 294 Jul 16 17:28 transaction.proto

Now, create two more directories for server and client logic
in $GOPATH/src/github.com/narenaryan/grpc_example. The server implements the
interface that is generated from the proto file:

mkdir grpcServer grpcClient

Working with Protocol Buffers and GRPC Chapter 6

[148]

Now, add a file called server.go to the grpcServer directory, which implements the
transaction service:

package main

import (
 "log"
 "net"

 pb "github.com/narenaryan/grpc_example/datafiles"
 "golang.org/x/net/context"
 "google.golang.org/grpc"
 "google.golang.org/grpc/reflection"
)

const (
 port = ":50051"
)

// server is used to create MoneyTransactionServer.
type server struct{}

// MakeTransaction implements MoneyTransactionServer.MakeTransaction
func (s *server) MakeTransaction(ctx context.Context, in
*pb.TransactionRequest) (*pb.TransactionResponse, error) {
 log.Printf("Got request for money Transfer....")
 log.Printf("Amount: %f, From A/c:%s, To A/c:%s", in.Amount, in.From,
in.To)
 // Do database logic here....
 return &pb.TransactionResponse{Confirmation: true}, nil
}

func main() {
 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("Failed to listen: %v", err)
 }
 s := grpc.NewServer()
 pb.RegisterMoneyTransactionServer(s, &server{})
 // Register reflection service on gRPC server.
 reflection.Register(s)
 if err := s.Serve(lis); err != nil {
 log.Fatalf("Failed to serve: %v", err)
 }
}

Working with Protocol Buffers and GRPC Chapter 6

[149]

There are a lot of things happening in the preceding file. First, we imported all the
necessary imports. The new ones here are context and reflection. Context is used to
create a context variable, which lives throughout an RPC request's lifetime. Both of these
libraries are used by GRPC for its internal functions.

Before explaining the next sections, if we open the generated transaction.pb.go file, we
can clearly see that there are two important things:

The RegisterMoneyTransactionServer function
The MakeTransaction function as part of the MoneyTransactionServer
interface

In order to implement a service, we need both of these things; MakeTransaction for the
actual service functionality, and RegisterMoneyTransactionServer for registering the
service (that is, create an RPC server to run on a port).

The in variable of MakeTransaction has the RPC request details. It is basically a struct
that maps to the TransactionRequest message we defined in the protocol buffer file.
What returns from MakeTransaction is TransactionResponse. This function
signature matches with the one we defined in the protocol buffer file initially:

rpc MakeTransaction(TransactionRequest) returns (TransactionResponse) {}

Now, let us write a client. We can write a client (or) server in any programming language,
but here we are writing both a client and server in Go for understanding the Go GRPC API.
Add a file called client.go in the grpcClient directory:

package main

import (
 "log"

 pb "github.com/narenaryan/grpc_example/datafiles"
 "golang.org/x/net/context"
 "google.golang.org/grpc"
)

const (
 address = "localhost:50051"
)

func main() {
 // Set up a connection to the server.
 conn, err := grpc.Dial(address, grpc.WithInsecure())

Working with Protocol Buffers and GRPC Chapter 6

[150]

 if err != nil {
 log.Fatalf("Did not connect: %v", err)
 }
 defer conn.Close()
 c := pb.NewMoneyTransactionClient(conn)

 // Prepare data. Get this from clients like Frontend or App
 from := "1234"
 to := "5678"
 amount := float32(1250.75)

 // Contact the server and print out its response.
 r, err := c.MakeTransaction(context.Background(),
&pb.TransactionRequest{From: from,
 To: to, Amount: amount})
 if err != nil {
 log.Fatalf("Could not transact: %v", err)
 }
 log.Printf("Transaction confirmed: %t", r.Confirmation)
}

This client is also using the grpc package. It uses an empty context called
context.Background() to pass to the MakeTransaction function. The second argument
of the function is the TransactionRequest struct:

&pb.TransactionRequest{From: from, To: to, Amount: amount}

It clearly maps with the theory we discussed in the previous section. Now, let us run it and
see the output. Open a new console and run the GRPC server by using the following
command:

go run $GOPATH/src/github.com/narenaryan/grpc_example/grpcServer/server.go

The TCP server starts listening on port 50051. Now, open one more terminal/shell and start
the client program that talks to this server:

go run $GOPATH/src/github.com/narenaryan/grpc_example/grpcClient/client.go

It prints the output of the successful transaction:

2017/07/16 19:13:16 Transaction confirmed: true

At the same time, the server logs this message to the console:

2017/07/16 19:13:16 Amount: 1250.750000, From A/c:1234, To A/c:5678

Working with Protocol Buffers and GRPC Chapter 6

[151]

Here, the client made a single request to the GRPC server and passed details of From A/c
number, To A/c number, and Amount. The server picks those details, processes them, and
sends a response back saying everything is fine.

Since I am running code samples on my machine, I have narenaryan as
the project directory under github.com. You can replace it with any other
name.

Bidirectional streaming with GRPC
The main advantage of GRPC over traditional HTTP/1.1 is that it uses a single TCP
connection for sending and receiving multiple messages between the server and the client.
We saw the example of a money transaction before. Another real-world use case is a GPS
installed in a taxi. Here, the taxi is the client that sends its geographical points to the server
along its route. Finally, the server can calculate the total fare amount depending on the time
spent between points and the total distance.

Another such use case is when a server needs to notify the client whenever some processing
is performed. This is called a server push model. The server can send a stream of results
back when a client asked for them only once. This is different to polling, where the client
requests something each and every time. This can be useful when there are a series of time-
taking steps that need to be done. The GRPC client can escalate that job to the GRPC server.
Then, the server takes its time and relays the message back to the client, which reads them
and does something useful. Let us implement this.

This concept is similar to WebSockets, but between any type of platform. Create a project
called serverPush:

mkdir $GOPATH/src/github.com/narenaryan/serverPush
mkdir $GOPATH/src/github.com/narenaryan/serverPush/datafiles

Now, write in datafiles a protocol buffer that is similar to the previous one:

syntax = "proto3";
package datafiles;

message TransactionRequest {
 string from = 1;
 string to = 2;
 float amount = 3;
}

https://github.com/

Working with Protocol Buffers and GRPC Chapter 6

[152]

message TransactionResponse {
 string status = 1;
 int32 step = 2;
 string description = 3;
}

service MoneyTransaction {
 rpc MakeTransaction(TransactionRequest) returns (stream
TransactionResponse) {}
}

We have two messages and one service defined in the protocol buffer file. The exciting part
is in the service; we are returning a stream instead of a plain response:

rpc MakeTransaction(TransactionRequest) returns (stream
TransactionResponse) {}

The use case of this project is: the client sends a money transfer request to the server, the server
does a few tasks and sends those step details as a stream of responses back to the server. Now, let us
compile that proto file:

protoc -I datafiles/ datafiles/transaction.proto --
go_out=plugins=grpc:datafiles

This creates a new file called transaction.pb.go in the datafiles directory. We use the
definitions in this file in our server and client programs, which we will create shortly. Now,
let us write the GRPC server code. This code is a bit different compared to the previous
example because of the introduction of streams:

mkdir $GOPATH/src/github.com/narenaryan/serverPush/grpcServer
vi $GOPATH/src/github.com/narenaryan/serverPush/grpcServer/server.go

Now, add this program to the file:

package main

import (
 "fmt"
 "log"
 "net"
 "time"

 pb "github.com/narenaryan/serverPush/datafiles"
 "google.golang.org/grpc"
 "google.golang.org/grpc/reflection"
)

Working with Protocol Buffers and GRPC Chapter 6

[153]

const (
 port = ":50051"
 noOfSteps = 3
)

// server is used to create MoneyTransactionServer.
type server struct{}

// MakeTransaction implements MoneyTransactionServer.MakeTransaction
func (s *server) MakeTransaction(in *pb.TransactionRequest, stream
pb.MoneyTransaction_MakeTransactionServer) error {
 log.Printf("Got request for money transfer....")
 log.Printf("Amount: $%f, From A/c:%s, To A/c:%s", in.Amount, in.From,
in.To)
 // Send streams here
 for i := 0; i < noOfSteps; i++ {
 // Simulating I/O or Computation process using sleep........
 // Usually this will be saving money transfer details in DB or
 // talk to the third party API
 time.Sleep(time.Second * 2)
 // Once task is done, send the successful message back to the client
 if err := stream.Send(&pb.TransactionResponse{Status: "good",
 Step: int32(i),
 Description: fmt.Sprintf("Description of step %d", int32(i))}); err
!= nil {
 log.Fatalf("%v.Send(%v) = %v", stream, "status", err)
 }
 }
 log.Printf("Successfully transfered amount $%v from %v to %v", in.Amount,
in.From, in.To)
 return nil
}

func main() {
 lis, err := net.Listen("tcp", port)
 if err != nil {
 log.Fatalf("Failed to listen: %v", err)
 }
 // Create a new GRPC Server
 s := grpc.NewServer()
 // Register it with Proto service
 pb.RegisterMoneyTransactionServer(s, &server{})
 // Register reflection service on gRPC server.
 reflection.Register(s)
 if err := s.Serve(lis); err != nil {
 log.Fatalf("Failed to serve: %v", err)
 }
}

Working with Protocol Buffers and GRPC Chapter 6

[154]

MakeTransaction is the function that interests us. It takes a request and a stream as its
arguments. In the function, we are looping through the number of steps (here, it is three),
and performing the computation. The server is simulating the mock I/O or computation
using the time.Sleep function:

stream.Send()

This function sends a stream response from the server to the client. Now, let us compose the
client program. This is also a bit different to the basic GRPC client that we saw in the
preceding code. Create a new directory for the client program:

mkdir $GOPATH/src/github.com/narenaryan/serverPush/grpcClient
vi $GOPATH/src/github.com/narenaryan/serverPush/grpcClient/cilent.go

Now, start writing the client logic in that file:

package main

import (
 "io"
 "log"

 pb "github.com/narenaryan/serverPush/datafiles"
 "golang.org/x/net/context"
 "google.golang.org/grpc"
)

const (
 address = "localhost:50051"
)

// ReceiveStream listens to the stream contents and use them
func ReceiveStream(client pb.MoneyTransactionClient, request
*pb.TransactionRequest) {
 log.Println("Started listening to the server stream!")
 stream, err := client.MakeTransaction(context.Background(), request)
 if err != nil {
 log.Fatalf("%v.MakeTransaction(_) = _, %v", client, err)
 }
 // Listen to the stream of messages
 for {
 response, err := stream.Recv()
 if err == io.EOF {
 // If there are no more messages, get out of loop
 break
 }
 if err != nil {

Working with Protocol Buffers and GRPC Chapter 6

[155]

 log.Fatalf("%v.MakeTransaction(_) = _, %v", client, err)
 }
 log.Printf("Status: %v, Operation: %v", response.Status,
response.Description)
 }
}

func main() {
 // Set up a connection to the server.
 conn, err := grpc.Dial(address, grpc.WithInsecure())
 if err != nil {
 log.Fatalf("Did not connect: %v", err)
 }
 defer conn.Close()
 client := pb.NewMoneyTransactionClient(conn)

 // Prepare data. Get this from clients like Front-end or Android App
 from := "1234"
 to := "5678"
 amount := float32(1250.75)

 // Contact the server and print out its response.
 ReceiveStream(client, &pb.TransactionRequest{From: from,
 To: to, Amount: amount})
}

Here, ReceiveStream is the custom function we wrote for the sake of sending a request
and receiving a stream of messages. It takes two
arguments: MoneyTransactionClient and TransactionRequest. It uses the first
argument to create a stream and starts listening to it. Whenever the server exhausts all the
messages, the client will stop listening and terminate. Then, an io.EOF error will be
returned if the client tries to receive messages. We are logging the responses collected from
the GRPC server. The second argument, TransactionRequest, is used to send the request
to the server for the first time. Now, running it will make it more clear to us. On terminal
one, run the GRPC server:

go run $GOPATH/src/github.com/narenaryan/serverPush/grpcServer/server.go

It will keep on listening for incoming requests. Now, run the client on the second terminal
to see the action:

go run $GOPATH/src/github.com/narenaryan/serverPush/grpcClient/client.go

Working with Protocol Buffers and GRPC Chapter 6

[156]

This outputs the following to the console:

2017/07/16 15:08:15 Started listening to the server stream!
2017/07/16 15:08:17 Status: good, Operation: Description of step 0
2017/07/16 15:08:19 Status: good, Operation: Description of step 1
2017/07/16 15:08:21 Status: good, Operation: Description of step 2

At the same time, the server also logs its own messages on terminal one:

2017/07/16 15:08:15 Got request for money Transfer....
2017/07/16 15:08:15 Amount: $1250.750000, From A/c:1234, To A/c:5678
2017/07/16 15:08:21 Successfully transfered amount $1250.75 from 1234 to
5678

This process happens in sync with the server. The client stays alive until all the streaming
messages are sent back. The server can handle any number of clients at a given time. Every
client request is considered as an individual entity. This is an example of the server sending
a stream of responses. There are other cases that can also be implemented with protocol
buffers and GRPC:

The client sending streamed requests to get one final response from the server
The client and server are both sending streamed requests and responses at the
same time

The official GRPC team has provided a nice example of routing a taxi on
GitHub. You can take a look at it to learn more about the functioning of
bidirectional streams at
https:/ ​/​github. ​com/ ​grpc/ ​grpc- ​go/ ​tree/ ​master/ ​examples/ ​route_
guide.

Summary
In this chapter, we started our journey by understanding the basics of protocol buffers.
Then, we came across the protocol buffers language, which has many types such as scalar,
enumeration, and repeated types. We saw a few analogies between JSON and protocol
buffers. We learned why protocol buffers are more memory efficient than the plain JSON
data format. We defined a sample protocol buffer by simulating a network interface.
The message keyword is used to define messages in a protocol buffer.

https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide
https://github.com/grpc/grpc-go/tree/master/examples/route_guide

Working with Protocol Buffers and GRPC Chapter 6

[157]

Next, we installed the protoc compiler to compile our files written in the protocol buffer
language. Then, we saw how to compile a .proto file to generate a .go file. This Go file has
all the structs and interfaces for the main program to consume. Next, we wrote a protocol
buffer for an address book and person. We saw how to use grpc.Marshal to serialize Go
structs into binary, transmittable data. We also found out that the conversion from protocol
buffer to JSON and vice versa is very easily achievable in Go.

We then moved to GRPC, an RPC technology from Google using protocol buffers. We saw
the benefits of HTTP/2 and GRPC. We then defined a GRPC service and data in the form of
protocol buffers. Next, we implemented a GRPC server and GRPC in respect to the file
generated from .proto.

GRPC provides a bidirectional and multiplexed transport mechanism. This means that it
can use a single TCP connection for all its message transmissions. We implemented one
such scenario where the client sends a message to a server and the server replies back with
a stream of messages.

7
Working with PostgreSQL,

JSON, and Go
In this chapter, we are going to look at SQL in the big picture. In previous chapters, we
discussed SQLite3, which is a small database for quick prototyping. But when it comes to a
production grade application, people prefer MySQL or PostgreSQL. Both are well proven in
the web application space. First, we will discuss the internals of PostgreSQL and then move
on to writing database models in Go. We will then try to realize the URL shortening service
with a solid example.

In this chapter, we will cover the following topics:

Introduction to the PostgreSQL database
Installing PostgreSQL and creating users and databases
Learning about pq, a database driver in Go
Implementing a URL shortening service with PostgreSQL and a Base62 algorithm
Exploring the JSON store in PostgreSQL
Introducing gorm, a powerful ORM for Go
Implementation of an e-commerce REST API

Getting the code
You can get the code samples for this chapter at https:/ ​/​github. ​com/ ​narenaryan/
gorestful/​tree/​master/ ​chapter7. In the previous chapter, we discussed protocol buffers
and GRPC. But here, we come back to the REST API with JSON and see how PostgreSQL
supplements JSON.

https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7

Working with PostgreSQL, JSON, and Go Chapter 7

[159]

Installing the PostgreSQL database
PostgreSQL is an open-source database that can be installed on multiple platforms. On
Ubuntu, it can be installed using the following commands:

To add the repo to the package list:

sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt/ `lsb_release
-cs`-pgdg main" >> /etc/apt/sources.list.d/pgdg.list'

wget -q https://www.postgresql.org/media/keys/ACCC4CF8.asc -O - | sudo apt-
key add -

To update the package list:

sudo apt-get update
apt-get install postgresql postgresql-contrib

This installs the database on an Ubuntu machine and starts a server on port 5432. Now, in
order to enter the database shell, use these commands. PostgreSQL creates a default user
called postgres to log in. Take a look at the following command:

sudo su - postgres

Now the user has access to the database. Launch the PostgreSQL shell using the psql
command:

psql

This shows that PostgreSQL follows a different approach for entering into the shell
compared to other similar databases such as MySQL or SQLite3. On Windows, the
installation is done by clicking the binary installer file. It is a GUI-based installation where
the port and password for superuser should be supplied. Once the database is installed, we
can check that using the pgAdmin3 tool. The macOS X setup is similar to Ubuntu, except
the installation is done through Homebrew. Take a look at the following command:

brew install postgresql

And then make the database server run even when the system is rebooted by using the
following command:

pg_ctl -D /usr/local/var/postgres start && brew services start postgresql

Now, the PostgreSQL server starts running and is available to store and retrieve data on
macOS X.

Working with PostgreSQL, JSON, and Go Chapter 7

[160]

Adding users and databases in PostgreSQL
Now, we should know how to create a new user and database. For this, we are going to use
Ubuntu/Mac as the general example. We do this in a shell called the psql shell. We can see
all available commands in psql using the \? command. In order to enter into psql, first
change to the postgres user. On Ubuntu, you can do that using the following command:

sudo su postgres

Now, it turns us into a user called postgres. Then, launch the psql shell using the psql
command. If you type \? in there, you see the output of all available commands:

To list all available users and their privileges, you will find a command in the
Informational section of shell help, that is:

\du - List roles

A role is an access permission given to a user. The default role in that list is postgres:

postgres=# \du
 List of roles
 Role name | Attributes | Member of
-----------+--+--

 postgres | Superuser, Create role, Create DB, Replication, Bypass RLS | {}

Working with PostgreSQL, JSON, and Go Chapter 7

[161]

The preceding command lists roles (users) with their attributes (what a role is allowed to
do) and other options. For adding a new user, we just type this psql command:

CREATE ROLE naren with LOGIN PASSWORD 'passme123';

This creates a new user with the name naren and the password passme123. Now, give the
permission to the user to create databases and further roles, using the following command:

ALTER USER naren CREATEDB, CREATEROLE;

In order to delete a user, just use the DROP command in the same context:

DROP ROLE naren;

Don't try to change the password for the default postgres user. It is
intended to be a sudo account, and should not be kept as a normal user.
Instead, create a role and give require permissions for it.

Now we know how to create a role. Let us see a few more CRUD commands, which are
really SQL commands that we see in other relational databases too. Take a look at the
following table:

Action SQL command

Create database CREATE DATABASE mydb;

Create table

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

Insert into table INSERT INTO products VALUES (1, 'Rice', 5.99);

Update table UPDATE products SET price = 10 WHERE price = 5.99;

Delete from table DELETE FROM products WHERE price = 5.99;

Now, let us see from Go how we can talk to PostgreSQL and try to do the preceding
operations using a simple example.

Working with PostgreSQL, JSON, and Go Chapter 7

[162]

pq, a pure PostgreSQL database driver for
Go
In the previous chapters when we dealt with SQLite3, we used an external library called
go-sqlite3. In the same way, a database driver library is available to bridge both Go and
PostgreSQL. That library is called pq. We can install that library using the command:

go get github.com/lib/pq

After getting this library, we need to use it in a similar way to SQLite3. The API will be in
line to the database/sql package of Go. In order to create a new table, we should initialize
the DB. To create a new database, just type this command from the psql shell, as shown in
the following command; it is a one-time thing:

CREATE DATABASE mydb;

Now, we will write a small code illustration that explains the usage of the pq driver. Create
a directory called models in your $GOPATH. Here, my GOPATH is
/home/naren/workspace/. Similar to all the previous examples in the former chapters,
we will create our packages and application sources in the src/ directory:

mkdir github.com/narenaryan/src/models

Now, add a file called web_urls.go. This file is going to have the table creation logic:

package models

import (
 "database/sql"
 "log"
 _ "github.com/lib/pq"
)

func InitDB() (*sql.DB, error) {
 var err error
 db, err := sql.Open("postgres",
"postgres://naren:passme123@localhost/mydb?sslmode=disable")
 if err != nil {
 return nil, err
 } else {
 // Create model for our URL service
 stmt, err := db.Prepare("CREATE TABLE WEB_URL(ID SERIAL
PRIMARY KEY, URL TEXT NOT NULL);")

Working with PostgreSQL, JSON, and Go Chapter 7

[163]

 if err != nil {
 log.Println(err)
 return nil, err
 }
 res, err := stmt.Exec()
 log.Println(res)
 if err != nil {
 log.Println(err)
 return nil, err
 }
 return db, nil
 }
}

We are importing the pq library here. We are using the sql.Open function to start a new
database connection pool. If you observe the connection string, it consists of multiple parts.
Take a look at the following diagram:

The connection string should consist of the database type, the username:password pair,
the database server IP, and the sslmode settings. We are then creating a table called
web_url. All the error handlers are there to specify if something goes wrong. The InitDB
function returns the database connection object to whatever program imports the function.
Let us write the main program to use this package:

package main

import (

Working with PostgreSQL, JSON, and Go Chapter 7

[164]

 "log"
 "github.com/narenaryan/models"
)

func main() {
 db, err := models.InitDB()
 if err != nil {
 log.Println(db)
 }
}

This program imports the models package and uses the InitDB function from it. We are
just printing that database connection, which will be an address. If you run the program,
you will see the address of the object got printed:

go run main.go

 This creates a web_url table in the mydb database. We can crosscheck that by entering into
the psql shell and typing:

\c mydb \dt

It connects the user to mydb database and lists all available tables, as shown in the following
code snippet:

You are now connected to database "mydb" as user "postgres".
 List of relations
 Schema | Name | Type | Owner
--------+---------+-------+-------
 public | web_url | table | naren
(1 row)

In PostgreSQL, the AUTO INCREMENT type needs to be replaced by
SERIAL while providing a schema for a table creation.

Working with PostgreSQL, JSON, and Go Chapter 7

[165]

Implementing a URL shortening service
using Postgres and pq
Let us write the URL shortening service to explain all the concepts we discussed in the
preceding section. Before that, let us design a package that implements the Base62
algorithm with encoding/decoding functions. The URL shortening technique needs the
Base62 algorithm to convert a long URL to short, and vice versa. We then write a solid
example to show how this encoding works. Create a directory called base62 in the GOPATH:

mkdir $GOPATH/src/github.com/narenaryan/base62

Now, add a file called encodeutils.go, which houses our encode and decode functions.

Defining the Base62 algorithm
We saw how the Base62 algorithm works in the previous chapters. Here is the solid
implementation of that algorithm. The logic is purely mathematical and can be found
everywhere on the web. Take a look at the following code:

package base62

import (
 "math"
 "strings"
)

const base =
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
const b = 62

// Function encodes the given database ID to a base62 string
func ToBase62(num int) string{
 r := num % b
 res := string(base[r])
 div := num / b
 q := int(math.Floor(float64(div)))

 for q != 0 {
 r = q % b
 temp := q / b
 q = int(math.Floor(float64(temp)))
 res = string(base[int(r)]) + res
 }

Working with PostgreSQL, JSON, and Go Chapter 7

[166]

 return string(res)
}

// Function decodes a given base62 string to datbase ID
func ToBase10(str string) int{
 res := 0
 for _, r := range str {
 res = (b * res) + strings.Index(base, string(r))
 }
 return res
}

In the preceding program, we defined two functions called ToBase62 and ToBase10. The
first one takes an integer and generates a base62 string, and the latter one reverses the
effect; that is, it takes a base62 string and gives the original number. In order to illustrate
this, let us create a simple program that uses both the functions to show encoding/decoding:

vi $GOPATH/src/github.com/narenaryan/usebase62.go

Add the following content to it:

package main

import (
 "log"
 base62 "github.com/narenaryan/base62"
)

func main() {
 x := 100
 base62String := base62.ToBase62(x)
 log.Println(base62String)
 normalNumber := base62.ToBase10(base62String)
 log.Println(normalNumber)
}

Here, we are using the functions from the base62 package and trying to see the output. If
we run this program (from $GOPATH/src/github.com/narenaryan) using the following
command:

go run usebase62.go

Working with PostgreSQL, JSON, and Go Chapter 7

[167]

It prints:

2017/08/07 23:00:05 1C
2017/08/07 23:00:05 100

 base62 encoding of 100 is 1C. This is because the index 100 shrunk to 1C in our base62
logic:

const base =
"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

The original number will be used to map the character in this base string. Then, the number
is divided by 62 to find out the next characters. The beauty of this algorithm is creating a
unique, shorter string for every given number. We use this technique to pass a database ID
into the ToBase62 algorithm and get a shorter string out. Whenever a URL shortening
request comes to our server, it should perform the following steps:

Store the URL in the database and get the ID of that record inserted.1.
Pass this ID to the client as the API response.2.
Whenever a client loads the shortened URL, it hits our API server.3.
The API server then converts the short URL back to the database ID and fetches4.
the record from the original URL.
Finally, the client can use this URL to redirect to the original site.5.

We are going to write a Go project here that implements the preceding steps. Let us
compose the program. I am creating a directory structure for our project. We take files from
the preceding illustrations for handling encoding/decoding base62 and also for database
logic. The directory structure looks like this:

urlshortener
├── main.go
├── models
│ └── models.go
└── utils
 └── encodeutils.go

2 directories, 3 files

Working with PostgreSQL, JSON, and Go Chapter 7

[168]

Copy this directory to $GOPATH/src/github.com/narenaryan. Once again, a small
caution. Replace narenaryan with your username. Copy encodeutils.go and
models.go from the preceding examples. Then, start writing the main program:

package main

import (
 "database/sql"
 "encoding/json"
 "io/ioutil"
 "log"
 "net/http"
 "time"

 "github.com/gorilla/mux"
 _ "github.com/lib/pq"
 "github.com/narenaryan/urlshortener/models"
 base62 "github.com/narenaryan/urlshortener/utils"
)

// DB stores the database session imformation. Needs to be initialized once
type DBClient struct {
 db *sql.DB
}

// Model the record struct
type Record struct {
 ID int `json:"id"`
 URL string `json:"url"`
}

// GetOriginalURL fetches the original URL for the given encoded(short)
string
func (driver *DBClient) GetOriginalURL(w http.ResponseWriter, r
*http.Request) {
 var url string
 vars := mux.Vars(r)
 // Get ID from base62 string
 id := base62.ToBase10(vars["encoded_string"])
 err := driver.db.QueryRow("SELECT url FROM web_url WHERE id = $1",
id).Scan(&url)
 // Handle response details
 if err != nil {
 w.Write([]byte(err.Error()))
 } else {
 w.WriteHeader(http.StatusOK)
 w.Header().Set("Content-Type", "application/json")

Working with PostgreSQL, JSON, and Go Chapter 7

[169]

 responseMap := map[string]interface{}{"url": url}
 response, _ := json.Marshal(responseMap)
 w.Write(response)
 }
}

// GenerateShortURL adds URL to DB and gives back shortened string
func (driver *DBClient) GenerateShortURL(w http.ResponseWriter, r
*http.Request) {
 var id int
 var record Record
 postBody, _ := ioutil.ReadAll(r.Body)
 json.Unmarshal(postBody, &record)
 err := driver.db.QueryRow("INSERT INTO web_url(url) VALUES($1) RETURNING
id", record.URL).Scan(&id)
 responseMap := map[string]interface{}{"encoded_string":
base62.ToBase62(id)}
 if err != nil {
 w.Write([]byte(err.Error()))
 } else {
 w.Header().Set("Content-Type", "application/json")
 response, _ := json.Marshal(responseMap)
 w.Write(response)
 }
}

func main() {
 db, err := models.InitDB()
 if err != nil {
 panic(err)
 }
 dbclient := &DBClient{db: db}
 if err != nil {
 panic(err)
 }
 defer db.Close()
 // Create a new router
 r := mux.NewRouter()
 // Attach an elegant path with handler
 r.HandleFunc("/v1/short/{encoded_string:[a-zA-Z0-9]*}",
dbclient.GetOriginalURL).Methods("GET")
 r.HandleFunc("/v1/short", dbclient.GenerateShortURL).Methods("POST")
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,

Working with PostgreSQL, JSON, and Go Chapter 7

[170]

 }
 log.Fatal(srv.ListenAndServe())
}

First, we imported the postgres library and other necessary libraries. We imported our
database session from the models. Next, we imported our encode/decode base62 algorithms
to implement our logic:

// DB stores the database session imformation. Needs to be initialized once
type DBClient struct {
 db *sql.DB
}

// Model the record struct
type Record struct {
 ID int `json:"id"`
 URL string `json:"url"`
}

The DBClient is needed in order to pass the database driver between various functions.
The record is the structure that resembles the record that gets inserted into the database. We
defined two functions in our code called GenerateShortURL and GetOriginalURL for
adding the URL to the database and then fetching it back from DB respectively. As we
already explained the internal technique of URL shortening, the client that is using this
service will get the necessary response back. Let us run the program and see the output
before jumping into further details:

go run $GOPATH/src/github.com/narenaryan/urlshortener/main.go

If your $GOPATH/bin is already in the system PATH variable, we can first install the binary
and run it like this:

go install github.com/narenaryan/urlshortener/main.go

And then just the program name:

urlshortener

It is a best practice to install the binary because it is available systemwide.
But for smaller programs, we can run main.go by visiting the directory of
the program.

Working with PostgreSQL, JSON, and Go Chapter 7

[171]

Now it runs the HTTP server and starts collecting requests for the URL shortening service.
Open the console and type these CURL commands:

curl -X POST \
 http://localhost:8000/v1/short \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{
 "url":
"https://www.forbes.com/forbes/welcome/?toURL=https://www.forbes.com/sites/
karstenstrauss/2017/04/20/the-highest-paying-jobs-in-tech-
in-2017/&refURL=https://www.google.co.in/&referrer=https://www.google.co.in
/"
}'

It returns the shortened string:

{
 "encoded_string": "1"
}

The encoded string is just "1". Base62 algorithms start allocating shorter strings starting
from one to a combination of alphanumeric letters. Now, if we need to retrieve the original
URL we can perform a GET request:

curl -X GET \
 http://localhost:8000/v1/short/1 \
 -H 'cache-control: no-cache' \

It returns the following JSON:

{
"url":"https://www.forbes.com/forbes/welcome/?toURL=https://www.forbes.com/
sites/karstenstrauss/2017/04/20/the-highest-paying-jobs-in-tech-
in-2017/\u0026refURL=https://www.google.co.in/\u0026referrer=https://www.go
ogle.co.in/"}

So, the service can use this result to redirect the user to the original URL (site). Here, the
generated string doesn't depend on the length of the URL because only the database ID is
the criteria for encoding.

Working with PostgreSQL, JSON, and Go Chapter 7

[172]

The RETURNING keyword needs to be added to the INSERT SQL command
in PostgreSQL to fetch the last inserted database ID. This is not the case
with MySQL or SQLite3 INSERT INTO web_url() VALUES($1)
RETURNING id, record.URL. This DB query returns the last inserted
record's ID. If we drop that RETURNING keyword, the query returns
nothing.

Exploring the JSON store in PostgreSQL
PostgreSQL >9.2 has a prominent feature 9.2" dbid="254735" called the JSON store.
PostgreSQL introduced a new data type for storing the JSON data. PostgreSQL allows users
to insert a jsonb field type, which holds the JSON string. It is quite useful in modeling the
real-world data that has to be more flexible with the structure. PostgreSQL draws the best
of both worlds by allowing us to store JSON strings as well as relational types.

In this section, we will try to realize a few of the JSON models that we defined for e-
commerce websites in the previous chapters. But here, we will use the JSON field to store
and retrieve items in PostgreSQL. For accessing PostgreSQL's JSON store, the normal pq
library is very tedious. So, in order to handle that better, we can use an Object Relational
Mapper (ORM) called GORM.

GORM, a powerful ORM for Go
This ORM has the API for all operations that can be done in the database/sql package.
We can install GORM using this command:

go get -u github.com/jinzhu/gorm

For full documentation about this ORM, visit, http:/ ​/​jinzhu. ​me/​gorm/ ​. Let us write a
program that implements user and order type JSON models. A user can place an order. We
will use the models that we defined in the previous chapter. We can create a new directory
called jsonstore in $GOPATH/src/github.com/narenaryan and create a new directory
for our model in it:

mkdir jsonstore
mkdir jsonstore/models
touch jsonstore/models/models.go

http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/
http://jinzhu.me/gorm/

Working with PostgreSQL, JSON, and Go Chapter 7

[173]

Now, edit the models.go file to this:

package models

import (
 "github.com/jinzhu/gorm"
 _ "github.com/lib/pq"
)

type User struct {
 gorm.Model
 Orders []Order
 Data string `sql:"type:JSONB NOT NULL DEFAULT '{}'::JSONB" json:"-"`
}

type Order struct {
 gorm.Model
 User User
 Data string `sql:"type:JSONB NOT NULL DEFAULT '{}'::JSONB"`
}

// GORM creates tables with plural names. Use this to suppress it
func (User) TableName() string {
 return "user"
}

func (Order) TableName() string {
 return "order"
}

func InitDB() (*gorm.DB, error) {
 var err error
 db, err := gorm.Open("postgres",
"postgres://naren:passme123@localhost/mydb?sslmode=disable")
 if err != nil {
 return nil, err
 } else {
 /*
 // The below AutoMigrate is equivalent to this
 if !db.HasTable("user") {
 db.CreateTable(&User{})
 }

 if !db.HasTable("order") {
 db.CreateTable(&Order{})
 }

Working with PostgreSQL, JSON, and Go Chapter 7

[174]

 */
 db.AutoMigrate(&User{}, &Order{})
 return db, nil
 }
}

This looks similar to the model we defined earlier in this chapter. Here, a lot of things are
new for us. Every model (table) we create should be represented as a struct in GORM. That
is the reason we created two structs, User and Order. The first line should
be gorm.Model. The other fields are the fields of the table. By default, an incrementing ID
will be created. In the previous model for the URL shortener, we manually checked the
existence of table before operating on it. But here, there is a function:

db.AutoMigrate(&User{}, &Order{})

This function creates the tables for structs passed as parameters. It makes sure that if tables
exist already, it skips creation. If you observe carefully, we added a function for those
structs, TableName. By default, all the table names that GORM creates are plural names
(users is created for User). In order to force it to create the given names, we need to
override that function. One more interesting thing is, in the structs, we used a field called
Data. That is of type:

`sql:"type:JSONB NOT NULL DEFAULT '{}'::JSONB" json:"-"`

Yes, it is a jsonb type string. We, for now, add its type as string.PostgreSQL and GORM
takes care of handling it. We are then returning the database connection to whoever imports
the models package.

Implementing the e-commerce REST API
Before jumping in, let us design the API specification table, which shows the REST API
signatures for various URL endpoints. Refer to the following table:

Endpoint Method Description

/v1/user/id GET Get a user using ID

/v1/user POST Create a new user

/v1/user?first_name=NAME GET Get all users by the given first name

/v1/order/id GET Get an order with the given ID

/v1/order POST Create a new order

Working with PostgreSQL, JSON, and Go Chapter 7

[175]

Now we come to the main program; let us add one more file to our jsonstore project. In
this program, we will try to implement the first three endpoints. We suggest
the implementation of the remaining two endpoints as an assignment for the reader. Take a
look at the following command:

touch jsonstore/main.go

The program structure follows the same style as all the programs we have seen until now.
We use Gorilla Mux as our HTTP router and import the database driver into our program:

package main

import (
 "encoding/json"
 "io/ioutil"
 "log"
 "net/http"
 "time"

 "github.com/gorilla/mux"
 "github.com/jinzhu/gorm"
 _ "github.com/lib/pq"
 "github.com/narenaryan/jsonstore/models"
)

// DB stores the database session imformation. Needs to be initialized once
type DBClient struct {
 db *gorm.DB
}

// UserResponse is the response to be send back for User
type UserResponse struct {
 User models.User `json:"user"`
 Data interface{} `json:"data"`
}

// GetUsersByFirstName fetches the original URL for the given
encoded(short) string
func (driver *DBClient) GetUsersByFirstName(w http.ResponseWriter, r
*http.Request) {
 var users []models.User
 name := r.FormValue("first_name")
 // Handle response details
 var query = "select * from \"user\" where data->>'first_name'=?"
 driver.db.Raw(query, name).Scan(&users)
 w.WriteHeader(http.StatusOK)
 w.Header().Set("Content-Type", "application/json")

Working with PostgreSQL, JSON, and Go Chapter 7

[176]

 //responseMap := map[string]interface{}{"url": ""}
 respJSON, _ := json.Marshal(users)
 w.Write(respJSON)
}

// GetUser fetches the original URL for the given encoded(short) string
func (driver *DBClient) GetUser(w http.ResponseWriter, r *http.Request) {
 var user = models.User{}
 vars := mux.Vars(r)
 // Handle response details
 driver.db.First(&user, vars["id"])
 var userData interface{}
 // Unmarshal JSON string to interface
 json.Unmarshal([]byte(user.Data), &userData)
 var response = UserResponse{User: user, Data: userData}
 w.WriteHeader(http.StatusOK)
 w.Header().Set("Content-Type", "application/json")
 //responseMap := map[string]interface{}{"url": ""}
 respJSON, _ := json.Marshal(response)
 w.Write(respJSON)
}

// PostUser adds URL to DB and gives back shortened string
func (driver *DBClient) PostUser(w http.ResponseWriter, r *http.Request) {
 var user = models.User{}
 postBody, _ := ioutil.ReadAll(r.Body)
 user.Data = string(postBody)
 driver.db.Save(&user)
 responseMap := map[string]interface{}{"id": user.ID}
 var err string = ""
 if err != "" {
 w.Write([]byte("yes"))
 } else {
 w.Header().Set("Content-Type", "application/json")
 response, _ := json.Marshal(responseMap)
 w.Write(response)
 }
}

func main() {
 db, err := models.InitDB()
 if err != nil {
 panic(err)
 }
 dbclient := &DBClient{db: db}
 if err != nil {
 panic(err)
 }

Working with PostgreSQL, JSON, and Go Chapter 7

[177]

 defer db.Close()
 // Create a new router
 r := mux.NewRouter()
 // Attach an elegant path with handler
 r.HandleFunc("/v1/user/{id:[a-zA-Z0-9]*}",
dbclient.GetUser).Methods("GET")
 r.HandleFunc("/v1/user", dbclient.PostUser).Methods("POST")
 r.HandleFunc("/v1/user", dbclient.GetUsersByFirstName).Methods("GET")
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

There are three important aspects here:

We replaced the traditional driver with the GORM driver
Used GORM functions for CRUD operations
We inserted JSON into PostgreSQL and retrieved results in the JSON field

Let us explain all the elements in detail. First, we imported all the necessary packages. The
interesting ones are:

 "github.com/jinzhu/gorm"
 _ "github.com/lib/pq"
 "github.com/narenaryan/jsonstore/models"

GORM internally uses the database/sql package to some extent. We imported models
from the package we created in the preceding code. Next, we created three functions,
implementing the first three API specifications. They
are GetUsersByFirstName,60;GetUser, and PostUser. Each function is inheriting the
database driver and passed as the handler functions for the URL endpoints in the main
function:

 r.HandleFunc("/v1/user/{id:[a-zA-Z0-9]*}",
dbclient.GetUser).Methods("GET")
 r.HandleFunc("/v1/user", dbclient.PostUser).Methods("POST")
 r.HandleFunc("/v1/user", dbclient.GetUsersByFirstName).Methods("GET")

Now, if we enter the first function, which is simple, these statements will grab our attention:

driver.db.First(&user, vars["id"])

Working with PostgreSQL, JSON, and Go Chapter 7

[178]

The preceding statement tells the DB to fetch the first record from the database with the
given second parameter ID. It fills the data returned to the user struct. We are using
UserResponse instead of the User struct in GetUser because User consists of the data
field, which is a string. But, in order to return complete and proper JSON to the client, we
need to convert the data into a proper struct and then marshal it:

// UserResponse is the response to be send back for User
type UserResponse struct {
 User models.User `json:"user"`
 Data interface{} `json:"data"`
}

Here, we are creating an empty interface that can hold any JSON data. When we call the
first function using the driver, the user struct has a data field, which is a string. We need to
convert that string to a struct and then send it along with other details in UserResponse.
Now let us see this in action. Run the program using the following command:

go run jsonstore/main.go

And make a few CURL commands to see the API response:

Create user:

curl -X POST \
 http://localhost:8000/v1/user \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{
 "username": "naren",
 "email_address": "narenarya@live.com",
 "first_name": "Naren",
 "last_name": "Arya"
}'

It returns the inserted record in the DB:

{
 "id": 1
}

Now, if we GET the details of the inserted record:

curl -X GET http://localhost:8000/v1/user/1

Working with PostgreSQL, JSON, and Go Chapter 7

[179]

It returns all the details about the user:

{"user":{"ID":1,"CreatedAt":"2017-08-27T11:55:02.974371+05:30","UpdatedAt":
"2017-08-27T11:55:02.974371+05:30","DeletedAt":null,"Orders":null},"data":{
"email_address":"narenarya@live.com","first_name":"Naren","last_name":"Arya
","username":"naren"}}

Insert one more record for checking the first name API:

curl -X POST \
 http://localhost:8000/v1/user \
 -H 'cache-control: no-cache' \
 -H 'content-type: application/json' \
 -d '{
 "username": "nareny",
 "email_address": "naren.yellavula@gmail.com",
 "first_name": "Naren",
 "last_name": "Yellavula"
}'

This inserts our second record. Let us test our third API, GetUsersByFirstName:

curl -X GET 'http://localhost:8000/v1/user?first_name=Naren'

This returns all the users with the given first name:

[{"ID":1,"CreatedAt":"2017-08-27T11:55:02.974371+05:30","UpdatedAt":"2017-0
8-27T11:55:02.974371+05:30","DeletedAt":null,"Orders":null},{"ID":2,"Create
dAt":"2017-08-27T11:59:41.84332+05:30","UpdatedAt":"2017-08-27T11:59:41.843
32+05:30","DeletedAt":null,"Orders":null}]

The core motto of this project is to show how JSON can be stored and retrieved out of
PostgreSQL. The special thing here is that we queried on the JSON field instead of the
normal fields in the User table.

Remember, PostgreSQL stores its users in a table called user. If you want
to create a new user table, create it using "user" (double quotes). Even
while retrieving use double quotes. Otherwise, the DB will fetch internal
user details:

SELECT * FROM "user"; // Correct way
SELECT * FROM user; // Wrong way. It fetches database
users

Working with PostgreSQL, JSON, and Go Chapter 7

[180]

This concludes our journey through PostgreSQL. There is a lot more to explore in Postgres.
It brings the best of both worlds by allowing us to store relational as well as JSON data in
the same table.

Summary
In this chapter, we started our journey by installing PostgreSQL. We introduced
PostgreSQL formally and tried to see all possible SQL queries for CRUD operations. We
then saw how to add users and databases in PostgreSQL. We then installed and
explained pq, a Postgres driver for the Go language. We explained how the driver API
performs raw SQL queries.

Then came the implementation part of the URL shortening service; that REST service takes
the original URL and returns a shortened string. It also takes the shortened URL and
returns the original URL. We wrote a sample program to illustrate the Base62 algorithm
that powers our service. We leveraged this algorithm in our service next and created a REST
API.

GORM is a well-known object-relational mapper for Go. Using an ORM, one can easily
manage the database operations. GORM provides a few useful functions, such
as AutoMigrate (create a table if one doesn't exist), for writing intuitive Go code over the
traditional database/sql driver.

PostgreSQL also allows JSON storage (called the JSON store) past version 9.2. It allows
developers to get the benefits of relational databases with the JSON format. We can create
indexes on JSON fields, query on JSON fields, and so on. We implemented a REST API for
the e-commerce model we defined in the previous chapters using GORM. PostgreSQL is a
well established, open-source relational database that can suffice our enterprise needs. The
driver support for Go is exceptional with pq and gorm.

8
Building a REST API Client in

Go and Unit Testing
In this chapter, we are going to discuss how Go client applications work in depth. We will
explore grequests, a Python request-style library that allows us to make API calls from the
Go code. Then, we will write a client software that uses the GitHub API. In the course of
this, we will try to learn about two wonderful libraries called cli and cobra. After these
fundamentals, we will try to use the knowledge to write an API testing tool on the
command line. Then we will see about Redis, an in-memory database which we can use to
cache the API responses to backup the data.

In this chapter, we will cover the following topics:

What is a client software?
Basics for writing a command-line tool in Go
Introducing grequests, a Python request-like library in Go
Inspecting GitHub REST API from a Go client
Creating an API client in Go
Caching an API for later use
Creating a unit testing tool for the API

Building a REST API Client in Go and Unit Testing Chapter 8

[182]

Getting the code
 You can get the code samples for this chapter at the GitHub repository link https:/ ​/
github.​com/​narenaryan/ ​gorestful/ ​tree/ ​master/ ​chapter8. This chapter has examples
that are a combination of single programs, as well as projects. So, copy the respective
directory to your GOPATH to run the code samples properly. For the last example of unit
testing the URL shortening service, the tests are available at https:/ ​/​github. ​com/
narenaryan/​gorestful/ ​tree/ ​master/ ​chapter7.

Plan for building a REST API client
Till now, we mainly focused on writing server-side REST APIs. Basically, they are server
programs. In a few cases, such as GRPC, we also needed the client. But a true client
program takes input from the user and executes some logic. For working with a Go client,
we should know the flag library in Go. Before that, we should know how to make requests
for an API from a Go program. In previous chapters, we assumed the clients could be
CURL, Browser, Postman, and so on. But how do we consume an API from Go?

Command-line tools are equally important as web user interfaces to perform system tasks.
In business-to-business (B2B) companies, the software is packaged as a single binary
instead of having multiple different pieces. As a Go developer, you should know how to
achieve the goal of writing apps for the command line. Then, that knowledge can be
leveraged to create REST API-related web clients very easily and elegantly.

Basics for writing a command-line tool in Go
Go provides a basic library called flag. It refers to the command-line flags. Since it is
already packed with the Go distribution, there is no need to install anything externally. We
can see the absolute basics of writing the command-line tool. The flag package has
multiple functions, such as Int and String, to handle the input given as command-line
flags. Suppose we need to take a name from the user and print it back to the console. We
use the flag.String method, as shown in the following code snippet:

import "flag"
var name = flag.String("name", "No Namer", "your wonderful name")

https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter8
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7
https://github.com/narenaryan/gorestful/tree/master/chapter7

Building a REST API Client in Go and Unit Testing Chapter 8

[183]

Let us write a short program for clear details. Create a file called flagExample.go in your
$GOPATH/src/github.com/narenaryan and add the following content:

package main

import (
 "flag"
 "log"
)

var name = flag.String("name", "stranger", "your wonderful name")

func main(){
 flag.Parse()
 log.Printf("Hello %s, Welcome to the command line world", *name)
}

In this program, we are creating a flag called name. It is a string pointer. flag.String takes
three arguments. The first one is the name of the argument. The second and third are the
default values of that flag and the help text, respectively. We then ask the program to parse
all flag pointers. When we run the program, it actually fills the values from the command
line to the respective variables. To access the value of a pointer, we use *. First build and
then run the program using the following commands:

go build flagExample.go

This creates a binary in the same directory. We can run it like a normal executable:

./flagExample

It gives the following output:

Hello stranger, Welcome to the command line world

Here, we didn't give any argument called name. But we have assigned the default value to
that argument. Go's flag takes the default value and proceeds further. Now, in order to see
what options are available and to know about them, ask for help:

./flagExample -h

Output
========
Usage of ./flagExample:
 -name string
 your wonderful name (default "stranger")

Building a REST API Client in Go and Unit Testing Chapter 8

[184]

This is the reason we passed help text as the third argument for the flag command.

In Windows, flagExample.exe will be generated when we build a .go
file. After that, from the command line, we can run the program by calling
the program name.

Now try to add the argument, and it prints the given name:

./flagExample -name Albert
(or)
./flagExample -name=Albert

Both work fine as arguments which give the output:

Hello Albert, Welcome to the command line world

If we need multiple parameters to collect, we need to modify the preceding program to this:

package main

import (
 "flag"
 "log"
)

var name = flag.String("name", "stranger", "your wonderful name")
var age = flag.Int("age", 0, "your graceful age")

func main(){
 flag.Parse()
 log.Printf("Hello %s (%d years), Welcome to the command line world",
*name, *age)
}

This takes two parameters, just one more addition of a different type. If we run this, we see
the output:

./flagExampleMultiParam -name Albert -age 24

Hello Albert (24 years), Welcome to the command line world

Building a REST API Client in Go and Unit Testing Chapter 8

[185]

This is exactly what we expected. Instead of using the pointers, we can bind a variable to
the parsed output. This binding is done through the init() function, which will run in a
Go program irrespective of whether main exists or not:

var name String
func init() {
 flag.IntVar(&name, "name", "stranger", "your wonderful name")
}

In this way, the value will directly come and sit in the variable. The complete rewrite of the
preceding program using the init() function is shown in the following code snippet:

initFlag.go:
package main

import (
 "flag"
 "log"
)

var name string
var age int

func init() {
 flag.StringVar(&name, "name", "stranger", "your wonderful name")
 flag.IntVar(&age, "age", 0, "your graceful age")
}

func main(){
 flag.Parse()
 log.Printf("Hello %s (%d years), Welcome to the command line world",
name, age)
}

The output is exactly the same as the preceding program. Here, instead of using pointers,
we are able to load data directly into our variables.

Building a REST API Client in Go and Unit Testing Chapter 8

[186]

In Go, execution starts from the main program. But a Go program can
have any number of init functions. If a package has an init function in
it, that will be executed.

This flag library is very basic to work. But in order to write advanced client applications,
we need to take the help of the library. In the next section, we look at such a library.

CLI – a library for building beautiful clients
This is the next step for a Go developer after playing with the flag package. It provides an
intuitive API for creating command-line applications with ease. It allows us to collect
arguments and flags. It could be quite handy for designing complex applications. To install
the package, use the following command:

go get github.com/urfave/cli

After that, let us write a program that does exactly the same job as the preceding programs:

cli/cliBasic.go:

package main

import (
 "log"
 "os"

 "github.com/urfave/cli"
)

func main() {
 // Create new app
 app := cli.NewApp()

 // add flags with three arguments
 app.Flags = []cli.Flag {
 cli.StringFlag{
 Name: "name",
 Value: "stranger",
 Usage: "your wonderful name",
 },
 cli.IntFlag{
 Name: "age",
 Value: 0,
 Usage: "your graceful age",

Building a REST API Client in Go and Unit Testing Chapter 8

[187]

 },
 }
 // This function parses and brings data in cli.Context struct
 app.Action = func(c *cli.Context) error {
 // c.String, c.Int looks for value of given flag
 log.Printf("Hello %s (%d years), Welcome to the command line world",
c.String("name"), c.Int("age"))
 return nil
 }
 // Pass os.Args to cli app to parse content
 app.Run(os.Args)
}

This is lengthier than the one before, but it is more expressive. We created a new app using
the cli.NewApp function. It creates a new struct. We need to attach a few parameters to this
struct. They are the Flags struct and the Action function. The Flags struct is a list that
defines all possible flags for this application. The structure of Flag from GoDoc (https:/ ​/
godoc.​org/​github. ​com/ ​urfave/ ​cli#Flag) is:

type Flag interface {
 fmt.Stringer
 // Apply Flag settings to the given flag set
 Apply(*flag.FlagSet)
 GetName() string
}

The inbuilt structs, such as StringFlag and IntFlag, implement this Flag interface.
Name, Value, and Usage are straightforward. They are similar to the ones used in the flag
package. The Action function takes the argument cli.Context. That context object holds
all of the information about flags and command-line arguments. We can use them and
apply logic to them. The c.String, c.Int, and other functions are used to look up the flag
variables. For example, in the preceding program, c.String("name") fetches a flag
variable whose name is name. This program runs the same as the previous programs:

go build cli/cliBasic.go

https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag
https://godoc.org/github.com/urfave/cli#Flag

Building a REST API Client in Go and Unit Testing Chapter 8

[188]

Collecting command-line arguments in CLI
There is a difference between command-line arguments and flags. The following diagram
clearly specifies the distinction between them:

Suppose that we have a command-line app called storeMarks for saving the marks of a
student. It has a flag (called save) to specify whether details should be pushed to DB or not.
The arguments that are given are the name and actual marks of the student. We already saw
how to collect the flag values in the program. In this section, we will see how to collect
program arguments in an expressive way.

For collecting arguments, we use the c.Args function, where c is the cli context of
the Action function. Create a directory called cli and add a new
program, cli/storeMarks.go:

package main

import (
 "github.com/urfave/cli"
 "log"
 "os"
)

func main() {
 app := cli.NewApp()
 // define flags
 app.Flags = []cli.Flag{
 cli.StringFlag{
 Name: "save",
 Value: "no",
 Usage: "Should save to database (yes/no)",
 },
 }

 app.Version = "1.0"

Building a REST API Client in Go and Unit Testing Chapter 8

[189]

 // define action
 app.Action = func(c *cli.Context) error {
 var args []string
 if c.NArg() > 0 {
 // Fetch arguments in a array
 args = c.Args()
 personName := args[0]
 marks := args[1:len(args)]
 log.Println("Person: ", personName)
 log.Println("marks", marks)
 }
 // check the flag value
 if c.String("save") == "no" {
 log.Println("Skipping saving to the database")
 } else {
 // Add database logic here
 log.Println("Saving to the database", args)
 }
 return nil
 }

 app.Run(os.Args)
}

c.Args keeps all of the arguments we entered. Since we know the order of the arguments,
we deduced that the first argument is the name and the remaining values are the marks. We
are checking a flag called save to save those details in a database or not (we don't have
database logic here, for simplicity). app.Version sets the version of the tool. All other
things remain the same as the last program.

Let us run this program and see the output:

go build cli/storeMarks.go

Run the program:

./storeMarks --save=yes Albert 89 85 97

2017/09/02 21:02:02 Person: Albert
2017/09/02 21:02:02 marks [89 85 97]
2017/09/02 21:02:02 Saving to the database [Albert 89 85 97]

Building a REST API Client in Go and Unit Testing Chapter 8

[190]

If we don't give any flag, the default is save=no:

./storeMarks Albert 89 85 97

2017/09/02 21:02:59 Person: Albert
2017/09/02 21:02:59 marks [89 85 97]
2017/09/02 21:02:59 Skipping saving to the database

Everything looks good till now. But how can the tool display help when a user needs it?
The cli library already creates a nice help section for the given app. Type any of these
commands and help text will be autogenerated:

./storeMarks -h (or)

./storeMarks -help (or)

./storeMarks --help

./storeMarks help

A nice help section appears, like this one showing version details and available flags (global
options), commands, and arguments:

NAME:
 storeMarks - A new cli application

USAGE:
 storeMarks [global options] command [command options] [arguments...]

VERSION:
 1.0

COMMANDS:
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --save value Should save to database (yes/no) (default: "no")
 --help, -h show help
 --version, -v print the version

This actually makes building client applications easier. It is way faster and more intuitive
than the internal flag package.

Command-line tools are binaries that are generated after building the
program. They need to be run with the options. It is like any system
program and not related to Go compiler anymore

Building a REST API Client in Go and Unit Testing Chapter 8

[191]

grequests – a REST API package for Go
The developers who worked on Python know about the Requests library. It is a clean,
short library that is not included in the standard library of Python. The Go package
grequests is inspired by that library. It provides a simple set of functions, using which we
can make API requests such as GET, POST, PUT, and DELETE from our Go code. Using
grequests allows us to encapsulate the inbuilt HTTP request and response. To install
the grequests package for your Go, run the following command:

go get -u github.com/levigross/grequests

Now, see this basic program illustrating the use of the grequests library to make a GET
request to a REST API. Create a directory called grequests in your Go source directory
and add a file called basicRequest.go, as shown in the following code snippet:

package main

import (
 "github.com/levigross/grequests"
 "log"
)

func main() {
 resp, err := grequests.Get("http://httpbin.org/get", nil)
 // You can modify the request by passing an optional RequestOptions
struct
 if err != nil {
 log.Fatalln("Unable to make request: ", err)
 }
 log.Println(resp.String())
}

The grequests package has methods for performing all REST actions. The preceding
program uses the Get function from the package. It takes two function arguments. The first
one is the URL of the API, and the second one is the request parameters object. Since we are
not passing any request parameters, the second argument is nil here. resp is returned
from the request, and it has a function called String() that returns the response body:

go run grequests/basicRequest.go

The output is the JSON response returned by the httpbin:

{
 "args": {},
 "headers": {

Building a REST API Client in Go and Unit Testing Chapter 8

[192]

 "Accept-Encoding": "gzip",
 "Connection": "close",
 "Host": "httpbin.org",
 "User-Agent": "GRequests/0.10"
 },
 "origin": "116.75.82.9",
 "url": "http://httpbin.org/get"
}

API overview of grequests
The most important thing to explore in grequests is not the HTTP functions, but the
RequestOptions struct. It is a very big struct that holds various kinds of information on
the type of API method. If the REST method is GET, the RequestOptions holds
the Params property. If the method is a POST, the struct will have a Data property.
Whenever we make a request, we get a response back. Let us see the structure of the
response. From the official documentation, the response looks like this:

type Response struct {
 Ok bool
 Error error
 RawResponse *http.Response
 StatusCode int
 Header http.Header
}

The Ok property of response holds the information about whether a request is successful or
not. If something went wrong, an error will be filled into the Error property. RawResponse
is the Go HTTP response that will be used by other functions of the grequests response.
StatusCode and Header store the status codes of the response and header details,
respectively. There are a few functions in Response that are useful:

JSON
XML
String
Bytes

Building a REST API Client in Go and Unit Testing Chapter 8

[193]

These can be called on the obtained response by passing an empty interface to the
functions—grequests/jsonRequest.go:

package main

import (
 "github.com/levigross/grequests"
 "log"
)

func main() {
 resp, err := grequests.Get("http://httpbin.org/get", nil)
 // You can modify the request by passing an optional RequestOptions
struct
 if err != nil {
 log.Fatalln("Unable to make request: ", err)
 }
 var returnData map[string]interface{}
 resp.JSON(&returnData)
 log.Println(returnData)

}

We declared an interface to hold the JSON values. We then populated the returnData
(empty interface) using the resp.JSON function. This program prints the map instead of
plain JSON.

Getting comfortable with the GitHub REST
API
GitHub provides a well-written REST API to consume from the users. It opens up the data
about users, repositories, repository statistics, and so on, to the clients through the API. The
current stable version is v3. The API documentation can be found at https:/ ​/​developer.
github.​com/​v3/​. The root endpoint of the API is:

curl https://api.github.com

The other API will be added to this base API. Now let us see how to make a few queries and
get data related to various elements. For the unauthenticated user, the rate limit is 60/hour,
whereas for clients who are passing client_id (which one can get from the GitHub
account), it is 5,000/hour.

https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/

Building a REST API Client in Go and Unit Testing Chapter 8

[194]

If you have a GitHub account (if not, it is recommended you create one), you can find access
tokens in the Your Profile | Personal Access Tokens area or by visiting https:/ ​/​github.
com/​settings/​tokens. Create a new access token using the Generate new token button. It
asks for various permissions for types for the resource. Tick all of them. A new string will
be generated. Save it to some private place. The token we have generated can be used to
access the GitHub API (for longer rate limits).

The next step is to save that access token to an environment variable, GITHUB_TOKEN. To do
that, open your ~/.profile or ~/.bashrc file and add this as the last line:

export GITHUB_TOKEN=YOUR_GITHUB_ACCESS_TOKEN

YOUR_GITHUB_ACCESS_TOKEN is what was generated and saved previously from the
GitHub account. Let us create a program for fetching all the repos of the given user. Create
a new directory called githubAPI and create a program file called getRepos.go:

package main

import (
 "github.com/levigross/grequests"
 "log"
 "os"
)

var GITHUB_TOKEN = os.Getenv("GITHUB_TOKEN")
var requestOptions = &grequests.RequestOptions{Auth: []string{GITHUB_TOKEN,
"x-oauth-basic"}}

type Repo struct {
 ID int `json:"id"`
 Name string `json:"name"`
 FullName string `json:"full_name"`
 Forks int `json:"forks"`
 Private bool `json:"private"`
}

func getStats(url string) *grequests.Response{
 resp, err := grequests.Get(url, requestOptions)
 // You can modify the request by passing an optional RequestOptions
struct
 if err != nil {
 log.Fatalln("Unable to make request: ", err)
 }
 return resp
}

https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens
https://github.com/settings/tokens

Building a REST API Client in Go and Unit Testing Chapter 8

[195]

func main() {
 var repos []Repo
 var repoUrl = "https://api.github.com/users/torvalds/repos"
 resp := getStats(repoUrl)
 resp.JSON(&repos)
 log.Println(repos)
}

Run the program, and you will see the following output:

2017/09/03 17:59:41 [{79171906 libdc-for-dirk torvalds/libdc-for-dirk 10
false} {2325298 linux torvalds/linux 18274 false} {78665021 subsurface-for-
dirk torvalds/subsurface-for-dirk 16 false} {86106493 test-tlb
torvalds/test-tlb 25 false}]

The printed output is not JSON but a list of the Go Repo struct. The preceding program
illustrates how we can query the GitHub API and load that data into our custom struct:

type Repo struct {
 ID int `json:"id"`
 Name string `json:"name"`
 FullName string `json:"full_name"`
 Forks int `json:"forks"`
 Private bool `json:"private"`
}

This is the struct we used for saving the details of our repository. The JSON returned has
many fields, but for simplicity's sake, we are just plucking a few important fields out of
them:

var GITHUB_TOKEN = os.Getenv("GITHUB_TOKEN")
var requestOptions = &grequests.RequestOptions{Auth: []string{GITHUB_TOKEN,
"x-oauth-basic"}}

In the first line, we are fetching the environment variable called GITHUB_TOKEN.
The os.Getenv function returns the value of an environment variable by the given name.
For GitHub to assume the origin of the GET request, we should set the authentication. For
that, pass an argument to the RequestOptions struct. That argument should be a list of the
username and password.

Building a REST API Client in Go and Unit Testing Chapter 8

[196]

Creating a CLI tool as an API client for the
GitHub REST API
After looking at this example, we are able to easily access the GitHub API from our Go
client. We can combine both of the techniques we learned in this chapter so far to come up
with a command-line tool that consumes the GitHub API. Let us create a new command-
line application which:

Provides options to get repo details by username
Uploads any file to GitHub gists (text snippets) with a given description
Authenticates using a personal access token

Gists are snippets provided by GitHub to store text content. For more
details, visit https:/ ​/​gist. ​github. ​com.

Create a program called gitTool.go in the githubAPI directory. This will be the logic for
the preceding program specification:

package main

import (
 "encoding/json"
 "fmt"
 "github.com/levigross/grequests"
 "github.com/urfave/cli"
 "io/ioutil"
 "log"
 "os"
)

var GITHUB_TOKEN = os.Getenv("GITHUB_TOKEN")
var requestOptions = &grequests.RequestOptions{Auth: []string{GITHUB_TOKEN,
"x-oauth-basic"}}

// Struct for holding response of repositories fetch API
type Repo struct {
 ID int `json:"id"`
 Name string `json:"name"`
 FullName string `json:"full_name"`
 Forks int `json:"forks"`
 Private bool `json:"private"`
}

https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com
https://gist.github.com

Building a REST API Client in Go and Unit Testing Chapter 8

[197]

// Structs for modelling JSON body in create Gist
type File struct {
 Content string `json:"content"`
}

type Gist struct {
 Description string `json:"description"`
 Public bool `json:"public"`
 Files map[string]File `json:"files"`
}

// Fetches the repos for the given Github users
func getStats(url string) *grequests.Response {
 resp, err := grequests.Get(url, requestOptions)
 // you can modify the request by passing an optional RequestOptions
struct
 if err != nil {
 log.Fatalln("Unable to make request: ", err)
 }
 return resp
}

// Reads the files provided and creates Gist on github
func createGist(url string, args []string) *grequests.Response {
 // get first teo arguments
 description := args[0]
 // remaining arguments are file names with path
 var fileContents = make(map[string]File)
 for i := 1; i < len(args); i++ {
 dat, err := ioutil.ReadFile(args[i])
 if err != nil {
 log.Println("Please check the filenames. Absolute path (or) same
directory are allowed")
 return nil
 }
 var file File
 file.Content = string(dat)
 fileContents[args[i]] = file
 }
 var gist = Gist{Description: description, Public: true, Files:
fileContents}
 var postBody, _ = json.Marshal(gist)
 var requestOptions_copy = requestOptions
 // Add data to JSON field
 requestOptions_copy.JSON = string(postBody)
 // make a Post request to Github
 resp, err := grequests.Post(url, requestOptions_copy)
 if err != nil {

Building a REST API Client in Go and Unit Testing Chapter 8

[198]

 log.Println("Create request failed for Github API")
 }
 return resp
}

func main() {
 app := cli.NewApp()
 // define command for our client
 app.Commands = []cli.Command{
 {
 Name: "fetch",
 Aliases: []string{"f"},
 Usage: "Fetch the repo details with user. [Usage]: goTool fetch
user",
 Action: func(c *cli.Context) error {
 if c.NArg() > 0 {
 // Github API Logic
 var repos []Repo
 user := c.Args()[0]
 var repoUrl =
fmt.Sprintf("https://api.github.com/users/%s/repos", user)
 resp := getStats(repoUrl)
 resp.JSON(&repos)
 log.Println(repos)
 } else {
 log.Println("Please give a username. See -h to see help")
 }
 return nil
 },
 },
 {
 Name: "create",
 Aliases: []string{"c"},
 Usage: "Creates a gist from the given text. [Usage]: goTool name
'description' sample.txt",
 Action: func(c *cli.Context) error {
 if c.NArg() > 1 {
 // Github API Logic
 args := c.Args()
 var postUrl = "https://api.github.com/gists"
 resp := createGist(postUrl, args)
 log.Println(resp.String())
 } else {
 log.Println("Please give sufficient arguments. See -h to see
help")
 }
 return nil
 },

Building a REST API Client in Go and Unit Testing Chapter 8

[199]

 },
 }

 app.Version = "1.0"
 app.Run(os.Args)
}

Let us run the program before jumping into the details of explanation. It makes clear how
we implemented the program:

go build githubAPI/gitTool.go

It creates a binary in the same directory. If you type ./gitTool -h, it shows:

NAME:
 gitTool - A new cli application

USAGE:
 gitTool [global options] command [command options] [arguments...]

VERSION:
 1.0

COMMANDS:
 fetch, f Fetch the repo details with user. [Usage]: goTool fetch user
 create, c Creates a gist from the given text. [Usage]: goTool name
'description' sample.txt
 help, h Shows a list of commands or help for one command

GLOBAL OPTIONS:
 --help, -h show help
 --version, -v print the version

If you see the help commands, there are two commands, fetch and create. fetch fetches
the repositories of a given user and create creates a gist with the supplied files. Let us
create two sample files in the same directory of the program to test the create command:

echo 'I am sample1 file text' > githubAPI/sample1.txt
echo 'I am sample2 file text' > githubAPI/sample2.txt

Run the tool with the first command:

./gitTool f torvalds

Building a REST API Client in Go and Unit Testing Chapter 8

[200]

It returns all repositories belonging to the great Linus Torvalds. The log message prints the
struct that filled:

[{79171906 libdc-for-dirk torvalds/libdc-for-dirk 10 false} {2325298 linux
torvalds/linux 18310 false} {78665021 subsurface-for-dirk
torvalds/subsurface-for-dirk 16 false} {86106493 test-tlb torvalds/test-tlb
25 false}]

Now, let us check the second command. It creates the gist with the given description and a
set of files as arguments:

./gitTool c "I am doing well" sample1.txt sample2.txt

It returns the JSON details about the created gist. It is a very lengthy JSON, so the output
is skipped here. Then, open your gist.github.com account, and you will see the created
gist:

Now, coming to the explanation, we first imported grequests for making API calls
and cli for building the command-line tool. Other imports are necessary to read files, log
to the console, and encode JSON. We then defined three structs: Repo, File, and Gist. The
GitHub gists API expects a JSON data to create:

{
 "description": "the description for this gist",
 "public": true,
 "files": {
 "file1.txt": {
 "content": "String file contents"
 }
 }
}

https://gist.github.com/

Building a REST API Client in Go and Unit Testing Chapter 8

[201]

The grequests POST request takes requestOptions that have Data as the field. But the
signature of it is Map[string]string], which is not enough to create the preceding
structure. grequests allows us to pass a JSON string with any structure to the API. We
created structs so that data can be filled and marshalled into proper JSON to POST request
get succeeded.

Then, we created two functions: getStats (that returns all repo details of a given user) and
createGist (that creates new gist files with the given description and filenames). The
second function is more interesting. We are passing a URL for the POST request,
description, and file_names in the form of an args array. Then, we are iterating on each
and every file and getting the content. We are adjusting our structs so that the final JSON
body for the POST request will be in the same structure. Finally, we are making a POST
request with the requestOptions that have our JSON.

In this way, we combined both of the libraries to build an API client which can do any task.
The beauty of Go is that we can ship the final binary in which both the logic for the
command-line tool and the REST API calling the logic were buried.

For any Go program to read and understand soon, follow the main
function and then step into the other functions. In that way, we can come
across imported packages and their APIs.

Using Redis for caching the API data
Redis is an in-memory database that can store key/value pairs. It best suits the caching use
cases where we need to store information temporarily but for huge traffic. For example,
sites such as BBC and The Guardian show the latest articles on the dashboard. Their traffic
is so high, if documents (articles) are fetched from the database, they need to maintain a
huge cluster of databases all the time. Since the given set of articles does not change (at least
for hours), the BBC can maintain a cache which saves the articles. When the first customer
visits the page, a copy is pulled from the DB, sent to the browser, and placed in the Redis
cache. The next time a customer appears, the BBC application server reads content from
Redis instead of going to the DB. Since Redis runs in primary memory, latency is reduced.
The customer sees his page loaded in a flash. The benchmarks on the web can tell more
about how efficiently a site can optimize its contents.

Building a REST API Client in Go and Unit Testing Chapter 8

[202]

What if data is no longer relevant in Redis? (For example, the BBC updated its top stories.)
Redis provides a way to expire the keys:values stored in it. We can run a scheduler that
updates the Redis whenever the expiration time has passed.

Similarly, we can cache the third-party API responses for the given request (GET). We need
to do it, because third-party systems like GitHub are giving us a rate limit (telling us to be
conservative). For a given GET URL, we can store the URL as key and the Response as
value. Whenever the same request is given within the next time (before key expiration), just
pull the response out of Redis instead of hitting the GitHub servers. This method is
applicable to our REST API, too. The most frequent and unchanged REST API can be
cached in order to reduce the load on the primary database.

There is a wonderful library available for Go to talk to Redis. It is https:/ ​/​github. ​com/ ​go-
redis/​redis. It is a well-known library which many developers suggest you use. The
following diagram illustrates the concept very well:

One caveat to note here is the expiration of the API. A real-time API should not be cached
because of its dynamic nature. Caching brings performance optimization to our plate, as
well as a few headaches. Be careful while caching. There are many better practices available
globally. Please go through them to get an understanding of various architectures.

https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis
https://github.com/go-redis/redis

Building a REST API Client in Go and Unit Testing Chapter 8

[203]

Creating a unit testing tool for our URL
shortening service
In the previous chapter, we created a URL shortening service. The structure of the URL
shortener project we worked on previously looks like this:

├── main.go
├── models
│ └── models.go
└── utils
 └── encodeutils.go

2 directories, 3 files

In the main.go file, we created two API handlers: one for GET and one for POST. We are
going to write the unit tests for both of those handlers. Add a file called main_test.go in
the root directory of the project:

touch main_test.go

In order to test our API, we need to test our API handlers:

package main_test

import (
 "testing"
 "net/http"
)

func TestGetOriginalURL(t *testing.T) {
 // make a dummy reques
 response, err := http.Get("http://localhost:8000/v1/short/1")

 if http.StatusOK != response.StatusCode {
 t.Errorf("Expected response code %d. Got %d\n", http.StatusOK,
response.StatusCode)
 }

 if err != nil {
 t.Errorf("Encountered an error:", err)
 }
}

Building a REST API Client in Go and Unit Testing Chapter 8

[204]

There is a testing package in Go named testing. It allows us to create a few assertions and
lets us make a pass or fail test. We are testing the API TestGetOriginalURL by making a
simple HTTP request. Make sure you have at least one record inserted in the database. The
advanced testing topics of database connections are out of the scope of this book. We can
test this using Go test command inside the project directory.

Summary
We started our chapter with understanding client software: how a software client works
and how we can create a few. We saw the basics of writing a command-line application. CLI
is a third-party package that enables us to create beautiful command-line applications. After
installing it, we saw how to collect command-line arguments through the tool. We also
explored commands and flags in our CLI application. Next, we looked into grequests, a
package similar to Python requests to make API requests from Go code. We saw how to
make GET, POST, and so on, requests from the client programs.

We next explored the GitHub API on how to fetch details like repositories. With the
knowledge of both concepts, we developed a client that lists the repositories for a given
user and also creates a gist (a text file on GitHub). We introduced Redis architecture on
how caching could help handle rate-limited API. Finally, we wrote a unit test for the URL
shortening service we created in the previous chapter.

9
Scaling Our REST API Using

Microservices
Building a REST API is easy in terms of concepts. But scaling them to accept huge traffic is a
challenge. Till now, we looked into the details of creating REST API structures and sample
REST APIs. In this chapter, we are going to explore the Go Kit, a wonderful, idiomatic Go
package for building microservices. This is the microservices age, where startups are
turning into enterprises in no time. The microservice architecture allows companies to
quickly iterate in parallel. We will start by defining microservices and then move on to Go
Kit by creating REST-style microservices.

In this chapter, we will cover the following topics:

The difference between monolith and microservices
The need for microservices
Introducing Go Kit, a microservice toolkit in Go
Creating a REST API with Go Kit
Adding logging to the API
Adding instrumentation to the API

Scaling Our REST API Using Microservices Chapter 9

[206]

Getting the code
 You can get the code samples for this chapter at the GitHub repository link https:/ ​/
github.​com/​narenaryan/ ​gorestful/ ​tree/ ​master/ ​chapter9. In the previous chapter, we
discussed Go API clients. Here, we come back to the REST API with microservice
architecture.

What are microservices?
What are microservices? This is the question the enterprise world is asking the computing
world. Because of the bigger teams, the companies are ready to embrace microservices for
breaking down tasks. Microservice architecture replaces the traditional monolith with
granular services that talk to each other with some kind of agreement.

Microservices bring the following benefits to the plate:

If the team is big, people can work on chunks of applications
Adaptability is easy for the new developers
Adopting best practices, such as Continuous Integration (CI) and Continuous
Delivery (CD)
Easily replaceable software with loosely coupled architecture

In a monolith application (traditional application), a single huge server serves the incoming
requests by multiplexing the computing power. It is good because we have everything, such
as an application server, database, and other things, in a single place. It also has
disadvantages. When a piece of software breaks, everything breaks. Also, developers need
to set up an entire application to develop a small piece.

https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9
https://github.com/narenaryan/gorestful/tree/master/chapter9

Scaling Our REST API Using Microservices Chapter 9

[207]

The disadvantage list of a monolithic application could be:

Tightly coupled architecture
Single point of failure
Velocity of adding new features and components
Fragmentation of work is limited to teams
Continuous deployment is very tough because an entire application needs to be
pushed

Looking at the monolith application, the entire stack is treated as a single entity. If the
database fails, the app fails. If a bug in the code crashes the software application, the entire
connectivity with clients goes down. This actually led to the emergence of microservices.

Let us take a scenario. A company run by Bob uses the traditional Service Oriented
Architecture (SOA), where developers work around the clock to add new features. If there
is a release, people need to test the code overall for every small component. The project
moves from development to testing when all changes are done. Another company on the
next street, run by Alice, uses the microservices architecture. All software developers in
Alice's company work on individual services, that get tested by a continuous build pipeline
that notifies things pretty quickly. The developers talk with each other's REST/RPC APIs to
add new features. They can easily shift their stack from one technology to another, as
compared to Bob's developers. This example shows that Alice's company's flexibility and
velocity is greater than Bob's.

Microservices also create a platform that allows us to use containers (docker, and so on). In
microservices, orchestration and service discovery are very important to track the loosely
coupled elements. A tool such as Kubernetes is used to manage the docker containers.
Generally, it is a good practice to have a docker container for a microservice. Service
discovery is the automatic detection of an IP address and other details on the fly. This
removes the potential threat of hardcoding the stuff that is needed for microservices to
consult each other.

Scaling Our REST API Using Microservices Chapter 9

[208]

Monolith versus microservices
Industry experts suggest starting a software application as a monolith and then breaking it
down into microservices in the long run. This actually helps us focus on the application
delivery, instead of studying the microservices patterns. Once the product is stabilized, then
developers should find a way to loosely couple functionalities. Take a look at the following
diagram:

Scaling Our REST API Using Microservices Chapter 9

[209]

This diagram depicts the structure of monolith and microservice architectures. A monolith
has everything wrapped in the form of an onion. It is called a tightly coupled system. In
contrast, microservices are individual, easy to replace and modify. Each microservice can
talk to each other through various transport mechanisms, such as HTTP and RPC. The
format could be either JSON or Protocol Buffers.

Go Kit, a package for building microservices
In the enterprise world, people know about Netflix's Eureka and Spring Boot from the Java
community. In Go, a package that tries to reach that level of implementation is obviously
Go kit. It is a toolkit for building microservices.

It has a Go style of adding services, which makes us feel good. It comes with a procedure
for adding the microservices. In the upcoming sections, we will see how to create a
microservice with the steps defined by Go Kit. It mainly consists of many layers. There are
three layers where request and response flow in Go Kit:

Transport layer: This takes care of transferring data from one service to another
Endpoint layer: This takes care of building endpoints for the given services
Service layer: This is the actual business logic for the API handlers

Install Go Kit using this command:

go get github.com/go-kit/kit

Let us lay down the plan for our first microservice. We all know the encryption of messages.
A message string can be encrypted using a key that outputs a gibberish message that can be
passed over the wire. The recipient decrypts the message and gets back the original string.
This process is called encryption in cryptography. We will try to implement this as part of
our microservice illustration:

First, develop logic for encryption
Then, integrate it with Go Kit

Go comes with packages for encrypting messages. We need to import encrypting
algorithms from those packages and use them. As part of the first step, we will write a
project that uses an Advanced Encryption Standard (AES).

Scaling Our REST API Using Microservices Chapter 9

[210]

Create a directory called encryptString in your GOPATH/src/user directory:

mkdir $GOPATH/src/github.com/narenaryan/encryptString
cd $GOPATH/src/github.com/narenaryan/encryptString

Now let us add one more in the new directory, called utils. Add two files, main.go in the
project directory and utils.go in the new directory called utils. The directory structure
looks like this:

└── encryptString
 ├── main.go
 └── utils
 └── utils.go

Now let us add the logic of encryption in our utils.go file. We create two functions, one
for encrypting and another for decrypting the messages, as shown in the following code:

package utils
import (
 "crypto/aes"
 "crypto/cipher"
 "encoding/base64"
)

The AES algorithm takes the initialization vector. Let us define that first:

// Implements AES encryption algorithm(Rijndael Algorithm)
/* Initialization vector for the AES algorithm
More details visit this link
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard */
var initVector = []byte{35, 46, 57, 24, 85, 35, 24, 74, 87, 35, 88, 98, 66,
32, 14, 05}

Now, let us implement the logic for encryption and decryption:

// EncryptString encrypts the string with given key
func EncryptString(key, text string) string {
 block, err := aes.NewCipher([]byte(key))
 if err != nil {
 panic(err)
 }
 plaintext := []byte(text)
 cfb := cipher.NewCFBEncrypter(block, initVector)
 ciphertext := make([]byte, len(plaintext))
 cfb.XORKeyStream(ciphertext, plaintext)
 return base64.StdEncoding.EncodeToString(ciphertext)
}

Scaling Our REST API Using Microservices Chapter 9

[211]

In the EncryptString function, we are creating a new cipher block using a key. Then we
are passing that block to a cipher block encryptor function. That encryptor takes the block
and initialization vector. Then we generate ciphertext (an encrypted message) by doing a
XORKeyStream on the cipher block. It fills the ciphertext. Then we need to do a Base64
encoding to generate the protected string:

// DecryptString decrypts the encrypted string to original
func DecryptString(key, text string) string {
 block, err := aes.NewCipher([]byte(key))
 if err != nil {
 panic(err)
 }
 ciphertext, _ := base64.StdEncoding.DecodeString(text)
 cfb := cipher.NewCFBEncrypter(block, initVector)
 plaintext := make([]byte, len(ciphertext))
 cfb.XORKeyStream(plaintext, ciphertext)
 return string(plaintext)
}

In the DecryptString function, decode Base64 encoding and create a cipher block with the
key. Pass this cipher block with the initialization vector to NewCFBEncrypter. Next, use
XORKeyStream to load content from cipher text to plain text. Basically, it is a process of
swapping the encrypted and decrypted messages in XORKeyStream. This finishes the
utils.go file.

Now let us edit the main.go file to leverage the preceding utils package:

package main
import (
 "log"
 "github.com/narenaryan/encryptString/utils"
)
// AES keys should be of length 16, 24, 32
func main() {
 key := "111023043350789514532147"
 message := "I am A Message"
 log.Println("Original message: ", message)
 encryptedString := utils.EncryptString(key, message)
 log.Println("Encrypted message: ", encryptedString)
 decryptedString := utils.DecryptString(key, encryptedString)
 log.Println("Decrypted message: ", decryptedString)
}

Scaling Our REST API Using Microservices Chapter 9

[212]

Here, we are importing the encrypting/decrypting functions from the utils package and
using them to show an example.

If we run this program, we see the following output:

go run main.go

Original message: I am A Message
Encrypted message: 8/+JCfTb+ibIjzQtmCo=
Decrypted message: I am A Message

It shows how we can use the AES algorithm to encrypt a message and get it back using the
same secret key. This algorithm is also called the Rijndael (pronounced rain-dahl)
algorithm.

Building a REST microservice with Go Kit
With this knowledge, we are ready to build our first microservice that provides the API for
encryption/decryption. We use Go Kit and our encryption utils to write that microservice.
As we discussed in the previous section, a Go-Kit microservice should be built in a step-
wise manner. To create a service, we need to design a few things upfront. They are:

Service implementation
Endpoints
Request/response models
Transport

Sit tight. This terminology seems alien for now. We will be quite comfortable with it soon.
Let us create a directory with the following directory structure. Every Go Kit project can be
in this project structure. Let us call our project encryptService. Create these files in the
same tree structure in the encryptService directory:

├── helpers
│ ├── endpoints.go
│ ├── implementations.go
│ ├── jsonutils.go
│ └── models.go
└── main.go

Scaling Our REST API Using Microservices Chapter 9

[213]

We will go through each and every file and see how things should be built. First, in Go Kit,
create the interface that tells all functions our microservice performs. In this case, those
functions are Encrypt and Decrypt. Encrypt takes the key and converts the text to a
cipher message. Decrypt converts the cipher message back to the text using the key. Take a
look at the following code:

import (
 "context"
)
// EncryptService is a blueprint for our service

type EncryptService interface {
 Encrypt(context.Context, string, string) (string, error)
 Decrypt(context.Context, string, string) (string, error)
}

The service needs to implement these functions to satisfy the interface. Next, create models
for your services. Models specify what data a service can receive and produce back. Create
a models.go file in the helpers directory of the project:

encryptService/helpers/models.go

package helpers

// EncryptRequest strctures request coming from client
type EncryptRequest struct {
 Text string `json:"text"`
 Key string `json:"key"`
}

// EncryptResponse strctures response going to the client
type EncryptResponse struct {
 Message string `json:"message"`
 Err string `json:"error"`
}

// DecryptRequest strctures request coming from client
type DecryptRequest struct {
 Message string `json:"message"`
 Key string `json:"key"`
}

// DecryptResponse strctures response going to the client
type DecryptResponse struct {
 Text string `json:"text"`
 Err string `json:"error"`
}

Scaling Our REST API Using Microservices Chapter 9

[214]

Since we have two service functions, there are four functions mapped to the request and
response. The next step is to create a struct that implements the preceding defined
interface, EncryptService. So, create that logic in an implementations file in the following
path:

 encryptService/helpers/implementations.go

First, let us import all necessary packages. Also, give the package name:

package helpers
import (
 "context"
 "crypto/aes"
 "crypto/cipher"
 "encoding/base64"
 "errors"
)
// EncryptServiceInstance is the implementation of interface for micro
service
type EncryptServiceInstance struct{}
// Implements AES encryption algorithm(Rijndael Algorithm)
/* Initialization vector for the AES algorithm
More details visit this link
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard */
var initVector = []byte{35, 46, 57, 24, 85, 35, 24, 74, 87, 35, 88, 98, 66,
32, 14, 05}
// Encrypt encrypts the string with given key
func (EncryptServiceInstance) Encrypt(_ context.Context, key string, text
string) (string, error) {
 block, err := aes.NewCipher([]byte(key))
 if err != nil {
 panic(err)
 }
 plaintext := []byte(text)
 cfb := cipher.NewCFBEncrypter(block, initVector)
 ciphertext := make([]byte, len(plaintext))
 cfb.XORKeyStream(ciphertext, plaintext)
 return base64.StdEncoding.EncodeToString(ciphertext), nil
}
// Decrypt decrypts the encrypted string to original
func (EncryptServiceInstance) Decrypt(_ context.Context, key string, text
string) (string, error) {
 if key == "" || text == "" {
 return "", errEmpty
 }
 block, err := aes.NewCipher([]byte(key))
 if err != nil {

Scaling Our REST API Using Microservices Chapter 9

[215]

 panic(err)
 }
 ciphertext, _ := base64.StdEncoding.DecodeString(text)
 cfb := cipher.NewCFBEncrypter(block, initVector)
 plaintext := make([]byte, len(ciphertext))
 cfb.XORKeyStream(plaintext, ciphertext)
 return string(plaintext), nil
}
var errEmpty = errors.New("Secret Key or Text should not be empty")

This is leveraging the same AES encryption we saw in the previous example. In this file, we
are creating a struct called EncyptionServiceInstance that has two methods, Encrypt
and Decrypt. So it satisfies the preceding interface. Now, how can we link these actual
service implementations with service requests and responses? We need to define endpoints
for that. So, add the following endpoints to link service requests with service business logic.

We are using the Capitalized function and variable names because in
Go, any function or variable that is Capital is exported from that package
name. In main.go, to use all these functions, we need to export them first.
Giving capital names makes them visible to the main program.

Create endpoints.go in the helpers directory:

package helpers
import (
 "context"
 "github.com/go-kit/kit/endpoint"
)
// EncryptService is a blueprint for our service
type EncryptService interface {
 Encrypt(context.Context, string, string) (string, error)
 Decrypt(context.Context, string, string) (string, error)
}
// MakeEncryptEndpoint forms endpoint for request/response of encrypt
function
func MakeEncryptEndpoint(svc EncryptService) endpoint.Endpoint {
 return func(ctx context.Context, request interface{}) (interface{},
error) {
 req := request.(EncryptRequest)
 message, err := svc.Encrypt(ctx, req.Key, req.Text)
 if err != nil {
 return EncryptResponse{message, err.Error()}, nil
 }
 return EncryptResponse{message, ""}, nil
 }
}

Scaling Our REST API Using Microservices Chapter 9

[216]

// MakeDecryptEndpoint forms endpoint for request/response of decrypt
function
func MakeDecryptEndpoint(svc EncryptService) endpoint.Endpoint {
 return func(ctx context.Context, request interface{}) (interface{},
error) {
 req := request.(DecryptRequest)
 text, err := svc.Decrypt(ctx, req.Key, req.Message)
 if err != nil {
 return DecryptResponse{text, err.Error()}, nil
 }
 return DecryptResponse{text, ""}, nil
 }
}

Here, we are clubbing the previous interface definition code with the endpoints definition
code. Endpoints take a service as the argument and return a function. This function, in turn,
takes a request and returns a response. These things are the same as what we defined in our
models.go file. We check the errors, then return back the struct for a response.

Now, things fit nicely. In the previous REST API examples we worked on, we always tried
to unmarshal the JSON string into the Go structs. For a response, we converted the struct
back into the JSON string by marshaling. Here, we unmarshal and marshal request and
response, respectively. For that, we write one more file for encoding/decoding logic. Let us
call that file jsonutils.go and add it in the helpers directory:

package helpers
import (
 "context"
 "encoding/json"
 "net/http"
)
// DecodeEncryptRequest fills struct from JSON details of request
func DecodeEncryptRequest(_ context.Context, r *http.Request) (interface{},
error) {
 var request EncryptRequest
 if err := json.NewDecoder(r.Body).Decode(&request); err != nil {
 return nil, err
 }
 return request, nil
}
// DecodeDecryptRequest fills struct from JSON details of request
func DecodeDecryptRequest(_ context.Context, r *http.Request) (interface{},
error) {
 var request DecryptRequest
 if err := json.NewDecoder(r.Body).Decode(&request); err != nil {
 return nil, err

Scaling Our REST API Using Microservices Chapter 9

[217]

 }
 return request, nil
}
// EncodeResponse is common for both the reponses from encrypt and decrypt
services
func EncodeResponse(_ context.Context, w http.ResponseWriter, response
interface{}) error {
 return json.NewEncoder(w).Encode(response)
}

EncodeResponse is common for marshaling the response of EncyptService and
DecryptService, but while decoding JSON into structs we need two different methods.
We defined them as DecodeEncryptRequest and DecodeDecryptRequest. These
functions use Go's internal JSON package to marshal and unmarshal data.

Now we have all helper files that have the constructs needed to create a microservice. Let us
design the main function that import the existing things and wire microservice to a server:

package main
import (
 "log"
 "net/http"
 httptransport "github.com/go-kit/kit/transport/http"
 "github.com/narenaryan/encryptService/helpers"
)
func main() {
 svc := helpers.EncryptServiceInstance{}
 encryptHandler :=
httptransport.NewServer(helpers.MakeEncryptEndpoint(svc),
 helpers.DecodeEncryptRequest,\
 helpers.EncodeResponse)
 decryptHandler :=
httptransport.NewServer(helpers.MakeDecryptEndpoint(svc),
 helpers.DecodeDecryptRequest,
 helpers.EncodeResponse)
 http.Handle("/encrypt", encryptHandler)
 http.Handle("/decrypt", decryptHandler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

Scaling Our REST API Using Microservices Chapter 9

[218]

We are importing Go Kit's transport/http as httptransport to create handlers. A handler
attaches the endpoints, JSON decoder, and JSON encoder. Then, using Go's net/http, we are
handling the HTTP requests for the given URL
endpoint. httptransport.NewServer takes a few arguments: an endpoint, the JSON
decoder, and the JSON encoder. Where is the logic for the service execution? It lies in the
endpoint. An endpoint takes the request model and spits out the response model. Now, let
us run this project within the encryptService directory:

go run main.go

We can make curl POST requests to check the output:

curl -XPOST -d'{"key":"111023043350789514532147", "text": "I am A
Message"}' localhost:8080/encrypt

{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}

We provided the key and message to the microservice. It returned the cipher message back.
It means the service encrypted the text. Make one more request to decrypt the message by
passing the same key along with the cipher message:

curl -XPOST -d'{"key":"111023043350789514532147", "message":
"8/+JCfTb+ibIjzQtmCo="}' localhost:8080/decrypt

{"text":"I am A Message","error":""}

It returns us the exact message we passed initially. Hurray! We wrote our first microservice
for encrypting/decrypting messages. Apart from handling normal HTTP requests, Go Kit
provides many other useful constructs, such as middleware for:

Transport logging
Application logging
Application instrumentation
Service discovery

In the upcoming sections, we discuss a few important constructs from the preceding list.

Scaling Our REST API Using Microservices Chapter 9

[219]

Adding logging to your microservice
In this section, let us learn how to add transport-level logging and application-level logging
to our Go Kit microservices. We use the above example but modify it a little bit. Let us call
our new project encryptServiceWithLogging. In the GitHub project of this book, you
will find this directory. We visited the concepts of middleware many times in this book. For
revision, a middleware is a function that tampers the request/response before/after it
reaches the respective request handlers. Go Kit allows us to create logging middleware,
which we attach to our service. That middleware will have the logging logic. In this
example, we try to log to the Stderr (console). Add one new file called middleware.go to
the helpers directory, as shown in the following code:

package helpers
import (
 "context"
 "time"
 log "github.com/go-kit/kit/log"
)
// LoggingMiddleware wraps the logs for incoming requests
type LoggingMiddleware struct {
 Logger log.Logger
 Next EncryptService
}
// Encrypt logs the encyption requests
func (mw LoggingMiddleware) Encrypt(ctx context.Context, key string, text
string) (output string, err error) {
 defer func(begin time.Time) {
 _ = mw.Logger.Log(
 "method", "encrypt",
 "key", key,
 "text", text,
 "output", output,
 "err", err,
 "took", time.Since(begin),
)
 }(time.Now())
 output, err = mw.Next.Encrypt(ctx, key, text)
 return
}
// Decrypt logs the encyption requests
func (mw LoggingMiddleware) Decrypt(ctx context.Context, key string,
text string) (output string, err error) {
 defer func(begin time.Time) {
 _ = mw.Logger.Log(
 "method", "decrypt",
 "key", key,

Scaling Our REST API Using Microservices Chapter 9

[220]

 "message", text,
 "output", output,
 "err", err,
 "took", time.Since(begin),
)
 }(time.Now())
 output, err = mw.Next.Decrypt(ctx, key, text)
 return
}

We need to create a struct that has a logger and our service instance. Then, define a few
methods on that whose names are similar to the service methods (in this case, they are
encrypt and decrypt). The Logger is the Go Kit's logger that has a Log function. This Log
function takes a few arguments. It takes a pair of arguments. The first and second are one
set. The third and fourth are another set. Refer to the following code snippet:

mw.Logger.Log(
 "method", "decrypt",
 "key", key,
 "message", text,
 "output", output,
 "err", err,
 "took", time.Since(begin),
)

We need to maintain the order in which the log should print. After logging our request
details, we make sure to allow the request to go to the next middleware/handler using
this function. Next is of the type EncryptService, which is our actual implementation:

mw.Next.(Encrypt/Decrypt)

For the encryption function, middleware logs a request for encryption and passes it to the
implementation of the service. In order to hook this created middleware into our service,
modify main.go to this:

package main
import (
 "log"
 "net/http"
 "os"
 kitlog "github.com/go-kit/kit/log"
 httptransport "github.com/go-kit/kit/transport/http"
 "github.com/narenaryan/encryptService/helpers"
)
func main() {
 logger := kitlog.NewLogfmtLogger(os.Stderr)

Scaling Our REST API Using Microservices Chapter 9

[221]

 var svc helpers.EncryptService
 svc = helpers.EncryptServiceInstance{}
 svc = helpers.LoggingMiddleware{Logger: logger, Next: svc}
 encryptHandler :=
httptransport.NewServer(helpers.MakeEncryptEndpoint(svc),
 helpers.DecodeEncryptRequest,
 helpers.EncodeResponse)
 decryptHandler :=
httptransport.NewServer(helpers.MakeDecryptEndpoint(svc),
 helpers.DecodeDecryptRequest,
 helpers.EncodeResponse)
 http.Handle("/encrypt", encryptHandler)
 http.Handle("/decrypt", decryptHandler)
 log.Fatal(http.ListenAndServe(":8080", nil))
}

We imported the log from Go Kit as kitlog. We created a new logger
using NewLogfmtLogger(os.Stderr). This attaches the logging to the console. Now, pass
this logger and service to the LoggingMiddleware. It returns the service that can be passed
to the HTTP server. Now, let us run the program from encryptServiceWithLogging and
see what output logs on the console:

go run main.go

It starts our microservice. Now, fire client requests from the CURL command:

curl -XPOST -d'{"key":"111023043350789514532147", "text": "I am A
Message"}' localhost:8080/encrypt

curl -XPOST -d'{"key":"111023043350789514532147", "message":
"8/+JCfTb+ibIjzQtmCo="}' localhost:8080/decrypt
{"text":"I am A Message","error":""}

That logs the following messages on the server console:

method=encrypt key=111023043350789514532147 text="I am A Message"
output="8/+JCfTb+ibIjzQtmCo=" err=null took=11.32µs

method=decrypt key=111023043350789514532147 message="8/+JCfTb+ibIjzQtmCo="
output="I am A Message" err=null took=6.773µs

This is to log the messages per application/service. System-level logging is also available
and can be approached from the Go Kit's documentation.

Scaling Our REST API Using Microservices Chapter 9

[222]

Adding instrumentation to your microservice
For any microservice, along with logging, instrumentation is vital. The metrics package of
Go Kit records statistics about your service’s runtime behavior: counting the number of jobs
processed, recording the duration of requests after they have finished, and so on. This is
also a middleware that tampers the HTTP requests and collects metrics. To define a
middleware, simply add one more struct, similar to the logging middleware. Metrics are
useless unless we monitor. Prometheus is a metrics monitoring tool that can collect latency,
number of requests for a given service, and so on. Prometheus scrapes the data from the
metrics that Go Kit generates.

You can download the latest stable version of Prometheus from this site. Before using
Prometheus, make sure you install these packages, that are needed by the Go Kit:

go get github.com/prometheus/client_golang/prometheus
go get github.com/prometheus/client_golang/prometheus/promhttp

Once these are installed, try to copy the last discussed logging service project into a
directory called encryptServiceWithInstrumentation. The directory is exactly the
same, except we add one more file called instrumentation.go to the helpers directory
and modify our main.go to import the instrumentation middleware. The project structure
looks like this:

├── helpers
│ ├── endpoints.go
│ ├── implementations.go
│ ├── instrumentation.go
│ ├── jsonutils.go
│ ├── middleware.go
│ └── models.go
└── main.go

Instrumentation can measure the number of requests per service and the latency in terms of
parameters such as Counter and Histogram, respectively. We try to create a middleware
that has these two measurements (requests count, latency) and implements the functions for
the given services. In those middleware functions, we try to call the Prometheus client API
to increment the number of requests, log the latency, and so on. The core Prometheus client
library tries to increment a request count in this way:

// Prometheus
c := prometheus.NewCounter(stdprometheus.CounterOpts{
 Name: "request_duration",
 ...
}, []string{"method", "status_code"})
c.With("method", "MyMethod", "status_code", strconv.Itoa(code)).Add(1)

Scaling Our REST API Using Microservices Chapter 9

[223]

NewCounter creates a new counter struct that expects counter options. These options are
the name of the operation and other details. Then, we need to call the With function on the
struct with the method, method name, and error code. This particular signature is
demanded by Prometheus to generate the counter metric. Finally, we are incrementing the
counter with the Add(1) function call.

The newly added file instrumentation.go implementation looks like this:

package helpers
import (
 "context"
 "fmt"
 "time"
 "github.com/go-kit/kit/metrics"
)
// InstrumentingMiddleware is a struct representing middleware
type InstrumentingMiddleware struct {
 RequestCount metrics.Counter
 RequestLatency metrics.Histogram
 Next EncryptService
}
func (mw InstrumentingMiddleware) Encrypt(ctx context.Context, key string,
text string) (output string, err error) {
 defer func(begin time.Time) {
 lvs := []string{"method", "encrypt", "error", fmt.Sprint(err !=
nil)}
 mw.RequestCount.With(lvs...).Add(1)
 mw.RequestLatency.With(lvs...).Observe(time.Since(begin).Seconds())
 }(time.Now())
 output, err = mw.Next.Encrypt(ctx, key, text)
 return
}
func (mw InstrumentingMiddleware) Decrypt(ctx context.Context, key string,
text string) (output string, err error) {
 defer func(begin time.Time) {
 lvs := []string{"method", "decrypt", "error", "false"}
 mw.RequestCount.With(lvs...).Add(1)
 mw.RequestLatency.With(lvs...).Observe(time.Since(begin).Seconds())
 }(time.Now())
 output, err = mw.Next.Decrypt(ctx, key, text)
 return
}

Scaling Our REST API Using Microservices Chapter 9

[224]

This is exactly the same as the logging middleware code. We created a struct with a few
fields. We attached the functions for both the encrypt and decrypt services. Inside the
middleware function, we are looking for two metrics; one is count and the second one is
latency. When a request is passed through this middleware:

mw.RequestCount.With(lvs...).Add(1)

This line increments the counter. Now see the other line:

mw.RequestLatency.With(lvs...).Observe(time.Since(begin).Seconds())

This line observes the latency by calculating the difference between the request arrival time
and final time (since the defer keyword is used, this will be executed after the request and
response cycle is completed). In simple words, the preceding middleware logs the request
count and latency to the metrics provided by the Prometheus client. Now let us modify our
main.go file to look like this:

package main
import (
 "log"
 "net/http"
 "os"
 stdprometheus "github.com/prometheus/client_golang/prometheus"
 "github.com/prometheus/client_golang/prometheus/promhttp"
 kitlog "github.com/go-kit/kit/log"
 httptransport "github.com/go-kit/kit/transport/http"
 "github.com/narenaryan/encryptService/helpers"
 kitprometheus "github.com/go-kit/kit/metrics/prometheus"
)
func main() {
 logger := kitlog.NewLogfmtLogger(os.Stderr)
 fieldKeys := []string{"method", "error"}
 requestCount := kitprometheus.NewCounterFrom(stdprometheus.CounterOpts{
 Namespace: "encryption",
 Subsystem: "my_service",
 Name: "request_count",
 Help: "Number of requests received.",
 }, fieldKeys)
 requestLatency :=
kitprometheus.NewSummaryFrom(stdprometheus.SummaryOpts{
 Namespace: "encryption",
 Subsystem: "my_service",
 Name: "request_latency_microseconds",
 Help: "Total duration of requests in microseconds.",
 }, fieldKeys)
 var svc helpers.EncryptService
 svc = helpers.EncryptServiceInstance{}

Scaling Our REST API Using Microservices Chapter 9

[225]

 svc = helpers.LoggingMiddleware{Logger: logger, Next: svc}
 svc = helpers.InstrumentingMiddleware{RequestCount: requestCount,
RequestLatency: requestLatency, Next: svc}
 encryptHandler :=
httptransport.NewServer(helpers.MakeEncryptEndpoint(svc),
 helpers.DecodeEncryptRequest,
 helpers.EncodeResponse)
 decryptHandler :=
httptransport.NewServer(helpers.MakeDecryptEndpoint(svc),
 helpers.DecodeDecryptRequest,
 helpers.EncodeResponse)
 http.Handle("/encrypt", encryptHandler)
 http.Handle("/decrypt", decryptHandler)
 http.Handle("/metrics", promhttp.Handler())
 log.Fatal(http.ListenAndServe(":8080", nil))
}

We are importing the kit Prometheus package for initializing the metrics template, and the
client Prometheus package for providing the option structs. We are creating requestCount
and requestLatency metrics-type structs and passing them to
our InstrumentingMiddleware, which is imported from helpers. If you see this line:

 requestCount := kitprometheus.NewCounterFrom(stdprometheus.CounterOpts{
 Namespace: "encryption",
 Subsystem: "my_service",
 Name: "request_count",
 Help: "Number of requests received.",
 }, fieldKeys)

It is how we create a template that matches with the RequestCount in
the InstrumentingMiddleware struct in helpers.go. The options that we pass will be
appended to a single string while generating the metrics:

encryption_my_service_request_count

This is a uniquely identifiable service instrumentation that tells us, This is a request count
operation for my microservice called Encryption. There is one more interesting line we added to
the server part of the code in main.go:

"github.com/prometheus/client_golang/prometheus/promhttp"
...
http.Handle("/metrics", promhttp.Handler())

Scaling Our REST API Using Microservices Chapter 9

[226]

This actually creates an endpoint that can generate a page with collected metrics. This page
can be scraped (parsed) by Prometheus to store, plot, and display metrics. If we run the
program and make 5 HTTP requests to the encrypt service and 10 HTTP requests to the
decrypt service, the metrics page logs the count of requests and their latencies:

go run main.go # This starts the server

Make 5 CURL requests to the encrypt service in a loop from another bash shell (in Linux):

for i in 1 2 3 4 5; do curl -XPOST -d'{"key":"111023043350789514532147",
"text": "I am A Message"}' localhost:8080/encrypt; done

{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}
{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}
{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}
{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}
{"message":"8/+JCfTb+ibIjzQtmCo=","error":""}

Make 10 CURL requests in a loop for the decrypt service (the output is hidden for brevity):

for i in 1 2 3 4 5 6 7 8 9 10; do curl -XPOST -
d'{"key":"111023043350789514532147", "message": "8/+JCfTb+ibIjzQtmCo="}'
localhost:8080/decrypt; done

Now, visit the URL http://localhost:8080/metrics and you will see a page that the
Prometheus Go client is generating for us. The content of the page will have this
information:

HELP encryption_my_service_request_count Number of requests received.
TYPE encryption_my_service_request_count counter
encryption_my_service_request_count{error="false",method="decrypt"} 10
encryption_my_service_request_count{error="false",method="encrypt"} 5
HELP encryption_my_service_request_latency_microseconds Total duration of
requests in microseconds.
TYPE encryption_my_service_request_latency_microseconds summary
encryption_my_service_request_latency_microseconds{error="false",method="de
crypt",quantile="0.5"} 5.4538e-05
encryption_my_service_request_latency_microseconds{error="false",method="de
crypt",quantile="0.9"} 7.6279e-05
encryption_my_service_request_latency_microseconds{error="false",method="de
crypt",quantile="0.99"} 8.097e-05
encryption_my_service_request_latency_microseconds_sum{error="false",method
="decrypt"} 0.000603101
encryption_my_service_request_latency_microseconds_count{error="false",meth
od="decrypt"} 10
encryption_my_service_request_latency_microseconds{error="false",method="en
crypt",quantile="0.5"} 5.02e-05

Scaling Our REST API Using Microservices Chapter 9

[227]

encryption_my_service_request_latency_microseconds{error="false",method="en
crypt",quantile="0.9"} 8.8164e-05
encryption_my_service_request_latency_microseconds{error="false",method="en
crypt",quantile="0.99"} 8.8164e-05
encryption_my_service_request_latency_microseconds_sum{error="false",method
="encrypt"} 0.000284823
encryption_my_service_request_latency_microseconds_count{error="false",meth
od="encrypt"} 5

As you can see, there are two types of metrics:

encryption_myservice_request_count

encryption_myservice_request_latency_microseconds

If you see the number of requests to the encrypt method and decrypt method, they match
with the CURL requests we made.

The encryption_myservice metrics type has count and latency metrics
for both the encrypt and decrypt microservices. The method
parameter tells from which microservice the metrics are drawn.

These kinds of metrics give us key insights, such as which microservice is being used
heavily and how the latency trends are over time, and so on. But in order to see the data in
action, you need to install the Prometheus server and write a configuration file for
Prometheus to scrape metrics from your Go Kit service. For more information about
creating targets (hosts generating metrics pages) in Prometheus, visit https:/ ​/​prometheus.
io/​docs/​operating/ ​configuration/ ​.

We can also pass data from Prometheus to Grafana, a graphing and monitoring tool for nice
real-time charts of metrics. Go Kit provides many other features, such as service discovery.
Scaling microservices is only possible if the system is loosely coupled, monitored, and
optimized.

https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/
https://prometheus.io/docs/operating/configuration/

Scaling Our REST API Using Microservices Chapter 9

[228]

Summary
In this chapter, we started with the definition of microservices. The main difference
between a monolith application and a microservice is the way tightly coupled architecture
is broken into loosely coupled architecture. Microservices talk to each other using either
REST-based JSON or RPC-based protocol buffers. Using microservices, we can break
business logic into multiple chunks. Each service does one job pretty well. This approach
comes with a disadvantage. Monitoring and managing microservices is painful. Go
provides a wonderful toolkit called Go Kit. It is a microservices framework using which we
can generate boilerplate code for microservices.

We need to define a few things in Go Kit. We need to create implementations, endpoints,
and models for a Go-Kit service. Endpoints take requests and return responses.
Implementations have the actual business logic of services. Models are a nice way to decode
and encode request and response objects. Go Kit provides various middleware for
performing vital tasks such as logging, instrumentation (metrics), and service discovery.

The small organizations can start with a monolith, but in bigger organizations with huge
teams, microservices suit better. In the next chapter, we can see how to deploy our Go
services using Nginx. A service needs to be deployed for it to be exposed to the outside
world.

10
Deploying Our REST services

In this chapter, we are going to see how to deploy our Go applications using a few tools
such as Nohup and Nginx. To make a website visible to the internet, we need to have a
Virtual Private Server (VPS) and deployment tools. We will first see how to run a Go
executable and make it a background process using Nohup. Next, we will install Nginx and
configure it to proxy the Go server.

In this chapter, we will cover the following topics:

What is an Nginx proxy server?
Learning Nginx server blocks
Load balancing strategies in Nginx
Deploying our Go service using Nginx
Rate limiting and securing our Nginx proxy server
Monitoring our Go service using a tool called Supervisord

Getting the code
The code for this chapter is available at https:/ ​/​github. ​com/ ​narenaryan/ ​gorestful/ ​tree/
master/​chapter10. Copy it to GOPATH and run according to the instructions given in the
chapter.

https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10
https://github.com/narenaryan/gorestful/tree/master/chapter10

Deploying Our REST services Chapter 10

[230]

Installing and configuring Nginx
Nginx is a high performant web server and load balancer, and is well suited to deploying
high traffic websites. Even though this decision is opinionated, Python and Node
developers usually use this.

Nginx can also act as an upstream proxy server that allows us to redirect the HTTP requests
to multiple application servers running on the same server. The main contender of Nginx is
Apache's httpd. Nginx is an excellent static file server that can be used by the web clients.
Since we are dealing with APIs, we will look into aspects of dealing with HTTP requests.

On Ubuntu 16.04, use these commands to install Nginx:

sudo apt-get update
sudo apt-get install nginx

On macOS X, you can install it with brew:

brew install nginx

https:/​/​brew.​sh/ ​ is a very useful software packaging system for macOS X users. My
recommendation is to use it for installing software. Once it is successfully installed, you can
check it by opening the machine IP in the browser. Open http://localhost/ on your
web browser. You will see this:

This means that Nginx is installed successfully. It is serving on port 80 and serving the
default page. On macOS, the default Nginx listening port will be 8000:

sudo vi /usr/local/etc/nginx/nginx.conf

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Deploying Our REST services Chapter 10

[231]

On Ubuntu (Linux), the file will be on this path:

sudo vi /etc/nginx/nginx.conf

Open the file, and search for a server and modify port 80 to 8000:

server {
 listen 8080; # Change this to 80
 server_name localhost;
 #charset koi8-r;
 #access_log logs/host.access.log main;
 location / {
 root html;
 index index.html index.htm;
 }
 ...
}

Now everything is ready. The server runs on the 80 HTTP port, which means a client can
access it using a URL (http://localhost/) and no port (http://localhost:3000). This
basic server serves static files from a directory called html. The root parameter can be
modified to any directory where we place our web assets. You can check the status of Nginx
with the following command:

service nginx status

Nginx for the Windows operating system is quite basic and not really
intended for production-grade deployments. Open-source developers
usually prefer Debian or Ubuntu servers for deploying the API servers
with Nginx.

What is a proxy server?
A proxy server is a server that holds the information of original servers in it. It acts as the
front block for the client request. Whenever a client makes an HTTP request, it can directly
go the application server. But, if the application server is written in a programming
language, you need a translator that can turn the application response into a client-
understandable response. Common Gateway Interface (CGI) does the same thing. For Go,
we can run a simple HTTP server and it can work as a normal server (no translation
required). So, why are we using another server called Nginx? We are using Nginx because it
brings a lot of things into the picture.

Deploying Our REST services Chapter 10

[232]

The benefits of having a proxy server (Nginx):

It can act as a load balancer
It can sit in front of cluster of applications and redirect HTTP requests
It can serve a filesystem with a good performance
It streams media very well

If the same machine is running multiple applications, then we can bring all those under one
umbrella. Nginx can also act as the API gateway that can be the starting point for multiple
API endpoints. We will see about a specially dedicated API gateway in the next chapter, but
Nginx can also work as one. Refer to the following diagram:

Deploying Our REST services Chapter 10

[233]

If you see, the illustration client is talking directly to Nginx instead of the ports where other
applications are running. In the diagram, Go is running on port 8000 and other applications
are running on different ports. It means the different servers are providing different API
endpoints. If the client wishes to call those APIs, it needs to access three ports. Instead, if we
have Nginx, it can act as a proxy server for all three and simplifies the client request-
response cycle.

Nginx is also called an upstream server because it serves the requests from the other server.
From the illustration, a Python app can request an API endpoint from a Go app smoothly.

Important Nginx paths
There are a few important Nginx paths we need to know about to work with the proxy
server. In Nginx, we can host multiple sites (www.example1.com, www.exampl2.com, and
so on) at the same time. Take a look at the following table:

Type Path Description

Configuration /etc/nginx/nginx.con
This is the base Nginx configuration file.
It can be used as the default file.

Configuration /etc/nginx/sites-available/
If we have multiple sites running within
Nginx, we can have multiple
configuration files.

Configuration /etc/nginx/sites-enabled/
These are the sites activated currently on
Nginx.

Log /var/log/nginx/access.log
This log file records the server activity,
such as timestamp and API endpoints.

Log /var/log/nginx/error.log
This log file logs all proxy server-related
errors, such as disk space, file system
permissions, and so on.

These paths are in the Linux operating system. For macOS X, use
/usr/local/nginx as the base path.

Deploying Our REST services Chapter 10

[234]

Using server blocks
Server blocks are the actual configuration pieces that tell the server what to serve and on
which port to listen. We can define multiple server blocks in the sites-available folder.
On Ubuntu, the location will be:

/etc/nginx/sites-available

On macOS X, the location will be:

/usr/local/etc/nginx/sites-avaiable

Until we copy the sites-available to the sites-enabled directory, the configuration
has no effect. So, always create a soft link for sites-available to sites-enabled for
every new configuration you create.

Creating a sample Go application and proxying it
Now, let us create a bare application server in Go with logging:

mkdir -p $GOPATH/src/github.com/narenaryan/basicServer
vi $GOPATH/src/github.com/narenaryan/basicServer/main.go

This file is a basic Go server to illustrate the proxy server's functioning. Then, we add a
configuration to Nginx to proxy port 8000 (Go running port) to HTTP port (80). Now, let us
write the code:

package main
import (
 "encoding/json"
 "fmt"
 "log"
 "net/http"
 "os"
 "time"
)
// Book holds data of a book
type Book struct {
 ID int
 ISBN string
 Author string
 PublishedYear string
}
func main() {
 // File open for reading, writing and appending

Deploying Our REST services Chapter 10

[235]

 f, err := os.OpenFile("app.log", os.O_RDWR|os.O_CREATE|os.O_APPEND,
0666)
 if err != nil {
 fmt.Printf("error opening file: %v", err)
 }
 defer f.Close()
 // This attache sprogram logs to file
 log.SetOutput(f)
 // Function handler for handling requests
 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 log.Printf("%q", r.UserAgent())
 // Fill the book details
 book := Book{
 ID: 123,
 ISBN: "0-201-03801-3",
 Author: "Donald Knuth",
 PublishedYear: "1968",
 }
 // Convert struct to JSON using Marshal
 jsonData, _ := json.Marshal(book)
 w.Header().Set("Content-Type", "application/json")
 w.Write(jsonData)
 })
 s := &http.Server{
 Addr: ":8000",
 ReadTimeout: 10 * time.Second,
 WriteTimeout: 10 * time.Second,
 MaxHeaderBytes: 1 << 20,
 }
 log.Fatal(s.ListenAndServe())
}

This is a simple server that returns book details as an API (dummy data here). Run the
program and it runs on port 8000. Now, open a shell and make a CURL command:

CURL -X GET "http://localhost:8000"

It returns the data:

{
 "ID":123,
 "ISBN":"0-201-03801-3",
 "Author":"Donald Knuth",
 "PublishedYear":"1968"
}

Deploying Our REST services Chapter 10

[236]

But the client needs to request to 8000 port here. How can we proxy this server using
Nginx? As we previously discussed, we need to edit the default sites-available server block,
called default:

vi /etc/nginx/sites-available/default

Edit this file, find the server block, and add one line to it:

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 root /usr/share/nginx/html;
 index index.html index.htm;

 # Make site accessible from http://localhost/
 server_name localhost;

 location / {
 # First attempt to serve request as file, then
 # as directory, then fall back to displaying a 404.
 try_files $uri $uri/ =404;
 # Uncomment to enable naxsi on this location
 # include /etc/nginx/naxsi.rules
 proxy_pass http://127.0.0.1:8000;
 }
}

This section of the config file is called the server block. This controls the setting up of the
proxy server where listen says where nginx should listen. root and index point to the
static files if we need to serve any. server_name is the domain name of yours. Since we
don't have a domain ready, it is just localhost. The location is the key section here. In
location, we can define our proxy_pass, which can proxy a given URL:PORT. Since our
Go application is running on 8000 port, we mentioned it there. If we are running it on a
different machine, such as:

http://example.com:8000

 We can give the same thing as a parameter to proxy_pass. In order to take this
configuration into effect, we need to restart the Nginx server. Do that using:

service nginx restart

Deploying Our REST services Chapter 10

[237]

Now, make CURL request to http://localhost and you will see the Go application's
output:

CURL -X GET "http://localhost"
{
 "ID":123,
 "ISBN":"0-201-03801-3",
 "Author":"Donald Knuth",
 "PublishedYear":"1968"
}

location is a directive that defines a Unified Resource Identifier (URI) that can proxy a
given server:port combination. It means that by defining various URIs, we can proxy
multiple applications running on the same server. It looks like:

server {
 listen ...;
 ...
 location / {
 proxy_pass http://127.0.0.1:8000;
 }
 location /api {
 proxy_pass http://127.0.0.1:8001;
 }
 location /mail {
 proxy_pass http://127.0.0.1:8002;
 }
 ...
}

Here, three applications are running on different ports. These, after being added to our
configuration file, can be accessed by the client as:

http://localhost/
http://localhost/api/
http://localhost/mail/

Deploying Our REST services Chapter 10

[238]

Load balancing with Nginx
In practical cases, we use multiple servers instead of one for handling huge sets of incoming
requests for APIs. But who needs to forward an incoming client request to a server
instance? Load balancing is a process where the central server distributes the load to
various servers based on certain criteria. Refer to the following diagram:

Deploying Our REST services Chapter 10

[239]

Those requesting criteria are called load balancing methods. Let us see what each does in a
simple table:

Load balancing
method Description

Round Robin Requests are distributed evenly across servers and server weights are
taken into consideration.

Least Connection Requests are sent to the server that is currently serving the least number
of clients.

IP Hash
This is used to send the requests from a given client's IP to the given
server. Only when that server is not available is it given to another
server.

Least Time A request from the client is sent to the machine with the lowest average
latency (time to serve client) and least number of active connections.

We now see how load balancing is practically achieved in Nginx for our Go API servers.
The first step in this process is to create an upstream in the http section of the Nginx
configuration file:

http {
 upstream cluster {
 server site1.mysite.com weight=5;
 server site2.mysite.com weight=2;
 server backup.mysite.com backup;
 }
}

Here, servers are the IP addresses or domain names of the servers running the same code.
We are defining an upstream called backend here. It is a server group that we can refer to
in our location directive. Weights should be given in proportion to the resources available.
In the preceding code, site1 is given a higher weight because it may be a bigger instance
(memory and disk). Now, in the location directive, we can specify the server group with the
proxy_pass command:

server {
 location / {
 proxy_pass http://cluster;
 }
}

Deploying Our REST services Chapter 10

[240]

Now, the proxy server that is running will pass requests to the machines in the cluster for
all API endpoints hitting /. The default request routing algorithm will be Round Robin,
which means all the servers' turns will be repeated one after the other. If we need to change
it, we mention that in the upstream definition. Take a look at the following code snippet:

http {
 upstream cluster {
 least_conn;
 server site1.mysite.com weight=5;
 server site2.mysite.com;
 server backup.mysite.com backup;
 }
}

server {
 location / {
 proxy_pass http://cluster;
 }
}

The preceding configuration says to create a cluster of three machines, and add load balancing
method as least connections. least_conn is the string we used to mention the load balancing
method. The other values could be ip_hash or least_time. You can try this by having a
set of machines in the Local Area Network (LAN). Or else, we can have Docker installed
with multiple virtual containers as different machines to test out load balancing.

We need to add that http block in the /etc/nginx/nginx.conf file,
whereas the server block is in /etc/nginx/sites-enabled/default. It
is better to separate these two settings.

Rate limiting our REST API
We can also limit the rate of access to our Nginx proxy server by rate limiting. It provides a
directive called limit_conn_zone (http:/ ​/​nginx. ​org/ ​en/​docs/ ​http/ ​ngx_ ​http_ ​limit_
conn_​module.​html#limit_ ​conn_ ​zone). The format of it is this:

limit_conn_zone client_type zone=zone_type:size;

client_type can be of two types:

IP address (limit requests from a given IP address)
Server name (limit requests from a server)

http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone
http://nginx.org/en/docs/http/ngx_http_limit_conn_module.html#limit_conn_zone

Deploying Our REST services Chapter 10

[241]

zone_type also changes in correspondence to the client_type. It takes values as per the
following table:

Client type Zone type

$binary_remote_address addr

$server_name servers

Nginx needs to save a few things to memory to remember the IP addresses and servers for
rate limiting. size is the storage that we allocate for Nginx to perform its memorizing. It
takes values such as 8m (8MB) or 16m (16MB). Now, let us see where to add these settings.
The preceding one should be added as a global setting to the http directive in
the nginx.conf file:

http {
 limit_conn_zone $server_name zone=servers:10m;
}

This allocates the shared memory for Nginx to use. Now, in the server directive of sites-
available/default, add the following:

server {
 limit_conn servers 1000;
}

The total number of connections for the given server will not exceed 1K in the preceding
configuration using limit_conn. If we try to put the rate limit from a given IP address to
the client, then use this:

server {
 location /api {
 limit_conn addr 1;
 }
}

This setting stops a client (IP address) from opening more than one connection to the server
(for example, railway booking online). If we have a file that the client downloads and need
to set a bandwidth constraint, use limit_rate:

server {
 location /download {
 limit_conn addr 10;
 limit_rate 50k;
 }
}

Deploying Our REST services Chapter 10

[242]

In this way, we can control the client's interaction with our services that are proxied under
Nginx. If we use Go binary directly to run the service, we lose all these features.

Securing our Nginx proxy server
This is the most important piece in the Nginx set up. In this section, we will see how to
restrict access to our server using basic authentication. This will be very important for our
REST API servers because, let us suppose we have servers X, Y, and Z that talk to each
other. X can serve clients directly, but X talks to Y and Z for some information by calling an
internal API. Since we know that clients should not access Y or Z, we can make it so that
only X is allowed to access the resources. We can allow or deny the IP addresses using
the nginx access module. It looks like this:

location /api {
 ...
 deny 192.168.1.2;
 allow 192.168.1.1/24;
 allow 127.0.0.1;
 deny all;
}

This configuration tells Nginx to allow requests from clients ranging 192.168.1.1/24,
excluding 192.168.1.2. The next line says to allow requests from the same host and block
all other requests from any other client. The complete server block looks like this:

server {
 listen 80 default_server;
 root /usr/share/nginx/html;

 location /api {

 deny 192.168.1.2;
 allow 192.168.1.1/24;
 allow 127.0.0.1;
 deny all;
 }
}

Deploying Our REST services Chapter 10

[243]

For more information regarding this, see the documentation at nginx_http_access_module.
We can also add password-secured access to our Nginx served static files. It is mostly not
applicable to the API because there, the application takes care of authenticating the user.

Monitoring our Go API server with
Supervisord
It is fine that Nginx is sitting in front of our Go API server, it just proxies a port. However,
sometimes that web application may stop due to the operating system restarting or
crashing. Whenever your web server gets killed, it is someone's job to automatically bring it
back to life. Supervisord is such a task runner. To make our API server run all the time, we
need to monitor it. Supervisord is a tool that can monitor running processes (system) and
can restart them when they were terminated.

Installing Supervisord
We can easily install Supervisord using Python’s pip command. On Ubuntu 16.04, just use
the apt-get command:

sudo apt-get install -y supervisor

This installs two tools, supervisor and supervisorctl. Supervisorctl is intended to
control the supervisor and add tasks, restart tasks, and so on. Let us use the
sample basicServre.go program we created for illustrating Nginx for this too. Install the
binary to the $GOPATH/bin directory. Here, suppose my GOPATH is /root/workspace:

go install github.com/narenaryan/basicServer

Always add the bin folder of your current GOPATH to the system path.
Whenever you install the project binary, it is available as a normal
executable from the overall system environment. You can do it adding this
line to the ~/.profile file: export PATH=$PATH:/usr/local/go/bin.

Now, create a configuration file at:

/etc/supervisor/conf.d/goproject.conf

http://nginx.org/en/docs/http/ngx_http_access_module.html?_ga=2.117850185.1364707364.1504109372-1654310658.1503918562

Deploying Our REST services Chapter 10

[244]

You can add any number of configuration files and supervisord treats them as separate
processes to run. Add the following content to the preceding file:

[supervisord]
logfile = /tmp/supervisord.log
[program:myserver]
command=/root/workspace/bin/basicServer
autostart=true
autorestart=true
redirect_stderr=true

By default, we have a file called supervisord.conf at /etc/supervisor/. Look at it for
further reference:

The [supervisord] section gives the location of the log file for supervisord.
[program:myserver] is the task block that traverses to a given directory and
executes the command given.

Now, we can ask our supervisorctl to re-read the configuration and restart the task
(process). For that, just say:

supervisorctl reread
supervisorctl update

Then, launch our supervisorctl with:

supervisorctl

You will see something like this:

Deploying Our REST services Chapter 10

[245]

So, our book service is getting monitored by Supervisor. Let us try to kill the process and
see what Supervisor does:

kill 6886

Now, as soon as possible, Supervisor starts a new process (different pid) by running the
binary:

This is very useful in production scenarios where a service needs to be up in case of any
crash or OS restart. One question here, how do we start/stop an application service? Use
the start and stop commands from supervisorctl for smooth operations:

supervisorctl> stop myserver
supervisorctl> start myserver

For more details about the Supervisor, visit http:/ ​/ ​supervisord. ​org/ ​.

Summary
This chapter is dedicated to showing how we can deploy our API services into production.
One way is to run the Go binary and access it through the IP: Port combination directly
from the client. That IP will be the Virtual Private Server (VPS) IP address. Instead, we can
have a domain name registered and pointed to the VPS. The second and better way is to
hide it behind a proxy server. Nginx is such a proxy server, using which we can have
multiple application servers under one umbrella.

http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/
http://supervisord.org/

Deploying Our REST services Chapter 10

[246]

We saw how to install Nginx and start configuring it. Nginx provides features such as load
balancing and rate limiting, which could be crucial while giving APIs to clients. Load
balancing is the process of distributing loads among similar servers. We saw what types of
loading mechanisms are available. Some of them are Round Robin, IP Hash, Least
Connection, and so on. Then, we added authentication to our servers by allowing and
denying a few sets of IP addresses.

Finally, we need a process monitor that can bring our crashed application back to life.
Supervisord is a very good tool for the job. We saw how to install Supervisord and also
launch supervisorctl, a command-line application to control running servers.

In the next chapter, we are going to see how to make our API production-grade using an
API gateway. We will discuss deeply how we can put our API behind an entity that takes
care of authentication and rate limiting.

11
Using an API Gateway to

Monitor and Metricize REST
API

Once we have developed our API, we need to expose it to the outside world. In that
journey, we deploy them. But is that sufficient? Don't we need to track our API? Which
clients are connecting? What is the latency of requests, and so on and so forth? There are
many other post-API development steps that one should follow to make their API
production grade. They are authentication, logging, rate limiting, and so on. The best way
to add those features is to use an API gateway. In this chapter, we will explore an open-
source API gateway called Kong. Open-source software is preferable to cloud providers
because of the reduced risk of vendor lock. All the API gateways differ in the
implementation but perform the same task.

In this chapter, we will cover the following topics:

Why is an API gateway needed?
Introducing Kong, an open-source API gateway
Example illustration in Docker
Adding developed API to Kong
Logging in Kong
Authentication and rate limiting in Kong
Important commands from Kong CLI

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[248]

Getting the code
You can get the code samples for this chapter at https:/ ​/​github. ​com/ ​narenaryan/
gorestful/​tree/​master/ ​chapter11. The usage of the files in the chapter is explained in the
respective sections. You can also import the Postman client collection (JSON file) from the
repository to test the API, which we will walk through in this chapter.

Why is an API gateway required?
Suppose a company named XYZ developed the API for its internal purpose. There are two
ways in which it exposes that API for external use:

Exposes it using authentication from known clients
Exposes it as an API as a service

In the first case, this API is consumed by the other services inside the company. Since they
are internal, we don't restrict the access. But in the second case, since API details are given
to the outside world, we need a broker in between to check and validate the requests. This
broker is the API gateway. An API gateway is a broker that sits in between the client and
the server and forwards the request to the server on passing specific conditions.

Now, XYZ has an API written in Go and also in Java. There are a few common things that
apply to any API:

Authentication
Logging of requests and responses

Without an API gateway, we need to write another server that tracks things such as
requests and authentication of the API. It is hectic to implement and maintain when new
APIs keep being added to the organization. To take care of these basic things, an API
gateway is a fine piece of middleware.

Basically, an API getaway does these things:

Logging
Security
Traffic control
Transformations

https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11
https://github.com/narenaryan/gorestful/tree/master/chapter11

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[249]

Logging is the way to track the requests and responses. If we need an organization-level
logging in contrast to application level-logging in Go kit, we should enable logging in an
API gateway. Security is how authentication works. It can be basic auth, token-based
authentication, OAuth2.0, and so on. It is essential to restrict access to the API for the valid
customers/clients.

Traffic control comes into play when an API is a paid service. When an organization sells
the data as an API, It needs to limit the operations per client. For example, a client can make
10,000 API requests per month. The rate can be set according to the plan the client has opted
for. This is a very important feature. Transformations are like modifying the request before
it hits the application server or modifying the response before it is sent back to the client.
Take a look at the following diagram:

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[250]

We can see how we are able to add the preceding features to our web services. From the
diagram, the API gateway can redirect requests to any given internal servers. The client sees
all the APIs are under a single entity of the organization.

Kong, an open-source API gateway
Kong is an open-source API gateway and a microservices management layer, delivering
high performance and reliability. It is a combination of two libraries worth mentioning. One
is OpenResty and another one is Nginx. Kong is a wrapper around these two main
components. OpenResty is a fully-fledged web platform that integrates Nginx and Lua. Lua
is another programming language similar to Go. Kong is written in Lua. We use Kong as a
tool for deploying our Go REST services. The main topics we cover are:

Installation of Kong and the Kong database
Adding our API to Kong
Using the plugins
Logging in Kong
Rate limiting in Kong

Kong needs a database to run. It could be either Cassandra or PostgreSQL. Since we are
already familiar with PostgreSQL, we chose it. Where to install them? For illustration, we
can install them on our local machine, but there is a drawback; it can screw up our machine.
In order to test the setup, we are going to use Docker. Docker can create containerized
applications and run them in a predictable, isolated environment.

Using Kong, we can hide our API under a gateway. We can create consumers (clients) for
our API. Kong does everything through a REST API. Kong has two kinds of API:

Application API (runs on port 8000)
Admin API (runs on port 8001)

Using an application API, we can access our web services. An admin API allows us to
add/remove APIs under the gateway. We will see these things in more detail in upcoming
sections. For more details about Kong, visit https:/ ​/​getkong. ​org/ ​.

https://getkong.org/
https://getkong.org/
https://getkong.org/
https://getkong.org/
https://getkong.org/
https://getkong.org/
https://getkong.org/
https://getkong.org/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[251]

Introducing Docker
Docker is a virtualization tool that can create operating systems in the form of tiny
containers. It is like multiple OS on a single host. Developers usually complain saying
working in my box while facing deployment problems. Docker removes those situations by
defining an OS environment in the form of images. A Docker image has all the information
about a given OS at a given time. It allows us to replicate that environment any number of
times.

It was available for Linux initially but is now available for macOS X and Windows. For
downloading and installing Docker, visit https:/ ​/​docs. ​docker. ​com/ ​engine/
installation/​. For Windows and Mac, the binaries are available on the Docker website
and can be easily installed. After installing, verify the Docker installation with the following
command:

docker -v
Docker version 17.09.0-ce, build afdb6d4

It will give the version number; always choose the latest Docker. Now that Docker is ready,
let us run a few commands to install Kong. The upcoming section requires some knowledge
of Docker. Please go through the wonderful articles on the web explaining the
fundamentals of Docker if not confident enough.

Our final goal is to create three containers:

Kong database
Go container
Kong application

When these three containers run, it sets the stage for setting up a web service behind an API
gateway.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[252]

Installing a Kong database and Kong
First, install the PostgreSQL DB. One condition is that we need to expose the 5432 port. The
user and database name should be kong, and that should be passed as environment
variables to the container:

docker run -d --name kong-database \
 -p 5432:5432 \
 -e "POSTGRES_USER=kong" \
 -e "POSTGRES_DB=kong" \
 postgres:9.4

This command works in this way:

Get me an image from the Docker repository called postgres:9.4.1.
Give a name to the image called kong-database.2.
Set environment variables in the container called POSTGRES_USER and3.
POSTGRES_DB.

This creates a Docker container by pulling a PostgreSQL image, which is hosted on
the DockerHub (https:/ ​/​hub. ​docker. ​com/ ​) repository. Now, apply the migrations
required by Kong by running one more Docker command:

docker run --rm \
 --link kong-database:kong-database \
 -e "KONG_DATABASE=postgres" \
 -e "KONG_PG_HOST=kong-database" \
 kong:latest kong migrations up

It applies the migrations on the previously created PostgreSQL DB container. The command
has an option called --rm, which says, remove this container once migrations are done. Before
installing the Kong container, let us prepare our Go service. It will be a simple project with a
health check GET API.

Now, go to any directory on the host machine and create a project called kongExample:

mkdir kongExample

Create a program called main.go inside that directory, which fetches the health check (date
and time) for a GET request:

package main
import (
 "fmt"
 "github.com/gorilla/mux"

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[253]

 "log"
 "net/http"
 "time"
)
func HealthcheckHandler(w http.ResponseWriter, r *http.Request) {
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, time.Now().String())
}
func main() {
 // Create a new router
 r := mux.NewRouter()
 // Attach an elegant path with handler
 r.HandleFunc("/healthcheck", HealthcheckHandler)
 srv := &http.Server{
 Handler: r,
 Addr: "0.0.0.0:3000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

This program returns the date and time when requested. Now, we need to Dockerize this
application. Dockerizing means creating a running container. Add a Dockerfile to the
current directory (in the same level kongExample):

FROM golang
ADD kongExample /go/src/github.com/narenaryan/kongExample
RUN go get github.com/gorilla/mux
RUN go install github.com/narenaryan/kongExample
ENTRYPOINT /go/bin/kongExample

We build a container with the help of this Dockerfile. It says to pull the golang container
from DockerHub (installing the Go compiler and setting the GOPATH is automatically taken
care of) and copy this kongExample project to the container. Install necessary packages for
the project (in this case it is Gorilla Mux), then compile the binary and start the server. Run
this command to create the container:

docker build . -t gobuild

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[254]

Notice the . after the docker build command. The -t option is to tag the image with the
name. It tells Docker to look at the Dockerfile in the current directory and create a Docker
image with the given instructions. We need to actually run this image to create a container:

docker run -p 3000:3000 --name go-server -dit gobuild

It creates a container called go-server and starts the Go web server on port 3000. Now
install Kong container, like this:

docker run -d --name kong \
 --link kong-database:kong-database \
 --link go-server:go-server \
 -e "KONG_DATABASE=postgres" \
 -e "KONG_PG_HOST=kong-database" \
 -e "KONG_PROXY_ACCESS_LOG=/dev/stdout" \
 -e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" \
 -e "KONG_PROXY_ERROR_LOG=/dev/stderr" \
 -e "KONG_ADMIN_ERROR_LOG=/dev/stderr" \
 -p 8000:8000 \
 -p 8443:8443 \
 -p 8001:8001 \
 -p 8444:8444 \
 kong:latest

This command is similar to the first one except we are exposing many other ports for Kong
to function. We are also pulling the kong:latest image from DockerHub. Others are
environment variables that are required by Kong. We are linking kong-database to a
hostname called kong-database and go-server to go-server. A hostname is a helpful
entity in a Docker environment to identify and reach to one container from another. Docker
maintains an internal Domain Name Space (DNS) that keeps track of IP addresses of
Docker containers to the linked names. This starts the Kong container and starts the Kong
service with a default file called kong.conf.default.

Now, if we look at the running containers, it lists three container IDs:

docker ps -q
b6cd3ad39f75
53d800fe3b15
bbc9d2ba5679

Docker containers are nothing but isolated environments for running
applications. It is a best practice to run microservices in different
containers as they are loosely coupled and one environment won't
interfere with the other.

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[255]

It means we successfully set up the infrastructure for the Kong API gateway. Let's see how
to add the API from go-server in Kong. In order to check the status of Kong, just make a
GET request to this URL:

curl -X GET http://localhost:8001/status

It returns the status of the database and also the stats for Kong:

{
 "database": {
 "reachable": true
 },
 "server": {
 "connections_writing": 1,
 "total_requests": 13,
 "connections_handled": 14,
 "connections_accepted": 14,
 "connections_reading": 0,
 "connections_active": 2,
 "connections_waiting": 1
 }
}

Adding API to Kong
Kong provides an intuitive REST API to add a custom API to the gateway. In order to add
the aformentioned healthcheck API, we need to make a POST request to the Kong admin
API, which runs on port 8001. From now on we use the Postman REST client to show all
API requests. These API requests are also available as a JSON file collection in the chapter's
repository for readers to download and import in their Postman clients respectively. For
more information on exporting and importing Postman collections, visit https:/ ​/​www.
getpostman.​com/​docs/ ​postman/ ​collections/ ​data_ ​formats.

Make a POST request from Postman to the Kong admin URL
http://localhost:8001/apis with these fields in the JSON body:

{
 "name": "myapi",
 "hosts": "server1",
 "upstream_url": "http://go-server:3000",
 "uris":["/api/v1"],
 "strip_uri": true,
 "preserve_host": false
}

https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats
https://www.getpostman.com/docs/postman/collections/data_formats

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[256]

It adds our health check API to Kong. The Postman screen looks like the following
screenshot with all the changes. Postman is a wonderful tool that allows Windows, macOS
X, and Linux users to make/test HTTP API requests. You can download it here https:/ ​/
www.​getpostman.​com/ ​.

Once we make this, we get the response JSON with details of the API. This new myapi will
be given an ID:

{
 "created_at": 1509195475000,
 "strip_uri": true,
 "id": "795409ae-89ae-4810-8520-15418b96161f",
 "hosts": [
 "server1"
],
 "name": "myapi",
 "http_if_terminated": false,
 "preserve_host": false,
 "upstream_url": "http://go-server:3000",
 "uris": [
 "/api/v1"
],
 "upstream_connect_timeout": 60000,
 "upstream_send_timeout": 60000,
 "upstream_read_timeout": 60000,
 "retries": 5,
 "https_only": false
}

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[257]

 A GET request to this URL, http://localhost:8001/apis/myapi returns the metadata
of newly added myapi.

Coming to the fields that we posted to the POST API, the name is the unique name of the
API. We need to use this to identify an API on the gateway. hosts is the list of hosts from
which the gateway can accept and forward requests. Upstream URL is the actual address to
which Kong forward requests. Since we linked the go-server container, in the beginning,
we can directly refer http://go-server:3000 from the Kong. The uris field is intended
to specify the path relative to the upstream proxy (Go server) to fetch resources.

For example, if the URI is /api/v1 and the Go server's API is /healthcheck, the resulting
gateway API will be:

http://localhost:8000/api/v1/healthcheck

preserve_host is the property that says whether Kong should change the request's host
field to the hostname of the upstream server. For more information, see https:/ ​/​getkong.
org/​docs/​0.​10.​x/ ​proxy/ ​#the- ​preserve_ ​host-​property. Other settings such
as upstream_connect_timeout are straightforward.

We added our API to Kong. Let us verify if it is forwarding our health check request to the
Go server or not. Don't forget to add a header called Host with the value server1 for all
the API requests. This is very important. The API call looks like the following screenshot:

>

We received the response successfully. This is the response returned by our
HealthcheckHandler in our main.go program.

If you receive a 404 error, please try the procedure from the beginning.
The problem could be the containers not running or the upstream URL not
being accessible from the Kong container. Another critical error may arise
from not adding host in the request headers. This is the host given while
adding the API.

https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property
https://getkong.org/docs/0.10.x/proxy/#the-preserve_host-property

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[258]

This health check API is actually running as a Go service. We made a request for the API
gateway and it is forwarding that to the Go. It proves that we successfully linked our API
with an API gateway.

This is the addition of the API, the tip of the iceberg. What about other things? We will be
going through each and every feature of the API gateway and try to implement them for
our API.

In Kong, apart from this basic routing, additional things such as logging and rate limiting
are available. We need to enable them to our API using plugins. A Kong plugin is an inbuilt
component that allows us to plug any functionality easily. There are many types of plugins
available. Out of them, we will discuss a few interesting ones in the next section. Let us start
with the logging plugin.

API logging in Kong
Many plugins are available in Kong to log requests to multiple targets. A target is a system
that collects the log and persists it somewhere. These are the important plugins available for
logging:

File log
Syslog
HTTP log

The first one is file logging. If we need the Kong server to store the request and response
logs in the form of JSON to a file, use this plugin. We should call on Kong's admin REST
API (http://localhost:8001/apis/myapi/plugins) to do that:

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[259]

Hit the Send button and the gateway returns the response, like this:

{
 "created_at": 1509202704000,
 "config": {
 "path": "/tmp/file.log",
 "reopen": false
 },
 "id": "57954bdd-ee11-4f00-a7aa-1a48f672d36d",
 "name": "file-log",
 "api_id": "795409ae-89ae-4810-8520-15418b96161f",
 "enabled": true
}

It basically tells Kong that, for the given API called myapi, log every request to a file called
/tmp/file.log. Now, make one more request for the health
check (http://localhost:8000/api/v1/healthcheck) to the API gateway. The log for
this request will be saved in the given file path.

How do we watch these logs? Those logs will be saved in the /tmp folder of the container.
Open a new tab of a terminal and enter the Kong container using this command:

docker exec -i -t kong /bin/bash

This takes you into the container's bash shell. Now, inspect the log file:

cat /tmp/file.log

And you will see a lengthy JSON written to the file:

{"api":{"created_at":1509195475000,"strip_uri":true,"id":"795409ae-89ae-481
0-8520-15418b96161f","hosts":["server1"],"name":"myapi","headers":{"host":[
"server1"]},"http_if_terminated":false,"https_only":false,"retries":5,"uris
":["\/api\/v1"],"preserve_host":false,"upstream_connect_timeout":60000,"ups
tream_read_timeout":60000,"upstream_send_timeout":60000,"upstream_url":"htt
p:\/\/go-
server:3000"},"request":{"querystring":{},"size":"423","uri":"\/api\/v1\/he
althcheck","request_uri":"http:\/\/server1:8000\/api\/v1\/healthcheck","met
hod":"GET","headers":{"cache-control":"no-
cache","cookie":"session.id=MTUwODY2NTE3MnxOd3dBTkZaUVNqVTBURmRTUlRSRVRsUlp
RMHhGU2xkQlZVNDFVMFJNVmxjMlRFNDJUVXhDTWpaWE1rOUNORXBFVkRJMlExSXlSMEU9fNFxTx
KgoEsN2IWvrF-sJgH4tSLxTw8o52lfgj2DwnHI","postman-token":"b70b1881-
d7bd-4d8e-b893-494952e44033","user-agent":"PostmanRuntime\/3.0.11-
hotfix.2","accept":"*\/*","connection":"keep-alive","accept-
encoding":"gzip,
deflate","host":"server1"}},"client_ip":"172.17.0.1","latencies":{"request"
:33,"kong":33,"proxy":0},"response":{"headers":{"content-

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[260]

type":"text\/plain; charset=utf-8","date":"Sat, 28 Oct 2017 15:02:05
GMT","via":"kong\/0.11.0","connection":"close","x-kong-proxy-
latency":"33","x-kong-upstream-latency":"0","content-
length":"58"},"status":200,"size":"271"},"tries":[{"balancer_latency":0,"po
rt":3000,"ip":"172.17.0.3"}],"started_at":1509202924971}

IP addresses logged here are the internal IP assigned by the Docker to the containers. This
log also has a breakdown of latency information about the Kong proxy, Go server, and so
on. You can learn more about the format of logged fields at https:/ ​/​getkong. ​org/ ​plugins/
file-​log/​. Kong admin API for enabling the other logging types is similar to the file-
log.

The POST requests we are making from Postman to the admin API has the
header of Content-Type: "application/json".

API authentication in Kong
As we mentioned, an API gateway should take care of authentication for the multiple APIs
running behind the gateway. Many plugins are available to provide authentication on the
fly in Kong. In the next chapter, we will see the authentication concept in detail. For now,
using these plugins, we can add authentication for a given API by calling the Kong admin
API.

An API key-based authentication is becoming famous these days. Kong provides the
following authentication patterns:

API key-based authentication
OAuth2 authentication
JWT authentication

For the sake of simplicity, let us implement API key-based authentication. In simple words,
key-based authentication allows an external client to consume the REST API with a unique
token. For that in Kong, enable the key authentication plugin first. To enable the plugin,
make a POST request to the http://localhost:8001/apis/myapi/plugins URL with
two things in the JSON body:

The name is key-auth.1.
config.hide_credentials is true.2.

https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/
https://getkong.org/plugins/file-log/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[261]

The second option is to strip/hide the credential to get passed to the Go API server. Take a
look at the following screenshot:

It returns the JSON response with the created api_id:

 {
 "created_at": 1509212748000,
 "config": {
 "key_in_body": false,
 "anonymous": "",
 "key_names": [
 "apikey"
],
 "hide_credentials": true
 },
 "id": "5c7d23dd-6dda-4802-ba9c-7aed712c2101",
 "enabled": true,
 "api_id": "795409ae-89ae-4810-8520-15418b96161f",
 "name": "key-auth"
 }

Now, if we try to make a health check API request, we receive a 401 Unauthorized error:

{
 "message": "No API key found in request"
}

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[262]

Then how can we consume an API? We need to create a consumer and give permissions for
him to access the API. That permission is an API key. Let us see how to do that.

For creating a consumer, we need to create a consumer that represents a user consuming the
API. Make an API call to the Kong admin API for consumers. The URL endpoint will be
http://localhost:8001/consumers. Refer to the following screenshot:

The POST body should have the username field. The response will be JSON with the
created consumer:

{
 "created_at": 1509213840000,
 "username": "johnd",
 "id": "df024acb-5cbd-4e4d-b3ed-751287eafd36"
}

Now, if we need to grant the API permission to johnd, make a POST request to
the http://localhost:8001/consumers/johnd/key-auth admin URL:

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[263]

This returns the API key:

{
 "id": "664435b8-0f16-40c7-bc7f-32c69eb6c39c",
 "created_at": 1509214422000,
 "key": "89MH58EXzc4xHBO8WZB9axZ4uhZ1vW9d",
 "consumer_id": "df024acb-5cbd-4e4d-b3ed-751287eafd36"
}

We can use this API key generated in the subsequent API calls. Now, remake the health
check with apikey in header whose value is the key from the preceding response, and it
successfully returns the date and time with a 200 OK. Refer to the following screenshot:

API rate limiting in Kong
We can limit the rate of an API for a given consumer. For example, GitHub limits clients to
make 5000 requests per hour. After that, it throws an API rate limit exceeded error. We can
add similar rate limiting constraints for our API using Kong's rate-limiting plugin.

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[264]

We can enable it using this API: http://localhost:8001/apis/myapi/plugins,
with POST name, config.hour, and consumer_id as body parameters:

This API call is creating a rate limiting rule. The consumer_id is the id of the username
johnd. This JSON response has an ID

{
 "created_at": 1509216578000,
 "config": {
 "hour": 5000,
 "redis_database": 0,
 "policy": "cluster",
 "hide_client_headers": false,
 "redis_timeout": 2000,
 "redis_port": 6379,
 "limit_by": "consumer",
 "fault_tolerant": true
 },
 "id": "b087a740-62a2-467a-96b5-9cee1871a368",
 "enabled": true,
 "name": "rate-limiting",
 "api_id": "795409ae-89ae-4810-8520-15418b96161f",
 "consumer_id": "df024acb-5cbd-4e4d-b3ed-751287eafd36"
}

Now, the consumer (johnd) has the rate limit on the API. He will only be allowed to make
5000 requests per hour to our health check API. If he exceeds it, he receives the following
error:

{"message":"API rate limit exceeded"}

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[265]

How should a client know how many requests are remaining as part of rate control? Kong
sets a few headers on the response when a client makes a request to the API. Try to make 10
health check requests and check the response headers; you will find the following in the
response headers, which proves that rate limiting is working:

X-RateLimit-Limit-hour →5000
X-RateLimit-Remaining-hour →4990

In this way, Kong provides many good features to take our API to the next level. It doesn't
mean that an API gateway is absolutely necessary, but it can give you the pleasure of
having many cool features without writing a single line of code. It is an open-source
software developed to avoid rewriting the universally defined API gateway functionality
within the web service business logic. For more features such as load balancing and request
transformations, go through the documentation of Kong at https:/ ​/ ​konghq. ​com/ ​plugins/ ​.

Kong CLI
Kong comes with a command-line tool for changing the behavior of Kong. It has a set of
commands to start, stop, and modify Kong. Kong by default uses a configuration file. If we
need to modify it, we need to restart Kong for those changes to be applied. So, all these
housekeeping jobs are already wired into the Kong CLI tool. The basic functions are:

kong start: For starting the Kong server
kong reload: For reloading the Kong server
kong stop: For stopping the Kong server
kong check: For validating the given Kong configuration file
kong health: For checking necessary services, such as the database, are running

Please go through the documentation of Kong CLI for more commands at https:/ ​/
getkong.​org/​docs/ ​0. ​9. ​x/ ​cli/ ​.

https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://konghq.com/plugins/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/
https://getkong.org/docs/0.9.x/cli/

Using an API Gateway to Monitor and Metricize REST API Chapter 11

[266]

Other API gateways
There are many other API gateway providers available in the market. As we mentioned
earlier, all gateways perform the same kinds of functions. Enterprise gateway service
providers such as Amazon API Gateway plays nice with EC2 and Lambdas. Apigee is
another well-known API gateway technology that is a part of Google Cloud. The problem
with cloud providers is that they can cause vendor lock (cannot easily migrate to another
platform). Because of that reason, open-source alternatives are always good for startup
companies.

Summary
In this chapter, we started with the basics of an API gateway. An API gateway tries to do a
few things; it acts as a proxy for our API. By being a proxy, it forwards requests to the
multiple APIs from different domains. In that process of forwarding, a gateway can block
requests, rate limit them, and also transform requests/responses.

Kong is a good open-source API gateway available for the Linux platform. It has many
features such as authentication, logging, and rate limiting. We saw how to install Kong, a
Kong database, and our REST service inside the Docker containers. We used Docker instead
of host machine because containers can be destroyed and created at will. It gives less chance
for screwing up our host system. After learning about the installation, we learned that Kong
has two types of REST API. One is the admin API, and the other is the app API. The admin
API is the one we use to add our API to the gateway. The app API is our application's API.
We saw how to add an API to Kong. Then, we came to know about Kong plugins. Kong
plugins are the functional pieces that can plug into a Kong. Logging plugins are available.
Authentication plugins and rate limiting plugins are also available in Kong.

We made requests with the Postman client and saw the sample JSON returned. For
authentication, we used the apikey based consumer. We then simulated GitHub's 5000
requests per hour with a key-auth plugin of Kong.

Finally, we introduced the Kong CLI and also inspected other enterprise API gateways such
as Apigee and Amazon API Gateway. In the next chapter, we will see in more detail how
authentication works and try to secure our API when there is no API gateway present.

12
Handling Authentication for Our

REST Services
In this chapter, we are going to explore authentication patterns in Go. Those patterns are
session-based authentication, JSON Web Tokens (JWT), and Open
Authentication 2 (OAuth2). We will try to leverage the Gorilla package's sessions
library to create basic sessions. Then, we will try to move onto advanced REST API
authentication strategies such as using stateless JWT. Finally, we will see how to implement
our own OAuth2 and also learn what packages are available to provide us out-of-box
OAuth2 implementations. In the previous chapter, the API gateway implemented
authentication (using plugins) for us. If the API gateway is not present in our architecture,
how do we secure our API? You will find the answer in this chapter.

In this chapter, we will cover the following topics:

How authentication works
Introducing Postman, a visual client for testing APIs
Session-based authentication in Go
Introducing Redis to store user sessions
Introduction to JSON Web Tokens (JWT)
OAuth2 architecture and basics

Getting the code
You can get the code samples for this chapter at https:/ ​/​github. ​com/ ​narenaryan/
gorestful/​tree/​master/ ​chapter12. Since the example programs are not packages, the
reader needs to create the project files by following the GOPATH way of writing projects.

https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12
https://github.com/narenaryan/gorestful/tree/master/chapter12

Handling Authentication for Our REST Services Chapter 12

[268]

How authentication works
Traditionally, authentication or simple authentication works in a session-centric way. A
client that is requesting resources from the server tries to prove that it is the right consumer
for any given resource. The flow starts like this. A client sends an authentication request to
the server using user credentials. The server takes those credentials and matches them with
the credentials stored on the server. If a match is successful, it writes something called a
cookie in the response. This cookie is a small piece of information that is transferred to and
from subsequent requests. The modern user interfaces (UI) of websites are single-page
applications (SPAs). There, the static web assets like HTML, JS are served from a CDN to
render the web page initially. From next time, the communication between the web page
and application server happens only through REST API/Web services.

A session is a nice way to record the user communication in a given period of time. The
session is a concept that is usually stored in a cookie. The following diagram can sum up the
entire process of authentication (simply auth):

Handling Authentication for Our REST Services Chapter 12

[269]

Now see the practical approach. A client (for example, a browser) sends a request to
the Login API of the server. The server tries to check those credentials with the database
and if credentials exist, writes a cookie back onto the response saying this user is
authenticated. A cookie is a message to be consumed by the server at the later point of time.
When the client receives the response, it stores that cookie locally. If the web browser is the
client, it stores it in the cookie storage. From next time, the client can freely ask for resources
from the server by showing the cookie as the key for passage. When a client decides to
terminate the session, it calls the Logout API on the server. The server destroys the session
in the response. This process continues. The server can also keep an expiration on cookies so
that the authentication window is valid for a certain time if there is no activity. This is how
all websites work.

Now, we will try to implement one such system using the Gorilla kit's sessions package.
We already saw how the Gorilla kit provides an HTTP router in the initial chapters. This
sessions package is one of them. We need to install the package first by using the following
command:

go get github.com/gorilla/sessions

Now, we can create a new session using this statement:

var store = sessions.NewCookieStore([]byte("secret_key"))

That secret_key should be the key that Gorilla sessions use to encrypt the session cookies.
If we add a session as a normal text, anyone can read it. So, the server needs to encrypt a
message to a random string. For that, it asks to provide a secret key. This secret key can be
any randomly generated string. Keeping secret keys in code is not a good idea, so we try to
store it as an environment variable and read it in code on the fly. We will see how we can
implement one such system.

Session-based authentication
Create a project called simpleAuth in GOPATH and add a main.go file, which holds the
logic for our program:

mkdir simpleAuth
touch main.py

In this program, we are going to see how we can create a session-based authentication using
the Gorilla sessions package. Refer to the following code snippet:

package main
import (

Handling Authentication for Our REST Services Chapter 12

[270]

 "log"
 "net/http"
 "os"
 "time"
 "github.com/gorilla/mux"
 "github.com/gorilla/sessions"
)
var store =
sessions.NewCookieStore([]byte(os.Getenv("SESSION_SECRET")))
var users = map[string]string{"naren": "passme", "admin": "password"}
// HealthcheckHandler returns the date and time
func HealthcheckHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")
 if (session.Values["authenticated"] != nil) &&
session.Values["authenticated"] != false {
 w.Write([]byte(time.Now().String()))
 } else {
 http.Error(w, "Forbidden", http.StatusForbidden)
 }
}
// LoginHandler validates the user credentials
func LoginHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")
 err := r.ParseForm()
 if err != nil {
 http.Error(w, "Please pass the data as URL form encoded",
http.StatusBadRequest)
 return
 }
 username := r.PostForm.Get("username")
 password := r.PostForm.Get("password")
 if originalPassword, ok := users[username]; ok {
 if password == originalPassword {
 session.Values["authenticated"] = true
 session.Save(r, w)
 } else {
 http.Error(w, "Invalid Credentials", http.StatusUnauthorized)
 return
 }
 } else {
 http.Error(w, "User is not found", http.StatusNotFound)
 return
 }
 w.Write([]byte("Logged In successfully"))
}
// LogoutHandler removes the session
func LogoutHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")

Handling Authentication for Our REST Services Chapter 12

[271]

 session.Values["authenticated"] = false
 session.Save(r, w)
 w.Write([]byte(""))
}
func main() {
 r := mux.NewRouter()
 r.HandleFunc("/login", LoginHandler)
 r.HandleFunc("/healthcheck", HealthcheckHandler)
 r.HandleFunc("/logout", LogoutHandler)
 http.Handle("/", r)
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

It is a REST API that allows one to access the health condition (up or not) of the system. In
order to authenticate, one needs to call the login endpoint first. The program imported two
main packages called mux and sessions from the Gorilla kit. Mux is used to link the URL
endpoints of HTTP requests to a function handler, and sessions is used to create new
sessions and validate existing ones on the fly.

In Go, we need to store sessions in the program memory. We can do that by creating
CookieStore. This line explicitly tells the program to create one by picking the secret key
from the environment variable called SESSION_SECRET:

var store = sessions.NewCookieStore([]byte(os.Getenv("SESSION_SECRET")))

sessions has a new function called NewCookieStore that returns a store. We need to use
this store to manage cookies. We can get a cookie session with this statement. If the session
doesn't exist, it returns an empty one:

session, _ := store.Get(r, "session.id")

session.id is a custom name that we gave to the session. With this name, a cookie will be
sent back in the client response. LoginHandler tries to parse the form that was supplied by
the client as multipart form data. This step is essential in the program:

err := r.ParseForm()

Handling Authentication for Our REST Services Chapter 12

[272]

This fills the r.PostForm map with the parsed key-value pairs. That API requires both
username and password for its authentication. So, we are interested in scraping username
and password. Once LoginHandler receives the data, it tries to check it with the details in
a map called users. In a practical scenario, we use the database to validate those details. For
simplicity's sake, we hardcoded values and tried to authenticate from it. If the username
doesn't exist, return an error saying resource not found. If the username exists and the
password is incorrect, return an UnAuthorized error message. If everything goes well,
return a 200 response by setting the cookie value, like this:

session.Values["authenticated"] = true
session.Save(r, w)

The first statement sets the cookie key called "authenticated" to true. The second
statement actually saves the session on the response. It takes request and response writers
as the arguments. If we remove this statement, the cookie will not have any effect. Now,
coming to the HealthCheckHandler, it does the same thing as LoginHandler initially,
like this:

session, _ := store.Get(r, "session.id")

Then, it checks whether a given request has a cookie that has the key called
"authenticated". If that key exists and is true, it means it is the user that the server
authenticated previously. But, if that key does not exist or the "authenticated" value is
false, then the session is not valid, hence it returns a StatusForbidden error.

There should be a way for the client to invalidate a login session. It can do that by calling
the logout API of the server. The API just sets the "authenticated" value to false. This
tells the server that the client is not authenticated:

session, _ := store.Get(r, "session.id")
session.Values["authenticated"] = false
session.Save(r, w)

In this way, a simple authentication can be implemented using the sessions in any
programming language, including Go.

Don't forget to add this statement, as it is the actual one that modifies and
saves the cookie: session.Save(r, w).

Handling Authentication for Our REST Services Chapter 12

[273]

Now, let us see the execution of this program. Instead of CURL, we can use a wonderful
tool called Postman. The main benefit is that it runs on all platforms including Microsoft
Window; no need for CURL anymore.

The error codes can mean different things. For example, Forbidden (403) is
issued when the user tries to access a resource without authentication,
whereas Resource Not Found (404) is issued when the given resource does
not exist on the server.

Introducing Postman, a tool for testing REST
API
Postman is a wonderful tool that allows Windows, macOS X, and Linux users to make
HTTP API requests. You can download it at https:/ ​/ ​www.​getpostman. ​com/​.

After installing Postman, enter a URL in the Enter request URL input text. Select the type of
request (GET, POST, and so on). For each request, we can have many settings such as
headers, POST body, and other details. Please go through the Postman documentation for
more details. The basic usage of Postman is straightforward. Take a look at the following
screenshot:

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Handling Authentication for Our REST Services Chapter 12

[274]

The builder is the window where we can add/edit requests. The preceding screenshot
shows the empty builder where we try to make requests. Run the main.go in the preceding
simpleAuth project and try to call the health check API, like this. Click on the Send button
and you will see the response is forbidden:

This is because we didn't log in yet. Postman automatically saves the cookie once
authentication is successful. Now, call the login API by changing the method type from GET
to POST and URL to http://localhost:8000/login. We should also pass the auth
details as multipart form data. It looks like the following screenshot:

Handling Authentication for Our REST Services Chapter 12

[275]

Now, if we hit send, it authenticates and receives the cookie. It returns a message saying
Logged In successfully. We can also inspect the cookies by clicking on the Cookies link just
below the Send and Save buttons on right-hand side. It shows the list of cookies saved and
you will find a cookie called session.id there for localhost. The content will look like this:

session.id=MTUwODYzNDcwN3xEdi1CQkFFQ180SUFBUkFCRUFBQUpmLUNBQUVHYzNSeWFXNW5E
QThBRFdGMWRHaGxiblJwWTJGMFpXUUVZbTl2YkFJQ0FBRT189iF-ruBQmyTdtAOaMR-
Rr9lNtsf1OJgirBDkcBpdEa0=; path=/; domain=localhost; Expires=Tue Nov 21
2017 01:11:47 GMT+0530 (IST);

Try to call the health check API again, and it returns us the system date and time:

2017-10-22 06:54:36.464214959 +0530 IST

If a client makes a GET request to the logout API:

http://localhost:8000/logout

The session will be invalidated and access to the resource will be forbidden until another
login request is done.

Persisting client sessions with Redis
The sessions we created until now are stored in the program memory. It means if the
program crashes or restarts, all the logged sessions will be lost. It needs the client to re-
authenticate once again to get a new session cookie. It can be an annoying thing sometimes.
In order to save sessions in some place, we chose Redis. Redis is a key-value storage that is
very fast because it lives in primary memory.

The Redis server stores any key-value pairs we supply. It provides basic data types such as
strings, lists, hashes, sets, and so on. For more details, visit https:/ ​/ ​redis. ​io/​topics/
data-​types. We can install Redis with the following command on Ubuntu 16.04:

sudo apt-get install redis-server

On macOS X, we can just say:

brew install redis

For Windows too, binaries are available on the Redis website. Once Redis is installed, we
can start the Redis server with this command:

redis-server

https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types
https://redis.io/topics/data-types

Handling Authentication for Our REST Services Chapter 12

[276]

It starts the server on default port 6379. Now, we can store anything in that using Redis CLI
(command-line tool). Open a new terminal and type redis-cli. Once the shell is launched,
we can perform Redis commands to store and retrieve data into the user-defined type
variables:

[7:30:30] naren:~ $ redis-cli
127.0.0.1:6379> SET Foo 1
OK
127.0.0.1:6379> GET Foo
"1"

We can store a key value using the SET Redis command. It stores the value as a string. If we
try to perform GET, it returns us the string. It is our responsibility to convert them to
numbers. Redis provides us handy functions to operate on those keys. For example, we can
increment a key like this:

127.0.0.1:6379> INCR Foo
(integer) 2

Redis treats integers as integers internally. If you try to increment a non-number string,
Redis throws an error:

127.0.0.1:6379> SET name "redis"
OK
127.0.0.1:6379> INCR name
(error) ERR value is not an integer or out of range

Why are we discussing Redis here? Because we are showing how Redis works and
introducing a few basic commands on the Redis server. We are going to modify our project
from simpleAuth to simpleAuthWithRedis.

In that project, instead of storing sessions in program memory, we use Redis. Even though
the program crashes, sessions are not lost since they are saved in the external server. Who
writes the bridging logic for that? We should. Luckily, we have a package that takes care of
that coordination between Redis and the Go sessions package.

Handling Authentication for Our REST Services Chapter 12

[277]

Install that package with the following command:

go get gopkg.in/boj/redistore.v1

And create a new program with a few modifications. Here, instead of using the sessions
library, we use the redistore package. redistore has a function called NewRediStore
that takes Redis configuration as the arguments along with the secret key. All other
functions remain same. Now, add a main.go file in the simpleAuthWithRedis directory:

package main
import (
 "log"
 "net/http"
 "os"
 "time"
 "github.com/gorilla/mux"
 redistore "gopkg.in/boj/redistore.v1"
)
var store, err = redistore.NewRediStore(10, "tcp", ":6379", "",
[]byte(os.Getenv("SESSION_SECRET")))
var users = map[string]string{"naren": "passme", "admin": "password"}
// HealthcheckHandler returns the date and time
func HealthcheckHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")
 if (session.Values["authenticated"] != nil) &&
session.Values["authenticated"] != false {
 w.Write([]byte(time.Now().String()))
 } else {
 http.Error(w, "Forbidden", http.StatusForbidden)
 }
}
// LoginHandler validates the user credentials
func LoginHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")
 err := r.ParseForm()
 if err != nil {
 http.Error(w, "Please pass the data as URL form encoded",
http.StatusBadRequest)
 return
 }
 username := r.PostForm.Get("username")
 password := r.PostForm.Get("password")
 if originalPassword, ok := users[username]; ok {
 if password == originalPassword {
 session.Values["authenticated"] = true
 session.Save(r, w)
 } else {

Handling Authentication for Our REST Services Chapter 12

[278]

 http.Error(w, "Invalid Credentials", http.StatusUnauthorized)
 return
 }
 } else {
 http.Error(w, "User is not found", http.StatusNotFound)
 return
 }
 w.Write([]byte("Logged In successfully"))
}
// LogoutHandler removes the session
func LogoutHandler(w http.ResponseWriter, r *http.Request) {
 session, _ := store.Get(r, "session.id")
 session.Options.MaxAge = -1
 session.Save(r, w)
 w.Write([]byte(""))
}
func main() {
 defer store.Close()
 r := mux.NewRouter()
 r.HandleFunc("/login", LoginHandler)
 r.HandleFunc("/healthcheck", HealthcheckHandler)
 r.HandleFunc("/logout", LogoutHandler)
 http.Handle("/", r)
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

One interesting change is that we removed the session instead of setting its value to false:

 session.Options.MaxAge = -1

Handling Authentication for Our REST Services Chapter 12

[279]

This improved program works exactly the same as the previous one, except the session is
saved in Redis. Open the Redis CLI and type this command to get all available keys:

[15:09:48] naren:~ $ redis-cli
127.0.0.1:6379> KEYS *
1) "session_VPJ54LWRE4DNTYCLEJWAUN5SDLVW6LN6MLB26W2OB4JDT26CR2GA"
127.0.0.1:6379>

That lengthy
"session_VPJ54LWRE4DNTYCLEJWAUN5SDLVW6LN6MLB26W2OB4JDT26CR2GA" is the key
stored by the redistore. If we delete that key, the client will automatically be forbidden
from accessing resources. Now, stop the running program and restart it. You will see the
session is not lost. In this way, we can save the client session. We can also persist sessions
on the SQLite database. Many third-party packages are written to make that much easier.

Redis can serve the purpose of caching for your web applications. It can
store temporary data such as sessions, frequently requested user content,
and so on. It is usually compared to memcached.

Introduction to JSON Web Tokens (JWT) and
OAuth2
The previous style of authentication is a plain username/password and session-based. It has
a limitation of managing sessions by saving them in the program memory or Redis/SQLite3.
The modern REST API implements token-based authentication. Here, tokens can be any
strings generated by the server, which allows the client to access resources by showing the
token. Here, the token is computed in such a way that the client and the server only know
how to encode/decode the token. JWT tries to solve this problem by enabling us to create
tokens that we can pass around.

Handling Authentication for Our REST Services Chapter 12

[280]

Whenever a client passes the authentication details to the server, the server generates a
token and passes it back to the client. The client saves that in some kind of storage, such as a
database or local storage (in case of browser). The client uses that token to ask for resources
from any API defined by the server:

The steps can be summarized more briefly as follows:

The client passes the username/password in a POST request to the login API.1.
The server authenticates the details and if successful, it generates a JWT and2.
returns it back instead of creating a cookie. It is the client's responsibility to store
this token.
Now, the client has the JWT. It needs to add this in subsequent REST API calls3.
such as GET, POST, PUT, and DELETE in the request headers.
Once again, the server checks the JWT and if it is successfully decoded, the server4.
sends the data back by looking at the username supplied as part of the token.

Handling Authentication for Our REST Services Chapter 12

[281]

JWT ensures that the data is sent from the correct client. The technique for
creating a token takes cares of that logic. JWT leverages the secret key-
based encryption.

JSON web token format
All we discussed in the preceding section was circling around a JWT token. We are going to
see here what it really looks like and how it is produced. JWT is a string that is generated
after performing few a steps. They are as follows:

Create a JWT header by doing Base64Url encoding on the header JSON.1.
Create a JWT payload by doing Base64Url encoding on the payload JSON.2.
Create a signature by encrypting the appended header and payload using a secret3.
key.
JWT string can be obtained by appending the header, payload, and signature.4.

A header is a simple JSON object. It looks like the following code snippet in Go:

`{
 "alg": "HS256",
 "typ": "JWT"
}`

"alg" is a short form for the algorithm (HMAC with SHA-256) used for creating a
signature. The message type is "JWT". This will be common for all the headers. The
algorithm may change depending on the system.

A payload looks like this:

`{
 "sub": "1234567890",
 "username": "Indiana Jones",
 "admin": true
}`

Keys in payload object are called claims. A claim is a key that specifies some special
meaning to the server. There are three types of claims:

Public claims
Private claims (more important)
Reserved claims

Handling Authentication for Our REST Services Chapter 12

[282]

Reserved claims
Reserved claims are the ones defined by the JWT standard. They are:

iat: issued at the time
iss: issuer name
sub: subject text
aud: audience name
exp: expiration time

For example, the server, while generating a token, can set an exp claim in the payload. The
client then uses that token to access API resources. The server validates the token each time.
When the expiration time is passed, the server will no longer validate the token. The client
needs to generate a new token by logging in again.

Private claims
Private claims are the names used to identify one token from another. It can be used for
authorization. Authorization is a process of identifying which client made the request.
Multi-tenancy is having multiple clients in a system. The server can set a private claim
called username on the payload of the token. Next time, the server can read this payload
back and get the username, and then use that username to authorize and customize the API
response.

"username": "Indiana Jones" is the private claim on the preceding sample
payload. Public claims are the ones similar to private claims, but they should be registered
with the IANA JSON Web Token Registry to make it as a standard. We limit the use of
these.

A signature can be created by performing this (this is not code, just an illustration):

signature = HMACSHA256(
 base64UrlEncode(header) + "." +
 base64UrlEncode(payload),
 secret)

It is simply performing an encryption algorithm on the Base64URL encoded header and
payload with a secret. This secret can be any string. It is exactly similar to the secret we used
in the previous cookie session. This secret is usually saved in the environment variable and
loaded into the program.

Handling Authentication for Our REST Services Chapter 12

[283]

Now we append the encoded header, encoded payload, and signature to get our token
string:

tokenString = base64UrlEncode(header) + "." + base64UrlEncode(payload) +
"." + signature

This is how a JWT token is generated. Are we going to do all this stuff manually in Go? No.
In Go, or any other programming language, a few packages are available to wrap this
manual creation of a token and verification. Go has a wonderful, popular package called
jwt-go. We are going to create a project in the next section that uses jwt-go to sign a JWT
and also validate them. One can install the package using the following command:

go get github.com/dgrijalva/jwt-go

This is the official GitHub page for the project: https:/ ​/​github. ​com/​dgrijalva/ ​jwt-
go. The package provides a few functions that allow us to create tokens. There are many
other packages with different additional features. You can see all available packages and
features supported at https:/ ​/ ​jwt. ​io/ ​#libraries- ​io.

Creating a JWT in Go
The jwt-go package has a function called NewWithClaims that takes two arguments:

Signing method such as HMAC256, RSA, and so on1.
Claims map2.

For example, it looks like the following code snippet:

token := jwt.NewWithClaims(jwt.SigningMethodHS256, jwt.MapClaims{
 "username": "admin",
 "iat":time.Now().Unix(),
})

jwt.SigningMethodHS256 is an encryption algorithm that is available within the
package. The second argument is a map with claims such as private (here username) and
reserved (issued at). Now we can generate a tokenString using the SignedString
function on a token:

tokenString, err := token.SignedString("my_secret_key")

This tokenString then should be passed back to the client.

https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://github.com/dgrijalva/jwt-go
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io
https://jwt.io/#libraries-io

Handling Authentication for Our REST Services Chapter 12

[284]

Reading a JWT in Go
jwt-go also gives us the API to parse a given JWT string. The Parse function takes a string
and key function as arguments. The key function is a custom function that validates
whether the algorithm is proper or not. Let us say this is a sample token string generated by
the preceding encoding:

tokenString =
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwiaWF0IjoiM
TUwODc0MTU5MTQ2NiJ9.5m6KkuQFCgyaGS_xcVy4xWakwDgtAG3ILGGTBgYVBmE"

We can parse and get back the original JSON using:

token, err := jwt.Parse(tokenString, func(token *jwt.Token) (interface{},
error) {
 // key function
 if _, ok := token.Method.(*jwt.SigningMethodHMAC); !ok {
 return nil, fmt.Errorf("Unexpected signing method: %v",
token.Header["alg"])
 }
 return "my_secret_key", nil
})

if claims, ok := token.Claims.(jwt.MapClaims); ok && token.Valid {
 // Use claims for authorization if token is valid
 fmt.Println(claims["username"], claims["iat"])
} else {
 fmt.Println(err)
}

token.Claims is implemented by a map called MapClaims. We can get the original JSON
key-value pairs from that map.

Handling Authentication for Our REST Services Chapter 12

[285]

OAuth 2 architecture and basics
OAuth 2 is an authentication framework that is used to create authentication pattern
between different systems. In this, the client, instead of making a request to the resource
server, makes an initial request for some entity called resource owner. This resource owner
gives back the authentication grant for the client (if credentials are successful). The client
now sends this authentication grant to another entity called an authentication server. This
authentication server takes the grant and returns an access token. This token is the key thing
for a client to access API resources. It needs to make an API request to the resource server
with this access token and the response is served. In this entire flow, the second part can be
done using JWT. Before that, let us learn the difference between authentication and
authorization.

Authentication versus authorization
Authentication is the process of identifying whether a client is genuine or not. When a
server authenticates a client, it checks the username/password pair and creates session
cookie/JWT.

Authorization is the process of differentiating one client from another after a successful
authentication. In cloud services, the resources requested by a client need to be served by
checking that the resources belong to that client but not the other client. The permissions
and access to resources vary for different clients. For example, the admin has the highest
privileges of resources. A normal user's access is limited.

OAuth2 is a protocol for authenticating multiple clients to a service,
whereas the JWT is a token format. We need to encode/decode JWT tokens
to implement the second stage (dashed lines in the following screenshot)
of OAuth 2.

Handling Authentication for Our REST Services Chapter 12

[286]

Take a look at the following diagram:

In this diagram, we can implement the dashed section using JWT. Authentication is
happening at the authentication server level and authorization happens at the resource
server level.

In the next section, let us write a program that does two things:

Authenticates the client and returns a JWT string.1.
Authorizes client API requests by validating JWT.2.

Handling Authentication for Our REST Services Chapter 12

[287]

Create a directory called jwtauth and add main.go:

package main
import (
 "encoding/json"
 "fmt"
 "log"
 "net/http"
 "os"
 "time"
 jwt "github.com/dgrijalva/jwt-go"
 "github.com/dgrijalva/jwt-go/request"
 "github.com/gorilla/mux"
)
var secretKey = []byte(os.Getenv("SESSION_SECRET"))
var users = map[string]string{"naren": "passme", "admin": "password"}
// Response is a representation of JSON response for JWT
type Response struct {
 Token string `json:"token"`
 Status string `json:"status"`
}
// HealthcheckHandler returns the date and time
func HealthcheckHandler(w http.ResponseWriter, r *http.Request) {
 tokenString, err :=
request.HeaderExtractor{"access_token"}.ExtractToken(r)
 token, err := jwt.Parse(tokenString, func(token *jwt.Token)
(interface{}, error) {
 // Don't forget to validate the alg is what you expect:
 if _, ok := token.Method.(*jwt.SigningMethodHMAC); !ok {
 return nil, fmt.Errorf("Unexpected signing method: %v",
token.Header["alg"])
 }
 // hmacSampleSecret is a []byte containing your secret, e.g.
[]byte("my_secret_key")
 return secretKey, nil
 })
 if err != nil {
 w.WriteHeader(http.StatusForbidden)
 w.Write([]byte("Access Denied; Please check the access token"))
 return
 }
 if claims, ok := token.Claims.(jwt.MapClaims); ok && token.Valid {
 // If token is valid
 response := make(map[string]string)
 // response["user"] = claims["username"]
 response["time"] = time.Now().String()
 response["user"] = claims["username"].(string)

Handling Authentication for Our REST Services Chapter 12

[288]

 responseJSON, _ := json.Marshal(response)
 w.Write(responseJSON)
 } else {
 w.WriteHeader(http.StatusForbidden)
 w.Write([]byte(err.Error()))
 }
}
// LoginHandler validates the user credentials
func getTokenHandler(w http.ResponseWriter, r *http.Request) {
 err := r.ParseForm()
 if err != nil {
 http.Error(w, "Please pass the data as URL form encoded",
http.StatusBadRequest)
 return
 }
 username := r.PostForm.Get("username")
 password := r.PostForm.Get("password")
 if originalPassword, ok := users[username]; ok {
 if password == originalPassword {
 // Create a claims map
 claims := jwt.MapClaims{
 "username": username,
 "ExpiresAt": 15000,
 "IssuedAt": time.Now().Unix(),
 }
 token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)
 tokenString, err := token.SignedString(secretKey)
 if err != nil {
 w.WriteHeader(http.StatusBadGateway)
 w.Write([]byte(err.Error()))
 }
 response := Response{Token: tokenString, Status: "success"}
 responseJSON, _ := json.Marshal(response)
 w.WriteHeader(http.StatusOK)
 w.Header().Set("Content-Type", "application/json")
 w.Write(responseJSON)
 } else {
 http.Error(w, "Invalid Credentials", http.StatusUnauthorized)
 return
 }
 } else {
 http.Error(w, "User is not found", http.StatusNotFound)
 return
 }
}
func main() {
 r := mux.NewRouter()
 r.HandleFunc("/getToken", getTokenHandler)

Handling Authentication for Our REST Services Chapter 12

[289]

 r.HandleFunc("/healthcheck", HealthcheckHandler)
 http.Handle("/", r)
 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }
 log.Fatal(srv.ListenAndServe())
}

This is a very lengthy program to digest. First, we are importing jwt-go and its subpackage
called request. We are creating a REST API for two endpoints; one for getting the access
token by providing authentication details, and another one for fetching the health check
API that authorizes the user.

In the getTokenHandler handler function, we are comparing the username and password
with our custom defined user map. This can be a database too. If authentication is
successful, we are generating a JWT string and sending it back to the client.

In HealthcheckHandler, we are taking the access token from a header called
access_token and validating it by parsing the JWT string. Who is writing the logic of
validating? The JWT package itself. When a new JWT string is created it should have a
claim called ExpiresAt. Refer to the following code snippet:

 claims := jwt.MapClaims{
 "username": username,
 "ExpiresAt": 15000,
 "IssuedAt": time.Now().Unix(),
 }

The program's internal validation logic looks at the IssuedAt and ExpiresAt claims and
tries to compute and see whether the given token is expired or not. If it is fresh, then it
means the token is validated.

Now, when a token is valid, we can read the payload in the HealthCheckHandler where
we parse the access_token string that passed as part of the HTTP request headers.
username is a custom private claim we inserted for authorization. Therefore, we know who
is actually sending this request. For each and every request there is no need for the session
to be passed. Each API call is independent and token based. Information is encoded in a
token itself.

Handling Authentication for Our REST Services Chapter 12

[290]

token.Claims.(jwt.MapClaims) returns a map whose values are
interfaces, not strings. In order to convert the value to a string, we should
do claims["username"].(string).

Let us see how this program runs by making requests through the Postman tool:

This returns a JSON string that has a JWT token. Copy it to the clipboard. If you try to make
a request to the health check API without passing that JWT token as one of the headers, you
will receive this error message instead of JSON :

Access Denied; Please check the access token

Handling Authentication for Our REST Services Chapter 12

[291]

Now, copy that token back and make a GET request, adding an access_token header with
a token string as the value. In Postman, the headers section is available where we can add
headers and key-value pairs. Refer to the following screenshot:

It returns the time properly as part of the API response. We can also see which user's JWT
token this is. This confirms the authorization part of our REST API. Instead of having the
token validation logic in each and every API handler, we can have it as a middleware and
make it applicable to all handlers. Refer to Chapter 3, Working with Middleware and RPC,
and modify the preceding program to have a middleware that validates the JWT token.

Token-based authentication doesn't usually provide a log out API or API
for deleting the tokens that are provided in session based authentication.
The server gives the authorized resources to the client as long as JWT is
not expired. Once it expires, the client needs to refresh the token—that is
to say, ask the server for a new token.

Handling Authentication for Our REST Services Chapter 12

[292]

Summary
In this chapter, we introduced the process of authentication. We saw how authentication
usually works. Authentication can be of two types: session-based or token-based. Session-
based authentication is also called simple authentication, where a session is created when
the client successfully logs in. That session is saved back in the client and supplied for each
and every request. There are two possible cases here. In the first case, the session will be
saved in the server's program memory. This kind of session will be cleared when the
application restarts. The second case is to save the session cookie in Redis. Redis is an in-
memory database that can act as a cache for any web application. Redis supports storing a
few data types such as string, list, hash, and so on. We explored a package called
redistore that replaces the built-in sessions package for persisting the session cookies.

Next, we saw about JWT. A JWT is a token string that is the output of performing a few
steps. First, create a header, payload, and signature. A signature can be obtained by
combining both header and payload with base64URL encoding and applying an encryption
algorithm such as HMAC. In token-based authentication, a client needs a JWT token for
accessing server resources. So, initially, it requests the server to provide the access token
(JWT token). Once the client gets this token, next time it makes API calls with the JWT token
in the HTTP header and the server returns the response.

We introduced OAuth 2.0, an authentication framework. In OAuth 2, the client first
requests for a grant from the resource owner. Once it gets the grant, it then requests an
access token from the authentication server. The authentication server gives the access
token, which client can use to request an API. We implemented the second step of OAuth 2
with JWT.

We tested all our APIs with a tool called Postman. Postman is a great tool that helps us to
test our APIs quickly on any machine. CURL is limited to Linux and macOS X. Postman is a
wise choice for Windows because it has all the features of CURL.

We came a long way from the first chapter by learning how to create HTTP routes,
middlewares, and handlers. We then linked our applications with databases to store the
resource data. After the basics, we explored the performance-tuning aspects such as
microservices and RPC. Finally, we saw how to deploy our web services and also secure
them using authentication.

Index

A
Advanced Encryption Standard (AES) 209
Alice
 used, for painless middleware chaining 69
allow aliases 137
Amazon Web Services (AWS) 7
API as a Service (AAAS) 7
API data
 caching, Redis used 201
API gateway
 about 266
 need for 248
API layout
 creating, for URL shortening services 56
API
 adding, to Kong 255
 authentication 260
 logging 258
 rate limiting 263
Application Programming Interface (API) 7
authentication
 session-based authentication 269
 versus authorization 285, 291
 working 268
authorization 285

B
business-to-business (B2B) 182

C
chaining 63, 65
characteristics, REST
 cacheable 10
 client-server based architecture 10
 multiple layered system 10

 representation of resources 10
 scripts on demand 10
 stateless 10
CLI
 beautiful clients, building 186
 command-line arguments, collecting 188
 creating, as API client for GitHub REST API 196,

201

client sessions
 persisting, with Redis 275
command-line arguments
 collecting 190
command-line tool
 writing 182, 186
Common Gateway Interface (CGI) 231
Continuous Delivery (CD) 206
Continuous Integration (CI) 206
Create, Read, Update, Delete (CRUD) 82
Cross-Origin Resource Sharing (CORS) 16
CRUD operations
 and SQLite3 basics 83

D
data types
 reference 275
Docker
 about 251
 reference 251
DockerHub
 reference 252
Domain Name Space (DNS) 254

E
e-commerce data document model
 designing 128, 131
e-commerce REST API

[294]

 implementing 174, 180

G
Gin framework
 used, for building RESTful APIs 96, 101
GitHub REST API
 CLI tool, creating as API client 196, 201
 reference 193
 using 193
Go API server
 monitoring, with supervisord 243
Go Kit
 endpoint layer 209
 service layer 209
 transport layer 209
 used, for building microservices 209, 212
 used, for building REST microservice 212, 218
Go project
 development server, executing 23
 GOPATH, demystifying 23
 setting up 22
go-restful framework
 used, for REST API creation 81
go.uuid
 reference 71
Go
 command-line tool, writing 182, 186
 JWT, creating 283
 JWT, reading 284
 MongoDB driver 117
 net/http package 37
 pq 162
 random package, reference 40
 reference 22
 ServeMux 38
GoDoc
 reference 187
Google Remote Procedure Call (GRPC) 144
Gorilla Handlers middleware
 used, for logging 70
Gorilla Mux
 about 47
 fundamentals 48
 host-based matching 53
 installation 48

 query-based matching 52
 RESTful API 120
 URL, reverse mapping 50
Gorilla RPC
 used, for JSON RPC 76, 78
GORM
 about 172
 reference 172
grequests
 about 191
 API overview 192
GRPC
 about 144, 148
Gulp
 used, for application reload 30
 used, for creating auto code compiling 32
 used, for server reloading 32
gulpfile 34

H
httprouter
 about 42
 installation 42
 program 44
 simple static file server, building 46

I
indexing
 used, for boosting querying performance 125
Internet of Things (IoT) 7

J
JSON RPC
 Gorilla RPC using 76, 78
JSON store, PostgreSQL
 e-commerce REST API, implementing 174, 180
 exploring 172
 GORM 172
JSON Web Tokens (JWT)
 about 279
 creating, in Go 283
 format 281
 reading, in Go 284
 reference 283

[295]

JWT format
 private claims 282
 reserved claims 282

K
Kong CLI
 about 265
 reference 265
Kong database
 installing 252
Kong
 about 250
 API authentication 260
 API logging 258
 API rate limiting 263
 API, adding 255
 CLI 265
 installing 252
 reference 250, 265

L
logged fields
 reference 260
Logger 220

M
Metro Rail API
 building, with go-restful 85
 database models, creating 86
 design specification 86
mgo 117
microservices
 about 206
 building, with Go Kit 209
middleware
 about 59
 creating 60, 62
Model-View-Controller (MVC) 20
Mongo shell
 working with 112
MongoDB driver 117
MongoDB shell
 using 110
MongoDB

 about 110
 installing 110
 RESTful API 120
 troubleshooting guide, reference 112
monolith
 versus microservices 208
multiple middleware 63, 65

N
Negroni
 reference 71
net/http package
 about 37
 code, running 38
Nginx
 about 250
 configuring 230
 installing 230
 load balancing 238
 paths 233
 proxy server 231
 proxy server, benefits 232
 proxy server, securing 242
 proxying 234
 REST API, rate limiting 240
 sample Go application, creating 234
 server blocks, using 234
Numerals 26

O
OAuth 2
 about 279
 architecture 285
 basics 285
Object Relational Mapper (ORM) 172
OpenResty 250

P
painless middleware chaining
 Alice, using 69
PayPal 13
pgAdmin3 tool 159
PostgreSQL database
 installing 159

[296]

 users and databases, adding 160
PostgreSQL
 JSON store, exploring 172
 used, for implementing URL shortening service

165

Postman
 reference 255
 used, for testing REST API 273
pq
 about 162, 164
 used, for implementing URL shortening service

165

Prometheus
 about 222
 reference 227
protobuf package
 reference 139
protoc
 used, for compiling protocol 138
protocol buffer (pb)
 about 133, 143
 compiling, with protoc 138
 language 134
protocol buffers language
 enumerations 136
 repeated fields 136
 scalar values 135
public claims 282

Q
querying performance
 boosting, with indexing 125

R
Redis
 reference 202
 used, for caching API data 201
 used, for persisting client sessions 275
Remote Procedure Call (RPC)
 about 72
 client, creating 74
 server, creating 73
Representational State Transfer (REST)
 about 9
 characteristics 10

 DELETE method 15
 GET method 13
 implementational freedom 11
 PATCH method 14
 POST method 14
 PUT method 14
 status codes 11
 verbs 11
Resource Identifier (URI) 10
Response Oriented Architecture (ROA) 20
REST API client
 building, plan 182
REST API
 creating, with go-restful framework 81
 testing, Postman tool used 273
REST microservice
 building, with Go Kit 212, 218
 instrumentation, adding 222, 227
 logging, adding 219
RESTful API
 building, with Gin framework 96, 101
 building, with Revel.go 102, 107
 with Gorilla Mux 120
 with MongoDB 120
Revel.go
 used, for building RESTful API 102, 107
reverse mapping URL
 custom paths 50
 encoded paths 52
 Path Prefix 51
 Strict Slash 51
Rijndael 212
Roman numeral
 code, breaking down 29
 finding 25, 29

S
ServeMux
 about 38
 code, running 40, 41
 multiple handlers, handling 40
Service Oriented Architecture (SOA) 20, 207
session-based authentication 269, 272
Single Page Applications (SPA)
 data flow, ways 20

 Go, using 22
 used, for REST API 19
SOAP
 example, reference 9
SQL injections
 avoiding, ways 55
 in URLs 55
SQLite3 basics
 and CRUD operations 83
status codes
 2xx family (successful) 18
 3xx family (redirection) 18
 4xx family (client error) 18
 5xx family (server error) 19
 types 17
supervisord
 installing 30, 243
 reference 245
 used, for application reload 30
 used, for monitoring Go API 243

 used, for monitoring Go web server 30
swagger 95

U
unit testing tool
 creating, for URL shortening service 203
URL shortening service
 API layout, creating 56
 Base62 algorithm, defining 165, 171
 implementing, PostgreSQL used 165
 implementing, pq used 165
 unit testing tool, creating 203
user interfaces (UI) 268

W
web services
 Representational State Transfer (REST) 9
 types 8
World Wide Web Consortium (W3C)
 reference 7

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with REST API Development
	Types of web services
	REST API
	Characteristics of REST services

	REST verbs and status codes
	GET
	POST, PUT, and PATCH
	DELETE and OPTIONS
	Cross-Origin Resource Sharing (CORS)
	Types of status codes
	2xx family (successful)
	3xx family (redirection)
	4xx family (client error)
	5xx family (server error)

	Rise of REST API with Single Page Applications
	Old and new ways of data flow in SPA
	Why Go for REST API development?

	Setting up the project and running the development server
	Demystifying GOPATH

	Building our first service – finding the Roman numeral
	Breaking down the code
	Live reloading the application with supervisord and Gulp
	Monitoring your Go web server with supervisord
	Installing supervisord

	Using Gulp for creating auto code compiling and server reloading
	Understanding the gulpfile

	Summary

	Chapter 2: Handling Routing for Our REST Services
	Getting the code
	Understanding Go's net/http package
	Running the code

	ServeMux, a basic router in Go
	Running the code
	Adding multiple handlers using ServeMux
	Running the code

	Introducing httprouter, a lightweight HTTP router
	Installation
	Program explanation

	Building the simple static file server in minutes

	Introducing Gorilla Mux, a powerful HTTP router
	Installation
	Fundamentals of Gorilla Mux
	Reverse mapping URL
	Custom paths
	Path Prefix
	Strict Slash
	Encoded paths

	Query-based matching
	Host-based matching

	SQL injections in URLs and ways to avoid them

	Creating a basic API layout for URL shortening services
	Summary

	Chapter 3: Working with Middleware and RPC
	Getting the code
	What is middleware?
	Creating a basic middleware

	Multiple middleware and chaining
	Painless middleware chaining with Alice
	Using Gorilla's Handlers middleware for Logging
	What is RPC?
	Creating an RPC server
	Creating an RPC client

	JSON RPC using Gorilla RPC
	Summary

	Chapter 4: Simplifying RESTful Services with Popular Go Frameworks
	Getting the code
	go-restful, a framework for REST API creation
	CRUD operations and SQLite3 basics
	Building a Metro Rail API with go-restful
	Design specification
	Creating database models

	Building RESTful APIs with the Gin framework
	Building a RESTful API with Revel.go
	Summary

	Chapter 5: Working with MongoDB and Go to Create REST APIs
	Getting the code
	Introduction to MongoDB
	Installing MongoDB and using the shell
	Working with the Mongo shell

	Introducing mgo, a MongoDB driver for Go
	RESTful API with Gorilla Mux and MongoDB
	Boosting the querying performance with indexing
	Designing an e-commerce data document model
	Summary

	Chapter 6: Working with Protocol Buffers and GRPC
	Getting the code
	Introduction to protocol buffers
	Protocol buffer language
	Scalar values
	Enumerations and repeated fields

	Compiling a protocol buffer with protoc
	Introduction to GRPC
	Bidirectional streaming with GRPC
	Summary

	Chapter 7: Working with PostgreSQL, JSON, and Go
	Getting the code
	Installing the PostgreSQL database
	Adding users and databases in PostgreSQL

	pq, a pure PostgreSQL database driver for Go
	Implementing a URL shortening service using Postgres and pq
	Defining the Base62 algorithm

	Exploring the JSON store in PostgreSQL
	GORM, a powerful ORM for Go
	Implementing the e-commerce REST API

	Summary

	Chapter 8: Building a REST API Client in Go and Unit Testing
	Getting the code
	Plan for building a REST API client
	Basics for writing a command-line tool in Go
	CLI – a library for building beautiful clients
	Collecting command-line arguments in CLI

	grequests – a REST API package for Go
	API overview of grequests

	Getting comfortable with the GitHub REST API
	Creating a CLI tool as an API client for the GitHub REST API
	Using Redis for caching the API data
	Creating a unit testing tool for our URL shortening service
	Summary

	Chapter 9: Scaling Our REST API Using Microservices
	Getting the code
	What are microservices?
	Monolith versus microservices
	Go Kit, a package for building microservices
	Building a REST microservice with Go Kit
	Adding logging to your microservice
	Adding instrumentation to your microservice

	Summary

	Chapter 10: Deploying Our REST services
	Getting the code
	Installing and configuring Nginx
	What is a proxy server?
	Important Nginx paths
	Using server blocks
	Creating a sample Go application and proxying it
	Load balancing with Nginx
	Rate limiting our REST API
	Securing our Nginx proxy server

	Monitoring our Go API server with Supervisord
	Installing Supervisord

	Summary

	Chapter 11: Using an API Gateway to Monitor and Metricize REST API
	Getting the code
	Why is an API gateway required?
	Kong, an open-source API gateway
	Introducing Docker
	Installing a Kong database and Kong

	Adding API to Kong
	API logging in Kong
	API authentication in Kong
	API rate limiting in Kong
	Kong CLI
	Other API gateways
	Summary

	Chapter 12: Handling Authentication for Our REST Services
	Getting the code
	How authentication works
	Session-based authentication

	Introducing Postman, a tool for testing REST API
	Persisting client sessions with Redis
	Introduction to JSON Web Tokens (JWT) and OAuth2
	JSON web token format
	Reserved claims
	Private claims

	Creating a JWT in Go
	Reading a JWT in Go

	OAuth 2 architecture and basics
	Authentication versus authorization

	Summary

	Index

