

PixelFlow
BSc Computer Science & Information Technology

CT413 Final Year Project

David Bohan - 20436904 - March 2024

FORMAL REPORT - DAVID BOHAN - 20436904 1

Table of Contents
Acknowledgements 4

Section One - Introduction 5

1.1 Document Outline 5

1.2 Project Background 5

1.3 Feasibility Study 7

1.4 Stakeholders 7

1.5 Project Management 8

1.6 Technology Choices 10

Section Two - Requirements 12

2.1 Introduction 12

2.2 Functional Requirements 12

2.3 Non-Functional Requirements 13

2.4 UX/UI 14

2.5 Development Considerations 15

2.6 Constraints 16

Section Three - System Design 17

3.1 Introduction 17

3.2 Overview 17

3.3 Feature One - Landing Page 20

3.4 Feature Two - Authentication 21

3.5 Feature Three - Dashboard 22

3.6 Feature Four - Create Site 23

3.7 Feature Five - Individual Site Route 24

3.8 Feature Six - Site Settings 25

3.9 Feature Seven - Contact Forms 26

3.10 Feature Eight - Media Uploads 27

3.11 Feature Nine - Designer 28

3.12 Feature Ten - Website Rendering 32

FORMAL REPORT - DAVID BOHAN - 20436904 2

uality 34

4.1 Sample Website 34

4.2 Application Feedback 37

4.3 TypeScript and ESLint 38

Section Five - Conclusion 39

5.1 Challenges 39

5.2 Lessons Learned 40

5.3 Future Work 40

5.4 Final Conclusion 41

Section Six - References 42

FORMAL REPORT - DAVID BOHAN - 20436904 3

Acknowledgements

I would like to express my gratitude to my project supervisor, Effirul Ramlan, for his

support and guidance for the duration of my time creating PixelFlow. His openness to

discussions and meetings, his prompt email responses to queries, and willingness to

dedicate his time are truly appreciated. This was all while maintaining a great sense of

humour, which made the process much more enjoyable.

I am thankful to my friends and family, who have encouraged me at every stage and

participated in numerous user tests. Additionally, I extend my appreciation to the faculty

in the College of Computer Science at the University of Galway. Their dedication to

teaching has significantly contributed to my academic and personal growth over the last

four years of study.

Lastly, my gratitude goes to the examiners who are taking the time to review my project.

Your effort in evaluating my work is greatly appreciated.

FORMAL REPORT - DAVID BOHAN - 20436904 4

Section One - Introduction

1.1 Document Outline

This document outlines the CT413 Final Year Project, PixelFlow, undertaken as a

requirement for the Bachelor of Science in Computer Science & Information Technology

at the University of Galway, Ireland. It serves as a formal report, offering a comprehensive

overview of the software development cycle from inception to completion.

The goal of this document is to provide detailed accounts of the project's background,

the technologies used, and software implementation. Upon completing the report, the

reader will possess an in-depth understanding of the project's purpose and functionality,

alongside reflections on personal insights and directions for future work.

1.2 Project Background

The idea for this project emerges from a personal interest in freelance web design and

development. Having previously worked with many local Irish businesses on their

websites, I have directly observed the challenges these businesses face in establishing an

online presence. There are multiple components that go into the creation of a successful

website. There are typically two primary options for businesses;

i). Hire Professionals: Engaging a professional team of designers, copywriters and

developers will ensure a polished final result. However, this approach can be expensive

and demands substantial communication between both parties. These professionals can

typically charge anywhere from $40 to $160 an hour for their services according to Zippia

[1].

Figure 1: Website Cost According to Forbes [2]

FORMAL REPORT - DAVID BOHAN - 20436904 5

ii). DIY Approach: The process of building a website yourself can be time-consuming and

lack a professional touch, with the resulting website not being mobile-responsive, SEO-

friendly, or optimised for media, and may miss key elements like security and accessibility.

According to Wix [3], building a website can take from around one to six months,

depending on the goals and resources available.

Boston Consulting Group [4] has found “almost a quarter of all URLs have at least one

website issue—bloated pages that load sluggishly, broken pages that don’t load at all,

pages that are not linked internally—and on average, nearly 40% of these issues are

critical in nature. Lost visitors are eroding the effectiveness of marketing expenditure by

as much as 20%, and companies are squandering thousands of dollars a month.”

Due to the high costs and/or steep learning curve involved, many business decide to not

maintain a website at all. This decision can negatively impact their brand and ultimately

lead to significant losses. According to a report conducted by Harris Poll on behalf of

Salesforce [5], 79% of shoppers research products online prior to purchasing in-store. The

goal of PixelFlow is to provide a new-age marketing tool, designed to address the

problems presented by both the professional and DIY development paradigms.

To alleviate these issues, thus to allow for an easier and more streamlined experience for

the user, PixelFlow provides a robust website development platform, augmented with

generative AI capabilities. The PixelFlow AI website builder can create a website entirely

using simple text prompts, based on the business description and the services to be

listed on the site. The AI will then create a website, including the initial copy, images and

core pages needed to support the business. This method can shave off weeks—if not

months—from the typical development process and present a fully functional website in

minutes.

FORMAL REPORT - DAVID BOHAN - 20436904 6

1.3 Feasibility Study

Figure 2: Competitive Landscape

PixelFlow exists at the intersection of high-quality design and user-friendliness. It is

designed to address the key issues faced by users of other platforms. It offers the high-

quality design that users might find in Webflow [6] or Squarespace [7], without the

associated complexity. By offering a straightforward yet powerful design experience,

PixelFlow offers a solution for those who find Wix [8], Wordpress [9] or Weebly’s [10]

capabilities too limiting. In essence, PixelFlow is carving out a niche by combining

professional design quality with an ease of use that other platforms have yet to fully

achieve.

1.4 Stakeholders

The primary stakeholders of this project are owner-operated businesses, for example BER

Assessors, Gas Installers or Construction Contractors, lacking a strong online presence

due to the costs and complexity associated with traditional website development

options. Additionally, the project implicates their end-users—customers of these

businesses—who will interact with the website.

FORMAL REPORT - DAVID BOHAN - 20436904 7

Having first-hand experience with these stakeholders allowed me to prioritise specific

features that would be seen as necessary requirements. Leveraging my past experiences

and gathering user feedback has been key to enhancing the usability and accessibility of

the project. This approach has allowed the software to evolve according to real-world

user needs, resulting in a more efficient and user-friendly application.

1.5 Project Management

Setting a realistic project scope was vital for the success of this project. With guidance

from my project supervisor, we decided on achievable goals, identified the essential

features to be built and how to prioritise time. The combination of generative AI

integration, a multi-tenant architecture, content management system and a drag-and-

drop editor, posed a great technical challenge.

Figure 3: Compartmentalisation of Components

Git and GitHub [11]

For version control, my project relied heavily on Git and GitHub. The use of branching

allowed for the development of features or bug fixes in isolation, which ensured the

master codebase remained functional and rollbacks were possible if required. Clear

FORMAL REPORT - DAVID BOHAN - 20436904 8

commit messages were used to outline the update being pushed. Visual Studio Code

(VSCode) was used as the Integrated Development Environment (IDE).

Notion [12]

Notion was used in project documentation and task management. It served as a central

hub for organising tasks, notes, resources, code explanations and more. Complex code

files were documented and explained for future reference, essentially creating a record of

the project's architecture and design choices. I was able to share Notion environments

with my project supervisor, providing a transparent view of the project's progress.

Agile Methodology

The project originally adopted an Agile methodology, specifically the use of sprints for

structured development. Before beginning development on a given day, I would hold a

“self-standup” meeting, where I would prioritise tasks to be completed. It was difficult to

determine the required time necessary allocate to specific tasks, due to their complexity.

The project was ultimately delivered without compromising on quality or scope.

Below is a high-level overview of the major tasks which were to be completed. Each of

these were further broken down into sub-tasks for completion and tracked in Notion.

* Testing was continuously carried out during the development process.

Date Task/Milestone Details

1st Nov Project Set-up Set up project repository. Initialise NextJS setup.

7th Nov Prisma Initialise Prisma schema with connection to Vercel.

14th Nov Dashboard Implement Clerk Auth and begin dashboard layout.

1st Dec Create Site Using a modal, create a new site associated with the user.

21st Dec Pages Site can now be created and pages successfully rendered.

7th Jan Drag/Drop Site now fully editable and DnD Kit implemented.

14th Jan CMS Add facility for adding “page collections”.

1st Feb Domains Integrate custom domain functionality.

14th Feb GPT Integration Create an automated method of creating sites.

1st March Finalise Bug or UI fixes in preparation for project completion.

FORMAL REPORT - DAVID BOHAN - 20436904 9

1.6 Technology Choices

Next JS [13]

Next.js offers a powerful route grouping system that enables the organisation of an

application’s routes into distinct categories. By using the file-system based routing

mechanism, it is simple to create nested routes and dynamic paths. With Next.js, when a

request targets a specific route group, only the relevant route is loaded. This selective

loading will ensure that as the user base grows, the application's loading performance

remains efficient, a primary reason why Next.JS was used for this project. This approach

differs from the conventional full-application loading strategy employed by a standard

Create React App setup.

Vercel [14]

Vercel Postgres is a serverless, fully-managed relational database built on open standards

and designed to work with frontend frameworks, such as NextJs. It is built to scale

automatically as the needs of the applications change, which ensures a high performance

even when a large load is placed on the system. Vercel’s tooling is intuitive and

straightforward to use. It makes setting up and managing databases very easy. Vercel

Blob was also used for media uploads and storage.

Prisma [15]

Prisma provides a seamless experience when interacting with the database. It handles

connection pooling, caching and querying. It is used to simplify database workflows by

turning database queries into simple function calls, thus leading to more secure and

scalable code. It integrates with TypeScript to ensure that compile-time checks are

passed for database queries. The Prisma schema is used to define the application’s

models in a way that makes their relationships clear and easily visualised.

Tailwind CSS [16]

Tailwind CSS offers an assortment of utility classes designed for efficiency and consistency

when creating visually appealing websites. Unlike frameworks such as Bootstrap and

Material UI, which offer styles for high-level components (like buttons, drop-downs, and

FORMAL REPORT - DAVID BOHAN - 20436904 10

forms), Tailwind adopts a more functional strategy by supplying utility classes for

component construction. ShadCn-UI’s open-source component library was also used.

Clerk Authentication [17]

Clerk provides comprehensive user authentication management capabilities through its

suite of inbuilt functionalities, including user-specific account buttons and dedicated sign-

in/sign-up pages. By wrapping protected routes with the ClerkProvider from @clerk/

nextjs, secure user session management is ensured across the platform. This allows for

precise control over access permissions. Only verified, authenticated users can interact

with their respective site data, safeguarding operations like creating, updating, and

deleting of database records.

Integrations

SaaSCustomDomains [18] provides a simple API for integrating custom domains into

applications, regardless of underlying technology stack. Resend API [19] offers an easy

way to programmatically send emails, and is used in contact forms on the sites. OpenAi

API [20] is used in the text generation for websites. Unsplash API [21] is used to add

royalty-free stock images to the sites.

Figure 4: Technology Stack

FORMAL REPORT - DAVID BOHAN - 20436904 11

Section Two - Requirements

2.1 Introduction

This section outlines the core fundamental needs and expectations for the PixelFlow

platform. It details the functional and non-functional requirements, ensuring a

comprehensive understanding of what the software must accomplish and how it should

perform. Clearly defined requirements are used in industry to enable developers and

stakeholders to align their goals regarding the software's design, development, and

implementation phases.

2.2 Functional Requirements

Functional requirements define what a system is supposed to do. In this section, we are

defining the specific behaviours and functions required for the successful completion of

the project. These requirements focus on the interaction between the software platform

and the end-users.

Landing Page: Acts as the entry point into the application. It allows the user to create a

new account or log into an existing one. User credentials and session data is effectively

managed to maintain security and confidentiality.

Dashboard: Create a website by specifying basic information such as name, description,

about and services. Input SEO-related information such as title tags, descriptions, favicon,

open graph to improve their website's visibility in search engine results. Allow users to

associate custom domain names with their website, view contact form submissions and

upload media assets.

Designer: The Designer provides a visual interface for editing pages or adding new

components. This allows users to easily update the layout and content of their website

without needing technical coding knowledge. Edit the content and design of individual

pages, with Drag and Drop components. Add, arrange, and remove components on a

page using drag-and-drop functionality.

User Website: The end user’s website will be functional, mobile responsive, always

accessible to customers and quick to load. It will effectively showcase and act as a strong

representation of the business.

FORMAL REPORT - DAVID BOHAN - 20436904 12

2.3 Non-Functional Requirements

Non-functional requirements detail how the system performs tasks, rather than the tasks

themselves, instead focusing on the user experience and system attributes such as

reliability, efficiency, and quality.

Usability: The interface must be intuitive and comprehensive. A lot of consideration was

given to the application design in order to facilitate an easy and efficient user experience,

ensuring stakeholders are not left confused or frustrated. Significant care was given to

correctly handling application errors and displaying these to the user.

Performance: It is important for modern applications to optimise for load speed and

responsiveness. Steps for ensuring minimal latency, suspense and appropriate fallbacks

are further outlined in the following sections.

Reliability: The system must perform under different conditions, including accounting for

unique edge cases. This is done to maintain availability, ensuring users can depend on

the application and they will not miss out on business due to an unresponsive website.

Discoverability: The application must be designed to be easily found by search engines.,

an important aspect of any well-performing website. This was achieved through using

metadata best practices and other SEO techniques.

Security: It is vital we protect user data and prevent unauthorised access. This was a

primary factor in deciding to use Clerk for authentication and enforcing privacy controls

for sensitive information. Users should have trust in the application and be confident their

data is kept safe from bad actors.

Scalability: The architecture should support growth in user numbers and geographical

expansion without performance bottlenecks.

Maintainability: All code should be well-documented, separated by function and robustly

version controlled. This allows for easy bug fixes, rollbacks and feature additions.

FORMAL REPORT - DAVID BOHAN - 20436904 13

2.4 UX/UI

Being a website design and development platform, it was important from the start to

ensure the application maintained a clear UI/UX. Application design is not only about the

software’s outward appearance, it also has a rational basis in influencing a user’s trust and

confidence in the product.

Prototyping

The prototype phase began by firstly defining the features and functionality scope to be

achieved. A list of the functionality required was made and ordered by priority. Paper

sketched wireframes of how the site would look and be laid out were created. This

helped to form a clear understanding of how the application’s structure would flow and

how different components would work together to achieve the key functionality. After

sketching the overall layout of the application, a workable prototype was created using

Webflow. This gave an idea of what the site would look like in a live browser context.

Figure 5: Original Prototype from Webflow

User Testing and Design Choices

Throughout the development of this application, considerable attention was paid to

iterating based on user feedback, modern design standards and the principles of visual

brand identity. The goal was to create an aesthetic and functional experience for the end

user. The brand strategy involved the development of a PixelFlow logo, a consistent

colour palette across the application, and a set of reusable components to maintain

coherence. The font was chosen because of its readability and modernity. Graphics are

used in the application not just for decoration but also as components to help in the

comprehension of the textual content, for example, when a website has not been created

yet, a graphic of someone building a website is shown.

FORMAL REPORT - DAVID BOHAN - 20436904 14

2.5 Development Considerations

Optimisations

When attempting to optimise performance and latency of the application, it was

important to consider the implications of caching. By caching frequently accessed data, it

is possible to significantly reduce the computational load on the server and ensure the

platform remains responsive. Content Delivery Networks (CDNs) are provided by Vercel

to cache static content at different data centres across the world, typically in closer

geographic proximity to the end-client. The revalidateTag function allows the application

to purge cached data on-demand for a specific cache tag. In the context of a website

development platform this is very important, so that users can see their changes

automatically without having to clear their cache first. Vercel also provides Font and

Image optimisation as standard. This removes external network requests for improved

privacy and performance, and ensures faster load times for end users.

Metadata

Another important consideration with be the handling of Metadata across the platform. In

the context of web development, optimised Metadata plays an important role in how a

website is perceived by search engines and other external platforms. Each website’s

Metadata is used to define information about the underlying structure and content of the

site. These include items such as; title tags, open graph images, favicon and more. Each

website automatically constructs a sitemap.xml file, which can then be read by search

engines crawlers for indexing.

Suspense

Another important consideration was suspense and loading states. An instant loading

state is fallback UI that is shown immediately upon navigation. It indicates to the user that

the application is working and loading, which increases engagement. The loading states

in this application include placeholder cards, loading dots and image blur hashes, all

designed to maintain a smooth and engaging user experience while minimising the

perception of wait times.

FORMAL REPORT - DAVID BOHAN - 20436904 15

2.6 Constraints

In progressing through the development of PixelFlow, several constraints emerged,

directly impacting the scope and execution. Strategic decisions were made in order to

deliver a fully-functional minimal viable product.

Scope

Defining the project's scope was a critical step to ensure overall focus and feasibility. The

project began with a vast array of additional features to be implemented. However,

looking at the project timeline, skillset available, and resources led to a more refined

feature set. Core functionalities that directly addressed the needs of the target users were

prioritised, which ensured a solid foundation to which additional features can be added

at a later time. The combination of generative AI integration, a multi-tenant architecture,

content management system and a drag-and-drop editor, posed a great technical

challenge in itself.

Quality

Ensuring a high-quality experience for the end user in both the user interface (UI) and

user experience (UX) was a primary concern, given the project's aim. The need to focus

on seamless front-end design and back-end functionality posed a significant challenge.

Considerable attention was spent on making the application behave like a real-world

software application, extending to branding, font selection, colour palette and more.

Time

Being a single-person project, time was the biggest constraint faced. Without prior

experience working directly with the technologies involved, it was hard to provision the

correct amount of time that an individual feature would take or how technically difficult it

would be. This was coupled was an intense assignment workload from other course

modules. A lot of time was dedicated over Christmas break to getting the project

functional.

FORMAL REPORT - DAVID BOHAN - 20436904 16

Section Three - System Design

3.1 Introduction

In this section, we will discuss the intricate details of the software system design. Through

this comprehensive overview, the reader will gain an understanding for how the

components, data and structural elements of the platform come together to meet the

end-user’s requirements.

3.2 Overview

Figure 6: PixelFlow Framework

The PixelFlow project is structured into four main categories for organising its routes: i).

Home, This category is dedicated to the website's landing page. ii). Auth - This section

manages the routes related to user authentication. iii). App - This area handles the

internal routes of the application, which includes the dashboard and page designer

features. iv). Domain - This category is responsible for displaying the client's website on

the internet.

FORMAL REPORT - DAVID BOHAN - 20436904 17

Database Structure

The project’s Prisma schema defines multiple models: Site, PageType, SitePage,

ContactForm, FormSubmission, and Asset, each used for different aspects of the

application’s data.

The Site Model is the primary model of the application and is used for controlling the

majority of the data throughout the project. All other models reference back to the

singular Site model, either in a many-to-one relationship or a one-to-one relationship. It is

also responsible for holding data such as the custom domain identifier, SEO metadata

and any other data that is used across all aspects of the client website.

The SitePage Model is responsible for individual pages within the website. These pages

can be grouped into different PageTypes, which allows for a content management system

(CMS) to be used.

The ContactForm, FormSubmission and Asset models are relatively straightforward. A

user can have a single contact form and receive multiple form submissions. The Assets

model stores the various media used on the site, ie. images, video etc.

Middleware

Figure 7: Middleware Workflow

FORMAL REPORT - DAVID BOHAN - 20436904 18

The middleware file is used to control all requests directed at the application. It is crucial

in how the application routing and structure works. It is used in allowing for custom

processing steps like authentication, redirections, or modifying requests or responses. In

this project, we are using Clerk for user authentication and management. By using the

Clerk middleware, the project can securely manage auth states and protect routes, while

still allowing for public routes to be defined and visited.

The middleware function takes in a request and event. The URL is extracted from the

request, as well as the Headers associated with that request. The X-Served-For header is

added by SaaSCustomDomains and allows us to identify when the request is coming

from a custom website domain, rather than from within the application. We extract the

path or slug associated with the request to be able to correctly rewrite the URL for the

request made by the user.

If the request comes from the application itself, such as from localhost or from the

environment variable defined NEXT_PUBLIC_ROOT_DOMAIN, then we know that the

user is not coming from a custom domain but rather trying to access the application.

Public Routes are used to define routes in the application which can be accessed without

being authenticated. These are used in our landing page and domain routes for the

application and allows it to be public-facing while remaining secure.

Root Layout File

The Root Layout file wraps the application, which is important for allowing providers to

have the correct access project-wide. In this project, we need to wrap the application with

a ClerkProvider, Modal Provider and Toaster Provider. This is important to avoid hydration

errors, which occur when the client and the server of the application are out of sync.

Important project Metadata is also defined in this file, including title tag, description,

favicon, and open graph image.

FORMAL REPORT - DAVID BOHAN - 20436904 19

3.3 Feature One - Landing Page

Figure 8: Home Route Group

The home route group is used for the marketing or public-facing website associated with

the project. In this case, it is just a landing page, but it could be built out to have many

different pages and routing between them, for example an “About Us” page could be

added by adding a new folder called about, with a page.tsx file. The code in these pages

is straightforward, mainly consisting of simple Tailwind CSS classes with little functionality.

Figure 9: Acts as the entry point into the application.

FORMAL REPORT - DAVID BOHAN - 20436904 20

3.4 Feature Two - Authentication

Figure 10: Auth Route Group - SignIn and SignUp Components

The ClerkProvider is used to provide authentication management across all different

pages of the project. The Clerk appearance property is set to dark, which matches with

the branding of the application. Clerk provides built-in authentication pages for sign-in

and sign-up which can easily be imported using import { SignUp, SignIn } from “@clerk/

nextjs”. This simple structure within the application allows for authentication to be

handled very easily. The layout.tsx instructs the children pages to take up the full screen.

Figure 11: Clerk Authentication to manage user authentication and session data.

FORMAL REPORT - DAVID BOHAN - 20436904 21

3.5 Feature Three - Dashboard

The main Dashboard allows the user to create a new site and/or lists any site that the user

has created previously. As the websites are loading, placeholder cards are shown on the

screen. These are simply created using Tailwind CSS classes and load very quickly, which

indicates to the user that the application is responding.

The <Sites /> component checks that the user is logged in, and then queries the

database for all Sites associated with that given user’s unique ID. If no Sites exist for that

user, an image and text prompt are displayed telling them to create a new site.

Figure 12: Dashboard Page.tsx

Figure 13: Dashboard entry point as a new user.

FORMAL REPORT - DAVID BOHAN - 20436904 22

3.6 Feature Four - Create Site

The <CreateSite> component passes the <CreateSiteModal> component as a child

property to <CreateSiteButton> - in this way when the button is pressed the modal can

be opened with the form and shown to the user. When the user submits the form, it

passes the data object to createSite() and waits for a response. The createSite() function

on the back-end contains external calls to OpenAi’s API and Unsplash API to populate the

site data. Currently, each generated site will have the same starting structure and these

text prompts are hard-coded. This is an area of the site that could be improved over time

to allow for multiple different templates, depending on the business type.

Figure 14: Generate Workflow

Figure 15: Create a website by specifying basic information such as name, description, about and services.

FORMAL REPORT - DAVID BOHAN - 20436904 23

3.7 Feature Five - Individual Site Route

Once created, the individual Site route is accessed via /app/(dashboard)/site/[id]. This

route contains the functionality used in maintaining that individual site. When this route is

hit, the layout.tsx gets the site data by Param (id), and retrieves the SitePages and the

different PageTypes associated with the Site. These are used for rendering the Main site

pages and also grouping the CMS categories ie. Services, Blogs etc which are displayed

in a Navbar. The grouped pages are displayed in app/(dashboard)/site/[id]/[slug]/

page.tsx, where the slug is defined by the group type, ie. /services.

Figure 16: The create site function initialises multiple starter pages.

Figure 17: Service collection also created, provides an improved navigation.

FORMAL REPORT - DAVID BOHAN - 20436904 24

3.8 Feature Six - Site Settings

Figure 18: Allows users to associate custom domain names with their website.

Figure 19: Input SEO-related information such as title tags, descriptions, favicon, open graph to improve
their website's visibility in search engine results.

FORMAL REPORT - DAVID BOHAN - 20436904 25

These settings actions all require the use of CRUD operations to make changes to the

models in the database. This functionality was implemented by following the guidelines

set-out by Vercel and Next Js. Vercel provides a robust form index.ts file, which can take

in different parameters and perform different actions based on the HandleSubmit

function passed to it. Based on the data type passed and its id, the index.ts file can

correctly execute the correct server side function.

3.9 Feature Seven - Contact Forms

Figure 20: Contact Form Workflow

The Resend API is designed to streamline the process of email sending for developers,

offering a straightforward and developer-friendly interface for sending emails. With

Resend, developers can easily integrate email functionalities into their applications,

including sending emails with attachments, using custom email headers, and tagging

emails for organised tracking. The API also supports the sending of emails using React

components, providing a unique approach to email template design. The API also

supports the sending of emails using React components, providing a unique approach to

email template design.

FORMAL REPORT - DAVID BOHAN - 20436904 26

3.10 Feature Eight - Media Uploads

Figure 21: Media Assets Workflow

Vercel Blob is a cloud storage solution specifically designed to make storing and

accessing files simple. It is particularly tailored for developers working with modern web

frameworks, allowing the storage of any file type—ranging from images and videos to

audio files—via an intuitive, promise-based API. This service integrates seamlessly with

Vercel's compute products for both low-latency reads and high-throughput writes,

offering developers a highly available storage option with minimal setup requirements.

By providing immutable URLs for stored files, Vercel Blob ensures that developers can

easily share and access their data without worrying about changes or deletions affecting

their availability.

FORMAL REPORT - DAVID BOHAN - 20436904 27

3.11 Feature Nine - Designer

The Designer provides a visual interface for editing pages or adding new components.

This allows users to easily update the layout and content of their website without needing

technical coding knowledge.

Figure 22: Edit the content and design of individual pages, with Drag and Drop components. Add, arrange,
and remove components on a page using drag-and-drop functionality.

Figure 23: The Component Editor enables detailed customisation of individual website components. Can
also view changes on different screen sizes, preview changes, save changes and publish changes.

FORMAL REPORT - DAVID BOHAN - 20436904 28

PageElement Components

PageElements make up the building blocks of the user websites. The page-elements.tsx

file the defines different types of page elements. It types all PageElements in the same

structure, which includes an initialisation function, designerButtonElement for dragging

into the editor, a designerComponent for showing the component in the designer, a

properties Component for editing the attributes of the component, and a page

Component to render on the actual website. The PageElementInstance is used to define

a single instance of that element, with an ID, type and the extraAttributes associated with

it. PageElements maps each ElementsType to its corresponding configuration (index.tsx

file), which allows for easy creation, deletion, editing and rendering of components. This

structure allows for a scalable, efficient solution to website building.

Figure 24: PageComponents Structure

FORMAL REPORT - DAVID BOHAN - 20436904 29

Designer Functionality

Figure 25: Designer Structure

Designer Context - The Designer Context Provider component is very important in

managing the context of a given SitePage’s components. It defines functions for the page

structure; setElements takes in a list of page elements and stores them in a new array,

enabling the loading of a page's structure. selectedElement is a state variable that stores

the currently selected page element, facilitating operations like deletion or property

editing on this specific element. addElement is a method that adds a new page element

at a specified position within the elements array, allowing for precise placement in the

page layout. removeElement is a function that finds and removes a page element from

the array based on its unique ID, ensuring that specific elements can be precisely

targeted and eliminated from the elements array. updateElement takes in an element ID

and a new element. It searches the array for an element with a matching ID and sets the

passed element to the element at that given index, thus facilitating element updates.

DnD Context - The DndContext from @dnd-kit/core is used for drag-and-drop

functionality. Wrapping the Website Editor with DndContext allows for defining

draggable elements (using useDraggable) and droppable areas (using useDroppable),

which are a core feature of this application. It is used to manage the state and events.

Passing the DnDContext sensors allow it to work across different input modes i.e. mouse,

touch, or keyboard sensors.

FORMAL REPORT - DAVID BOHAN - 20436904 30

Website Editor - The WebsiteEditor component renders many important components;

including Page Switcher, Display Size Switcher, Preview Button, Save Content, and

Publish Content. This component manages various states related to the editor readiness

and initialisation. It loads the Navbar, Footer and SitePage content into a single element's

array variable which is passed to setElements in Designer Context, allowing for the

SitePage elements to be loaded into the Designer.

Designer - The Designer component is the primary Drag and Drop environment. It uses a

useDesigner hook for accessing the Designer Context and managing the state of the

page elements, including their addition, selection, and removal. The design canvas

changes based on the display sizes set, and elements can be dragged onto it,

setSelected (for editing and deletion) or rearranged.

useDnDMonitor - useDndMonitor defines the complex interaction of elements during

drag operations. It defines where a draggable element is dropped inside the page’s

structure i.e. whether it is over or under another PageElement. It also ensures only valid

operations are performed, such as preventing the addition of multiple navigation bars or

footers. A Designer Element Wrapper function shows individual PageElements. It

provides draggable functionality and hover effects when rearranging the page structure.

Component Navbar - The Components Navbar on the left hand side of the website

editor renders all of the different components available to the user. This is done through

the component <SidebarButtonElement pageElement={PageElements.NavbarOne} />.

The pageElement. designerButtonElement is extracted in this component. The title and

associated image set in that PageElement’s constructor are extracted and shown. They

are applied using the useDraggable property to allow them to be dropped onto the

Designer canvas.

Properties Navbar - When a PageElement is clicked in the Designer, it is setSelected in

the Designer Context, which conditionally renders the Navbar. It extracts PropertiesForm

= PageElements [selectedElement?.type].propertiesComponent; and then renders

<PropertiesForm elementInstance = {selectedElement} sitePages = {sitePages} />. inside

of the Navbar. This renders propertiesComponent: (props) => <Update {...props} />, the

properties form of that component. When an update occurs, values are changed with

updateElement() from Designer Context.

FORMAL REPORT - DAVID BOHAN - 20436904 31

3.12 Feature Ten - Website Rendering

The Domain route is used for displaying the user’s site on the internet. When a request

comes in from a URL other than localhost or NEXT_PUBLIC_ROOT_DOMAIN, it is routed

to the [domain] route. This is possible through the use of SaaSCustomDomains.

Figure 26: Domain Routing Workflow

When the custom domain is requested by a client, standard internet procedure occurs to

resolve the domain to a DNS provider. Inside the domain registrar, GoDaddy in this case,

the user would have been instructed to add custom A records which point the domain to

SaaSCustomDomains. When this request is then sent to SaaSCustomDomains, it checks

for the domain, verifies its connection and is able to route the request to PixelFlow. The

Middleware extracts customDomain = requestHeaders.get(‘X-Served-For') and returns

NextResponse.rewrite(new URL(`/${customDomain}${path}`, req.url));

Figure 27: Domain Route

FORMAL REPORT - DAVID BOHAN - 20436904 32

Figure 28: Render Page Component

The RenderPage component is responsible for displaying the correct content associated

with the website to the screen. It works by taking in the content, which is typed as a

PageElementInstance[]. Each individual PageElementInstance = { id: string; type:

ElementsType; extraAttributes?: Record<string, any>; } - which we can loop through for

each component that has been added to the site. We are getting the “pageComponent”

property, which maps to the specific Render.tsx file associated with that element. This is

defined pageComponent: (props) => <Render {...props} />.

Figure 29: Hero Section Rendering

FORMAL REPORT - DAVID BOHAN - 20436904 33

Section Four - Code Quality

4.1 Sample Website

Figure 30: Website Lighthouse Score - SEO, Best Practices, Accessibility and Load Speed

Lighthouse is an open-source tool provided by Google for measuring the performance of

webpages. It is primarily used to assist developers in enhancing performance,

accessibility, SEO, and adherence to best practices. It performs an audit on each of these

areas of the site and provides feedback on how to improve its performance. Lighthouse

audits can to run through Chrome DevTools. A score of 97 represents a highly optimised

webpage. Google [21] suggests “To provide a good user experience, sites should strive

to have a good score (90-100). A "perfect" score of 100 is extremely challenging to

achieve and not expected.”

Figure 31: Sample Website Indexing on Google

FORMAL REPORT - DAVID BOHAN - 20436904 34

This sample landing page demonstrates the quality of the webpage that can achieved

using the PixelFlow platform. It is fully responsive across all screen sizes and would serve

as an excellent website for a local business, such as a Construction Contractor.

FORMAL REPORT - DAVID BOHAN - 20436904 35

Figure 32: Sample About Page

FORMAL REPORT - DAVID BOHAN - 20436904 36

4.2 Application Feedback

Figure 33: Toast Used to Show Errors to the User

Toast notifications are UI states which briefly appear on a website or app to inform the

user about an event. This could be a success message or an error alert. Error handling

was implemented across the application to provide feedback to the user. In the above

example, a toast error is thrown when a subdomain is already taken by a different user.

Figure 34: 404 Pages Shown Where Page Does not Exist

404 Pages and NotFound pages are displayed when a user navigates to a URL which they

either don’t have permission to access, or the page does not exist. This avoids a generic

Vercel error page from showing and causing confusion to the user.

FORMAL REPORT - DAVID BOHAN - 20436904 37

4.3 TypeScript and ESLint

JavaScript is an interpreted language, which means that it needs to have an interpreter in

the environment to read the actual source code and execute it. This differs from a

compiled language like Java or C, which statically analyse all of your code in advance and

then compiles it down to a binary which can be run. Compiled languages require type

definitions. JavaScript is a dynamically typed language, meaning we don’t need to use

any explicit type definitions to use vanilla JavaScript code. The type is associated with a

runtime value and not the actual variables or functions in the code.

TypeScript is a strongly typed superset of JavaScript, which enhances code quality

primarily through static type checking. This allows us to catch errors in our code at

compile time rather than at runtime, which significantly improves our chance of finding

bugs related to type mismatches. It also improves code readability, and maintains

compatibility across different environments.

ESLint is a static code analysis tool for identifying problematic patterns found in

JavaScript code. It enforces coding standards and styles, leading to more consistent and

error-free code. It integrates seamlessly into the development workflow, offering

immediate feedback to developers and ensuring that code conforms to the agreed-upon

standards. Linting is run on the application before it is committed to the codebase.

TypeScript can be used together with ESLint to offer a comprehensive approach to

maintaining high code quality. This combination of static type checking, adherence to

coding standards, and the enforcement of stylistic guidelines improves code quality.

FORMAL REPORT - DAVID BOHAN - 20436904 38

Section Five - Conclusion

5.1 Challenges

During the course of completing this project, I faced many challenges which tested not

only my programming ability, but also my perseverance. The technical complexity of

building such a large application with multiple functionalities was a huge challenge. By

dedicating a significant amount of time in the planning and research phase, and by

carefully outlining the functionalities and their interactions, I approached the project with

a solid plan. This proved to be hugely beneficial as I moved into the implementation

phase.

This is by far the largest project I have ever worked on, and the most difficult. Prior to

starting this project, I had not built any sizeable applications using Next Js. I had previous

experience with React but adapting to Next Js was difficult to start. Each component

seemed to require learning a new skill, DnD kit, domain integrations, learning technical

SEO and metadata etc. A considerable portion of time had to be dedicated to learning

and experimentation with the various technologies. The technologies used had excellent

documentation, which was incredibly helpful in learning how to apply them effectively.

Time management also was a big challenge. Working to break the project down into

sprints and using an agile approach helped me to stay consistent and ensured the project

was delivered to a high standard. Prioritising the development of core functionalities first

helped to create a strong foundation to which I could add smaller features. The use of

third-party integrations also allowed me to focus on the core features, for example I

originally implemented authentication using NextAuth, and switching to Clerk saved a

huge amount of time.

I completed the majority of this project during the Christmas break from college. This

allowed me to balance the demands of this project with other academic responsibilities

and personal commitments. Having not started so early, I would not have been able to

complete this entire application.

FORMAL REPORT - DAVID BOHAN - 20436904 39

5.2 Lessons Learned

Building this project has been really rewarding and a great learning experience. One of

the clear takeaways was the importance of clear planning, and scope definition at the

beginning of projects. Setting goals, prioritising tasks and setting timeframes for

complete was critical for managing a project of this size.

Furthermore, I gained an appreciation for the need for user feedback when developing

software. Things that may be obvious for the person developing the project with perfect

knowledge of how the entire back-end works, may not be obvious to someone knew to

the software.

Documentation was important for learning and understanding complex code. I spent a

considerable amount of time struggling to implement features and fixing bugs. This

taught me resilience and to keep trying when things aren’t working. This project was

much larger and much more complex than I thought I was capable of achieving.

5.3 Future Work

I plan to further develop this application and bring it to market. Having already spoke to

some local businesses, the response so far seems positive and I hope to turn this into a

real-world application. From preliminary testing, the SEO capabilities and performance of

the websites are already near that of other modern website builders. Over the coming

months, I want to improve the user experience, particularly in the automatic generation of

the site. I want to add a feature for truly personalised websites to be generated, and

regenerated if the user decides. This will include adding more page element options and

expanding the design possibilities.

Incorporating analytics features would also provide users with insights into their website's

performance. This would also come with the need to add a cookie banner to the

websites. Adding e-commerce functionalities could open up new opportunities for

businesses looking to establish or expand their online sales channels. Finally, the ability

for a web design agency to sign up and manage their client websites from within the

application. The goal for future work is to enhance the platform's scalability, functionality,

and user-friendliness, making it a powerful tool.

FORMAL REPORT - DAVID BOHAN - 20436904 40

5.4 Final Conclusion

The completion of PixelFlow marks a significant milestone in my academic and

professional journey. It has been challenging at times but overall a rewarding experience.

I am glad that so much effort went into this project and I am proud of what was achieved.

This would not have been possible without the help of my supervisor and feedback from

friends/family.

FORMAL REPORT - DAVID BOHAN - 20436904 41

Section Six - References

[1] Zippa. (n.d.). Front-end developer jobs salary. Available at: https://www.zippia.com/

developer-jobs/salary/

[2] Forbes. (n.d.). How much does a website cost? Available at: https://www.forbes.com/

advisor/business/seo-cost/

[3] Wix. (n.d.). Free Website Builder | Create a Free Website. Available at: https://

www.wix.com/

[4] Boston Consulting Group. (April 2020). BCG: The real cost of poor website quality.

Available at: https://www.g2.com/products/g2/reviews

[5] Salesforce. (2017). Retail campaign 2017 eBook. Available at: https://

www.salesforce.com/services/professional-services/resources/

[6] Webflow. (n.d.). Create a custom website | Visual website builder. Available at: https://

www.webflow.com/

[7] Squarespace. (n.d.). Website Builder — Create a Website in Minutes. Available at:

https://www.squarespace.com/

[8] Wix. (n.d.). How long does it take to build a website? Available at: https://

www.wix.com/blog/how-long-does-it-take-to-build-a-website

[9] WordPress. (n.d.). Create a Free Website or Blog. Available at: https://wordpress.com/

[10] Weebly. (n.d.). Free Website Builder: Build a Free Website or Online Store. Available

at: https://www.weebly.com/

[11] GitHub. (n.d.). Where the world builds software. Available at: https://github.com/

[12] Notion. (n.d.). Write, plan, share. With AI at your side. Available at: https://

www.notion.so/

FORMAL REPORT - DAVID BOHAN - 20436904 42

https://www.zippia.com/developer-jobs/salary/
https://www.zippia.com/developer-jobs/salary/
https://www.forbes.com/advisor/business/seo-cost/
https://www.forbes.com/advisor/business/seo-cost/
https://www.wix.com/
https://www.wix.com/
https://www.g2.com/products/g2/reviews
https://www.salesforce.com/services/professional-services/resources/
https://www.salesforce.com/services/professional-services/resources/
https://www.webflow.com/
https://www.webflow.com/
https://www.squarespace.com/
https://www.wix.com/blog/how-long-does-it-take-to-build-a-website
https://www.wix.com/blog/how-long-does-it-take-to-build-a-website
https://wordpress.com/
https://www.weebly.com/
https://github.com/
https://www.notion.so/
https://www.notion.so/

[13] Vercel. (n.d.). Next.js by Vercel - The React Framework. Available at: https://

nextjs.org/

[14] Vercel. (n.d.). Develop. Preview. Ship. Available at: https://vercel.com/

[15] Prisma. (n.d.). Prisma - Next-generation Node.js and TypeScript ORM for Databases.

Available at: https://www.prisma.io/

[16] Tailwind Labs. (n.d.). Tailwind CSS - Rapidly build modern websites without ever

leaving your HTML. Available at: https://tailwindcss.com/

[17] Clerk. (n.d.). Clerk - User Management & Authentication for Modern Applications.

Available at: https://clerk.dev/

[18] SaaSCustomDomains. (n.d.). Custom domains and white-labelling for SaaS. Available

at: https://saascustomdomains.com/

[19] Resend. (n.d.). Email for developers. Available at: https://resend.com/

[20] OpenAI. (n.d.). OpenAI. Available at: https://openai.com/

[21] Unsplash. (n.d.). Beautiful Free Images & Pictures. Available at: https://unsplash.com/

[22] Google Developers. (n.d.). Lighthouse performance scoring. Available at: https://

developer.chrome.com/docs/lighthouse/performance/performance-scoring

FORMAL REPORT - DAVID BOHAN - 20436904 43

https://nextjs.org/
https://nextjs.org/
https://vercel.com/
https://www.prisma.io/
https://tailwindcss.com/
https://clerk.dev/
https://saascustomdomains.com/
https://resend.com/
https://openai.com/
https://unsplash.com/
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring

	Table of Contents
	Acknowledgements
	Section One - Introduction
	1.1 Document Outline
	1.2 Project Background
	Figure 1: Website Cost According to Forbes [2]
	1.3 Feasibility Study
	Figure 2: Competitive Landscape
	1.4 Stakeholders
	1.5 Project Management
	Figure 3: Compartmentalisation of Components
	1.6 Technology Choices
	Figure 4: Technology Stack
	Section Two - Requirements
	2.1 Introduction
	2.2 Functional Requirements
	2.3 Non-Functional Requirements
	2.4 UX/UI
	Figure 5: Original Prototype from Webflow
	2.5 Development Considerations
	2.6 Constraints
	Section Three - System Design
	3.1 Introduction
	3.2 Overview
	Figure 6: PixelFlow Framework
	Figure 7: Middleware Workflow
	3.3 Feature One - Landing Page
	Figure 8: Home Route Group
	Figure 9: Acts as the entry point into the application.
	3.4 Feature Two - Authentication
	Figure 10: Auth Route Group - SignIn and SignUp Components
	Figure 11: Clerk Authentication to manage user authentication and session data.
	3.5 Feature Three - Dashboard
	Figure 12: Dashboard Page.tsx
	Figure 13: Dashboard entry point as a new user.
	3.6 Feature Four - Create Site
	Figure 14: Generate Workflow
	Figure 15: Create a website by specifying basic information such as name, description, about and services.
	3.7 Feature Five - Individual Site Route
	Figure 16: The create site function initialises multiple starter pages.
	Figure 17: Service collection also created, provides an improved navigation.
	3.8 Feature Six - Site Settings
	Figure 18: Allows users to associate custom domain names with their website.
	Figure 19: Input SEO-related information such as title tags, descriptions, favicon, open graph to improve their website's visibility in search engine results.
	3.9 Feature Seven - Contact Forms
	Figure 20: Contact Form Workflow
	3.10 Feature Eight - Media Uploads
	Figure 21: Media Assets Workflow
	3.11 Feature Nine - Designer
	Figure 22: Edit the content and design of individual pages, with Drag and Drop components. Add, arrange, and remove components on a page using drag-and-drop functionality.
	Figure 23: The Component Editor enables detailed customisation of individual website components. Can also view changes on different screen sizes, preview changes, save changes and publish changes.
	Figure 24: PageComponents Structure
	Figure 25: Designer Structure
	3.12 Feature Ten - Website Rendering
	Figure 26: Domain Routing Workflow
	Figure 27: Domain Route
	Figure 28: Render Page Component
	Figure 29: Hero Section Rendering
	Section Four - Code Quality
	4.1 Sample Website
	Figure 30: Website Lighthouse Score - SEO, Best Practices, Accessibility and Load Speed
	Figure 31: Sample Website Indexing on Google
	Figure 32: Sample About Page
	4.2 Application Feedback
	Figure 33: Toast Used to Show Errors to the User
	Figure 34: 404 Pages Shown Where Page Does not Exist
	4.3 TypeScript and ESLint
	Section Five - Conclusion
	5.1 Challenges
	5.2 Lessons Learned
	5.3 Future Work
	5.4 Final Conclusion
	Section Six - References

