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Abstract:

We took three parts in this Paper to simulate SSDs and they were as follows (Wear
Leveling, SSD Wear Leveling Simulator, I CACH). The concepts of wear leveling are
illustrated by introducing shortcomings in Flash NANAD memory. The problem with
SSDs is that overwriting can reduce their life because each cell has a limited amount of
erase and write operations. We run a wear leveling simulation in two different memory
cell modes, MLC, which stores two bits in each cell, and CLS, which stores one bit per
cell. With I-CASH, which uses a smart combination of HDD and SSD at the same time.
MLC and CLS are simulated by C++. The results show the life span of different SSD
capacities with different categories of users. The results prove that unlike a hard disk
drive, a solid state drive can benefit from an increased drive size and thus an increased
area of wear settlement.
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Introduction

SSD has an advantage over typical magnetic hard disk drives in several aspects,
including its low power consumption, data transfer and CPU utilization. The main
component of SSD is the Flash NAND memory, which is structured as an array of blocks
ranges from 512 KB to 1MB. In the first part of this report, wear-leveling concepts are
clarified by introducing the shortcomings of Flash NANAD memory. The problem with
SSDs is that the overwrite operation can decrease its lifetime as every cell has limited
amount of erase and write operations. Therefore, Wear leveling is considered as a
solution for the problem of endurance. Moreover, in this part, erase and write operation
and also the needing of garbage collection according to some scientific papers are
provided
In the second section, we run the simulation of wear-leveling in two different memory
cell mode, MLC, which stores two bits in each cell, and CLS i.e. store one bitfor each
cell. Then, we show the results of the lifetime and how the three factors could be
prolonged the SSDs lifetime. These three factors are the capacity size, the available space
for cold-data and the memory cell mode.
In the third section, we present a scientific paper that suggests using I-CASH, which uses
an intelligent combination of HDD and SSD at the same time. The algorithm benefits
from cache memory concepts by identifying a specific reference block. I-CASH approach
can provide high computation power of multi-core processor. As regards to its
performance, three benchmarks are evaluated by running them on difference storage
architecture including I-CASH. In the end, the references of our work are included for
further reading.
First Part: Wear Leveling

We went through several scientific papers about wear leveling, which are attached as
references below. All of them deal with the endurance of the Solis State Drive (SSD),
precisely with Flash NAND memory, which is the main concern faced by SSD.
We have started the topic by reviewing research presentations and shedding light on the
main components of SSD, which include Flash NAND memory, the controller,and
DRAM Buffer. As has been said, SSD has an advantage over typical magnetic hard disk
drives in several aspects, including its low power consumption and non-volatile memory.
“Flash NAND memory is structured as an array of blocks, with 512 k as the typical size,
and each block is sectioned into pages. Wear leveling appears as a solution for the
problem of endurance that is encountered by Flash NAND” (Hsieh & Ma,2010). In other
way, Flash NAND memory is designed as an array of blocks, typically 512KB in size,
and each block is paged. As a solution, the wear leveling of the endurance problem that
Flash NAND faces is shown.
There are threeoperations in SSD: read, write, and delete. Read and write operations are
done in pages while delete operations are done in blocks. The erase (or delete) operation
reduces the lifetime of Flash NAND memory. The write operation can transfer to the
erase and program operations in Flash NAND memory. Write and program operations
perform the same tasks, but use different names. The problem is related to the
write operation. Remember that each block has several pages. Unlike typical HDD,
where one canoverwrite existing data, overwriting existing data cannot be done in SSD; a
block must beerased first before we can rewrite to it. Each block has a limited number of
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times that can be erased. When data is needed to be written to a page and whole pages are
full, an erase operation must be performed. When a few blocks reach their limit, the
whole drive age will be shortened.
Wear leveling technique

Wear leveling is the method or technique of distributing erase operations in an even
way across the whole Flash NAND memory in order to extend the lifetime of the flash by
preventing any block from reaching its limit. Wear leveling is conducted by the flash
transitional layer (FTL), which is embedded software. Address mapping as well as
garbage collection are also performed by FTL. Address mapping maps logical addresses
from operation systems to physical addresses in Flash NAND memory. “Most SSDs
implement garbage collection that maintain a pool of erased blocks” (Shrestha & Xu,
2010).
Cold vs. Hot Data

Data are classified as hot or cold depending on their update frequency. Data with high
update frequency are considered hot, while data with low update frequency is
considered cold. Placement data between blocks is very important for wear leveling. A
physical block is considered to be old or young depending on its erase count, which is the
number of times a block has been erased. Each block is attached by a counter that
maintains the erase count. The block with the minimum erase count has the highest
probability of storing cold data while the block with the maximum erase count has the
highest probability of storing hot data. Typically, wear leveling will transfer cold data to
an old block.
A wear leveling scheme can be proactive or passive, or both. The goal of a proactive
scheme is to put data in suitable blocks; however, in the case of a passive scheme, a data
must be swapped between blocks to avoid early wearing out of the block.
There are three states for each page: clean, valid, and invalid. As we know, each write
operation is preceded by an eraser operation. A page is considered to be clean after it has
been erased and before it is programmed. That means that a clean page is ready to receive
new data. However, a page can be either valid or invalid after programming but before
erasing. This depends on whether programmed data is current or not. If it is current, a
page is considered to be valid; on the other hand, if data is old, a page is considered to be
invalid. When the number of clean pages gets low, garbage collection There are three
states for each page: clean, valid, and invalid. As we know, each write operation is
preceded by an eraser operation. A page is considered to be clean after it has been erased
and before it is programmed. That means that a clean page is ready to receive new data.
However, a page can be either valid or invalid after programming but before erasing. This
depends on whether programmed data is current or not. If it is current, a page is
considered to be valid; on the other hand, if data is old, a page is considered to be invalid.
When the number of clean pages gets low, garbage collection is needed. It reclaims the
pages that are invalid by erasing them.
Erase Strategies

A significant question that must be asked is which block among the all of the blocks
must be chosen to be erased. Two strategies are suggested: random eraser count and
lowest erase count. In random erase count, a block is chosen randomly from a set of
blocks that are currently invalid. However, in the case of lowest erase count, an invalid
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block with the lowest erase count is chosen to be next block to be erased.
Hot-cold swapping aims to equilibrate erase cycles by exchanging hot data in an old
block with cold data in a young block to avoid putting pressure on one block. An
example of this is operating a system file. A system file is usually located in the same
place, without having moved for a long time, except when there is an update. An
advantage can be taken by moving an operating system file to an old block that is
considered exhausted from a highly used erase operation and having that block (the
previous block where the operating system was) reside on the available space for other
files that require frequent updates.
The operating system deals with SSD differently than with HDD due to its internal
hardware components, which are clearly distinct from SSD and HDD. Data can be
requested to be written on a page by an operating system. The operating system is aware
of the logical address where data is kept, but it is not aware of the physical address of the
storage. In the case of HDD, when data is erased, it is not important for the operating
system to inform storage simply because it can overwrite to that location. On the other
hand, in the case of SSD, since overwriting is forbidden, storage must be informed. So
when an operating system writes to a page that is full, it marks that page as invalid and
writes to a new location so the next time that page can be erased, which is performed by
garbage collection.
Second Part: SSD Wear-Leveling Simulator

A simulation was written to determine the length of life of an SSD under various
stress conditions. Two versions were written. The first was modeling based on a
distribution of various sizes of files being written to the SSD in a month period of time.
The second was modeling based on typical user write sizes written to the SSD in a month
period of time for a variety of user types representing a spectrum of use cases. For each
implementation, the span of months of lifetime was measured. It should be noted that the
writes considered in this case were “net-hot-writes”, meaning the net-write quantities that
are temporarily overwritten and then later erased and rewritten. The SSDs were also pre-
filled to certain levels to make simulation results more realistic. This “cold” fill data was
assumed to be permanent, which would represent files that are rarely, if ever, overwritten,
such as operating system files.
Simulation Parameters

SSD drive sizes ranging from 8GB to 1TB were simulated in multiples of two in terms
of drive size up to the maximum. The block size for each SSD drive was assumedto be
1MB. For each drive size, various levels of “cold-fill” data were utilized in increments of
1/8 of the total drive space up to half of the drive space. This was to indicate the dramatic
loss of lifetime from overfilling an SSD. SLC and MLC type drives were considered with
a parameter controlling the maximum number of individual block writes until failure,
which was determined as 100,000 and 10,000, respectively, for the two cell types. For the
first simulation implementation, small, medium, and large files were considered based on
their sizes and quantities of monthly writes. For the second simulation implementation,
four classes of users (home light, home heavy, office, and enterprise) were considered in
terms of their monthly write quantities. It should be noted that the values chosen for these
write quantities were only for comparative and illustrative purposes and do not represent
a broad-spectrum of real-world data. The lifetimes of SSD drives were considered for a
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period of 240 months (20 years) at which point it was determined that the SSD would
have an almost certain probability of replacement based on technological advancement.
Simulation Operation

The simulation allocates a large enough block of memory to represent the number of
writes to each block of the largest potential drive size, which in this case was 1 TB.
For the first simulation, monthly writes were performed based on the number and size of
each file type. During each write operation, the number of block writes performed on the
newly-overwritten cells was checked against the appropriate threshold for the drive’s cell
technology. If this threshold was exceed, it was determined that the drive had failed and
the number of months of lifespan and the parameters considered were then written to an
output log. All drive statistics, time passage counters, and other internal counters are then
reset and then next set of parameters are initialized. This allows both simulation
implementations the ability to generate large cross-sections of data without the need for
manual intervention.
Simulation Findings

The figures on the next several pages show the results and findings from executing
the simulation implementations. It was necessary to make various parameter adjustments
to assure a strong cross-section of results were found. Obvious patterns can be witnessed
due to the uniform application of data writes and the consistent increase of drive sizes.
The lifetime limitations and benefits of increased drive size are clearly evident in the
figures below.
Considerations

Based on the information gathered, it was evident that SSD lifetimes are in fact quite
limited, especially compared with traditional magnetic HDD alternatives. The figures in
the next several pages illustrate our findings and provide evident indications of SSD
limitations. Unlike HDDs, SSDs benefit in performance and lifetime from larger drive
capacities. The performance effect is in that new writes do not run into the problem of
needing erasure before writing if the drive is large enough to allow for adequate “pre-
erased” space, which is a matter of effective garbage collection. SSDs operate on a bit of
a contradiction in that it is necessary to minimize write operations to maintain drive
writability, which implies writing permanent “cold” files that are frequently accessed
while at the same to maximizing available space on the SSD to allow effective wear-
leveling. This makes SSDs fundamentally better as specialized caches or a type of “deep”
storage than as general-purpose mass storage.
The ideal files to write to an SSD are files that are rarely-written and frequently-
accessed. Specifically, application files (executables) and code library files are well-
suited to this purpose. This means that SSDs function excellently as “pre-instruction-
fetch” caches, meaning that an SSD is capable of quickly serving fetched applications
that in-turn are used to serve fetched instructions once in memory. Additionally, “red
hot” writes with no level of permanency, such as internet browser cache files, make
excellent candidates for SSD storage. Although they are written almost constantly during
browsing, these files have such short lifespans that they are quickly erased before the
SSD’s wear-leveling mechanism comes back around to reuse their space. Thus, while
they contribute to write-counts, they are not responsible for the artificial shrinkage of the
drive witnessed with files that are permanently or semi-permanently stored. The
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simulation results that we gathered demonstrated the proof of concept of SSD lifetimes
and gave insight into the types of considerations that need to be taken in designing and
deploying SSds. Overall, our Simulation efforts provided excellent insight into
the benefits of large-capacity SSDs and the comparative lifetimes of SSDs under
variousparameters and usage conditions.

Simulation Results
1. Single Level Cell (SLC).
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2. Multi Level Cell (MLC).
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Results of Single Level Cell (SLC) in Graph:
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Figure 1. The results of simulation of SLC Memory cell mode

Results of Multi Level Cell (MLC) in Graph:
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Analysis of SLC and MLC results

The results show that SSD could be benefited from increased drive size and thus
increased its lifetime. As we notice in Figure 1 and 2, SSD lifetime would decrease when
the cold-data is getting higher percentage (fill percentage). The third observation is if the
SSD applies SLC mode, lifetime would be higher from 2-18 times as shown in Figure 3
and this variation is based on its fill percentage (cold-data) and its capacity size.
In the following graph, a comparison of results of Multi Level Cell (MLC) and Single
Level Cell (SLC) i.e. the results shows the result of the division of SLC over MLC.

Fill Percentage

20

18 -——8GB
e ———
12 - — ———— - -=32GB
-; 10 —— ‘\ -64GB
E 8 e 128GB
= S ~—256GB

2 512GB

Figure 3 Comparison of the results of SLC and MLC

Third Part: I-CASH

Although the total amount of stored information that a storage device can hold and the
CPU processing power have increased rapidly and noticeably, data bandwidth and access
times of disk I/O systems have not increased as rapidly. Therefore, there is a big
difference between CPU speed and disk 1/0 system speed. Even though using disk arrays
improve 1/0 throughput, involving mechanical operations increases highly random access
latency.

One of the new ideas for enhancing disk 1/0 performance is to create cooperation
between using the advancement of a Solid State Disk (SSD) and multi-core processors.
Therefore, I1-CASH is used because it creates intelligent cooperation between a Solid
State Disk (SSD) and a Hard Disk Drive (HDD). Thus, using I-CASH offers some
significant features:

1.  Read performance is very fast when using a Solid State Disk (SSD).

2. Sequential and durable write performance when using a Hard Disk Drive (HDD).

3. High computation power of multi-core processor.

Technically, “Intelligently Coupled Array of SSD and HDD (I-CASH) is a new disk
I/0O architecture composed of an array of a flash memory Solid State disk (SSD) and a
Hard Disk Drive (HDD) that are intelligently coupled by a special algorithm”
[Yang&Ren,2001]. Architecturally, each storage element in the I-CASH consists of
an SSD and an HDD, which are intelligently coupled by an algorithm. SSD stores a
block that rarely changes and reads reference blocks, which are stored in SSD.
Nonetheless, HDD stores a log of deltas of data block 1/Os that are currently accessed
with its corresponding reference blocks.
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I-CASH Architecture:

The I-CACH architecture includes the hybrid of SSD and HDD coupled by
an algorithm. Data could be stored horizontally in SSD and HDD. SSD stores read data,
called reference blocks, while HDD stores delta blocks, a log of deltas, as shown in
Figure 1. A delta is the difference between and the “reference block stored in the SSD
and the data block of an active disk I/O operation” [Yang & Ren,2001]. In an I/O write,
as shown in Figure 1b, I-CASH computes the delta by selecting the corresponding
reference block. With regard to 1/0O read, the combination of the delta and its
corresponding reference block would be returned as a data block, as shown in Figure 1c.
The deltas are stored in compact form since their size is small, as the data blocks’
regularity and applying the content locality and therefore, one HDD operation.

HOST HOST
\ Write - Read
\ . P
[-CASH Controller |-CASH |-CASH
$SD Disk Ref é Refe.qt Ax
[ SSD Disk SsSD Disk

Reference Delta
(a) (b) (c)
Figure 4. Block diagram of the I-CASH architecture.

results many 1/0Os. The algorithm here avoids the traditional seek-rotation-transfer 1/0
operations on HDD, which cost tens of milliseconds, and rather, it involvesmainly SSD
reads and computations that take tens of microseconds. I-CACH architecture can
provide high-speed “read performance of reference blocks stored in SSDs. Moreover, it
can pack a large number of small deltas in one delta block stored in
HDD”’[Yang&Ren,2001]. This delta block can be also be cached in the RAM.
Furthermore, the results of the SSD and HDD integration show higher CPU performance.
I-CASH Implementation:

This new technology could be implemented in the following two ways:

Hardware

-CASH architecture is embedded inside the controller board of the Host Bus
Adaptor (HBA) or Hard Disk Drive (HDD). As we see in the figure below, the controller
board contains the following components:

1. A NAND-Gate Flash SSD that is used to store reference blocks.

2. An embedded processor that performs patches derivation, similarity detection,and
combing delta with reference blocks.

3. RAM stores delta and data blocks for current 1/0 operations.

4. Interfaces that are connected to the host system or HDD.
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Thus, from the above explanation, we can state that I-CASH performance is very nice,
especially when we compare it with the second method of implementation because |-
CASH is implemented inside the disk controller. Nevertheless, the main disadvantage for
hardware implementation is that this hardware needs to be built.

HOST

HOST to Disk -

Ciorumection L 3

I:c:-ntrnll.:rl HOST Interface |
*

Flash Embedded

1IE Pl -‘_—[ Processocr AR
*

I HID Interface J

Contraller o HDOD

Connection
HDD

Figure 5-CASH’sHardware

Software:-

In this method of implementation, the entire software is running on the host CPU. In
addition, the system RAM contributes as a temporal buffer for delta (patches) with data
blocks. This method of implementation affects the system’s resources, including the
RAM,CPU, and system bus. Furthermore, as we know, some operating systems require
specific conditions or special requirement for software.

Reference Blocks Selection:

The main point in I-CASH is how to choose and identify reference blocks. Keeping
track of two significant factors could make selecting reference blocks easy. The first
factor is to keep track of access frequency. The second factor is to keep track of the
content signature of a data block. In order to implement these factors, the following must
be done:

o Each block is divided into S sub blocks.

o Each of the S sub blocks has its own a sub signature.

o There is a special two-dimensional array called a Heatmap.

The relationship between the sub blocks and the Heatmap is as follows:

When a block is accessed with a sub block signature, the popularity is increased
immediately. Therefore, we can see in the below picture that when a block is accessed
with a sub block signature 55, then the popularity in the Heatmap is increased by 1(i++).
In addition, when a block is accessed with a sub block signature00, then the popularity is
increased by 1(j++). Therefore, by this method,a reference block can be easily identified
(Agrawal,prabhakaram,Ted,John,Mark&Rina,2008).

Hint: The popularity value of a data block is the sum of all its sub block popularity
values in the Heatmap.
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Heatmap[0][256]

Signature 00 55 FF
= | 85 [—*
i= 00 Popularity PP I I
=)
i Heatmap[1][256]
s 1.
E Signature 00 |..|.. |..|FF
é Popularity | j++ | ... | ...
e
Bl | ssssssssss  ssssessass
& Heatmap[7][256]
P Signature |00 | .. | .. | .. |FF
Popularity

Figure 6 Sub-signatures with Heatmap

Next, we will explain the idea of reference selection and the algorithm of Heatmap. We
want to use another example to illustrate this more clearly. Therefore, let us assume
that each block is divided into two sub blocks. Therefore, each sub signature has only
four possible values. All possible content of the sub blocks are A, B, C, and D and their
corresponding signatures are a, b, ¢, and d, respectively. The Heatmap, then, is as
follows:

Table 1 Hlustration of Heatmap Array

I/O Sequence Content Signature Heatmap [0] Heatmap[1]
abecd abocd

0000 0000

LBA1 A B ab 1000 0100
LBA2 CD cd 1010 0101
LBA3 A D ad 2010 0102
LBA4 B D bd 2110 0103

We can find the popularity of all blocks, as follows:

Table 2 Results of Popularity

Content Popularity

A B 2+ 1=3
CD 1+ 3=4
A D 2 + 3=5
B D 1+ 3=4

Therefore, the most popular block is the data block at address LBA3 with content (A,D)
and its popularity is 5. Thus, block (A,D) should be chosen as the reference block.
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Performance:

Two servers, a primary server and a workload generator, are interconnected by a
gigabit Ethernet switch. The first one is a Dell PowerEdge T410 with 1.8GHz Xeon CPU,
8GB RAM, 160G Seagate SATA drive, and 80GB SLC SSD. The second is a Dell
Precision 690 with 1.6 GHz Xeon CPU, 2GB RAM, and 400GB Seagate SATA drive.
Both servers have Ubuntu 9.19 64 bit as an operating system with Ubuntu 8.10, Ubuntu
10.04, and Windows 2003 installed on a virtual machine to execute benchmarks. Based
on these benchmarks, virtual machine RAM size would range from 128MB to 512MB
(Yang&Ren,2001).

The I-CASH storage includes the Fusion-io ioDrive 80GB SLC SSD and Seagate SATA
drivel60GB HDD. Fusion-io, RAIDO, DeDUP, and LRU are installed on the same
hardware environment. The Fusion-io is using the Fusion-io io-Drive 80GB SLC
without using HDD, while RAIDO will use 4 SATA disks and Linux MD is installed on
the virtual machine as a RAID controller. The third one is the data deduplication (DeDup)
which is used for identical blocks (i.e., stored on one copy of data in SSD). As to LRU,
SSD would be used as an LRU cache above the SATA disk drive. DeDup, LRU, and I-
CACH would use the same amount of SSD space (i.e., 10% of the size of data set).
The performance is evaluated based on workloads that are available for the research
community, as shown in Table 1.

Table 3 Benchmarks used in performance evaluation

Name Description

SysBench Database server workload
TPC-C OLTP benchmark
SPEC sfs NFS file server

Three benchmarks

The SysBench benchmark, measures the capability of a system to run a database under an
intensive load. TPC-C simulates the execution of distributed and online transactions,
such as insert, delete, and update, on databases in multiple warehouses. The third
benchmark is SPEC-sfs, which measures the performance of an CIFS or NFS file server
(e.g., LOOKUP, READ, WRITE, CREATE). In the following table, the characteristics of
each benchmark are represented.

Table 4 Characteristics of benchmarks.
#ofRead #ofWrite Avg.Read  Avg.Write  DataSize VMRAM

Len Len
SysBench 619K 236K 6656B 76808 960MB 256MB
TPC-C 339K 156K 133128 107528 1.2GB 256MB
SPEC-sfs 64K 715K 61448 174088 10GB 512MB
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SysBench is running on the five storage architectures. For I-CACH, LRU, and DeDup,
128MB SSD space is allocated, while RAIDO and FusionlO are stored in HDD. The
result of the experiment is shown in the following figure.
Analysis of the benchmarks results

It can be seen that I-CASH is faster than FusionlO although FusionlO uses only
SSD while LRU and DeDup have better performance than RAIDO due to the data
locality. Also, the figure shows I-CASH is faster than RAIDO, LRU, and DeDup by
2.24x, at 9% and 18%, respectively.

SysBench transaction rate

WI--CASH =LRU Dedup = RAID FusionlO

190
180
175 161

Transactions per sec

Figure 7 SysBench transaction rate

In Figure 3, the running of SysBench can also be measured by the average response times
for read and write 1/0s. Figure 3 shows different response times for write and read 1/0s
in five different architectures. It can be seen that Fusion-io average read time is double
of that of I-CASH, while the I-CASH average write time is more than 10 times faster
of that of Fusion-io.

Response time of SysBench.

FusionIO RAID "Dedup "LR " I-CASH

<} 75 )
Response Time for 106 1156
Write (s) ,‘;'7) 122
435
Response Time for ?7' 192
Read ( us) 3
18
Figure 8. Response time of SysBench
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With regard to TPC-C, in Figure 4, I-CASH can perform more transactions per minute
than Fusion-io and RAIDO by 14% and 45%, respectively.

TPC-C transaction rate
"I-CASH ¥"LRU "Dedup “RAID " FusionlO

58 50 49 51

Transactions per sec

Figure 9. TPC-C transaction rate

In addition, I-CASH has better performance in terms of the application level
response time by 64% over Fusion-io and 81% compared to RAIDO, as shown in
Figure 5.

Response time of TPC-C

FusionlO Dedup™ RAID ™ LRU ™ |I-CASH

Jes

),

12
7.1
2.8

Figure 10. Response time of TPC-C

Figure 6 plots the measured response time while running SPEC-sfs benchmark. I- CASH
is configured to use 1GB SSD with 128MB RAM delta buffer. From this figure, we can
see that I-CASH performs as well as Fusion-io while using only one-tenth of the SSD
space. As shown in Table 4, SPEC-sfs is a write-intensive benchmark. For the DeDup
cache, changing a block that is shared by several other, identical blocks results in a new
copy of data so that write performance is slowed down. The reduction of the response
time of I-CASH over DeDup is 28% because I-CASH is able to exploit the content
similarity between the new data and the old data to store only the changed data in small
deltas.

With regard to the SPEC-sfs benchmark, although I-CASH uses only one-tenth of SSD,
SPEC-sfs performs the same as Fusion-io, as shown in Figure 6. Also, I- CASH has
better response time than DeDup and LRU by 28%.
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SPEC Response Time
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Figure 11. SPEC Response Time

Finally, Figure 7 shows the measurement of the number of write I/Os on SSD for I-
CASH, LRU, DeDup, and Fusion-io. The less write 1/Os requests there are, the more
the SSD lifetime can be prolonged. We can see that for SysBench, I-CASH would
reduce write requests compared to Fusion, DeDup, and LRU by 73%, 83%, and 84%,
respectively; for the TPC-C benchmark, the result would be 69%, 81%, and 82%
compared to Fusion-io, DeDup, and LRU. In the last benchmark, SPEC-sfs, the
reduction of write requests when using I-CASH rather than other storage system
storage is relatively seldom (i.e., write 1/Os requests can be reduced by 11%, 8%, and 7%
of Fusion-io, DeDup, and LRU , respectively).

Write requests on 55D

7,000,000
£,000,000
5,000,000
4,000,000

5,000,000

2,000,000 il ™ - p
Fusion-io DeDup LRU —CASH

1,000,000 253,700 1,419,03 1,468,373 332,453
=o 1,173,749 1,963, 2,051,51 358,413

Figure 12. Write requests on SSD

Conclusion

The number of erase operations that performed on a block limits the lifetime of a SSD.
So, wear leveling is one of the significant algorithms that are used to prolong the SDD
lifetime by distributing erase operations evenly across all blocks.
SSD Wear-leveling concept for both types of memory cell i.e. MLC and CLS, is
simulated by C++ The results show the lifetime of different SSD capacity size with
different categories of users. The results prove that unlike HDD, SSD can benefit from
increased drive size and thus increased wear-leveling space. Another factor can decrease
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the SSD lifetime, is the less amount of free space, lifetime becomes less. Moreover, the
results show SLC memory cell can increase the life time ranges from 2- 18 times based
on the free space of SSDs (hot-data) and its size.

After that we talked about I-CASH exploits the high random access speed of flash
memory SSDs. Intelligently, the new disk 1/0O architecture of I-CASH are coupled an
array of SSD and HDD. So, I-CASH tries to take full advantages of SSD and HDD. So,
the first advantage is to take the advantage of SSD that is a high random access speed.
The second main advantage is high computing power of multi-core processor.

The third significant advantage is reliable and durable write performance of HDD.
Essentially, read 1/Os are done mostly in SSD and write 1/0Os are done in HDD. As we
mentioned in our report that I-CASH has a special algorithm for similarity detection.

References:

Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., & Panigrahy, R.
(2008). Design Tradeoffs for {SSD} Performance. In 2008 USENIX Annual Technical
Conference (USENIX ATC 08).

Dirik, C., & Jacob, B. (2009). The Performance of PC Solid-- State Disks (SSDs) as a
Function of Bandwidth, Concurrency, Device Architecture, and System Organization. In
2009 ISCA Proceedings of the 36th annual international symposium on Computer
architecture (PP. 279-289). Association for Computing Machinery.

Hsieh, W. K., & Ma, H. P. (2010, April). Conditional threshold wear-leveling algorithm
for multi-channel NAND flash memory. In Proceedings of 2010 International
Symposium on VLSI Design, Automation and Test (pp. 147-150). IEEE.

Liu, H., Nie, H., Liu, Q., Xie, Q., Li, M., & Xu, H. (2012, July). A Group-Based Hybrid
Wear-Leveling Algorithm for Flash Memory Storage Systems. In2012 Third
International Conference on Digital Manufacturing & Automation (pp. 58-61). IEEE.
Ruemmler, C., & Wilkes, J. (1994). An introduction to disk drive
modeling. Computer, 27(3), 17-28.

Shrestha, M., & Xu, L. (2010, December). A quantitative framework for modeling and
analyzing flash memory wear leveling algorithms. In2010 IEEE Globecom
Workshops (pp. 1836-1840). IEEE.

Wang, C., & Wong, W. F. (2012, June). Observational wear leveling: an efficient
algorithm for flash memory management. In Proceedings of the 49th Annual Design
Automation Conference (pp. 235-242).

Yang, Q., & Ren, J. (2011). I-CASH: Intelligently coupled array of SSD and HDD.
In2011 IEEE 17th International Symposium on High Performance Computer
Architecture (pp. 278-289). IEEE.

181

2022 a5 (3) laall S s3al) (STDJ) Liasl3i€illy aglell elaill dlae
annamaa@azu.edu.ly (ISSN: 2789-9535) Ly — a4ipay — el jfl deals - del il LS



https://dl.acm.org/doi/proceedings/10.1145/1555754
https://dl.acm.org/doi/proceedings/10.1145/1555754

