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Abstract

Lightweight machine learning models are pivotal in detecting Smurf DDoS attacks within
software-defined networks (SDNs), offering an adaptive framework to manage unique traffic
patterns and protocol-specific challenges. This paper systematically reviews lightweight
machine learning models for Smurf DDoS detection in SDNs, analysing studies published
between 2014 and 2025 from ScienceDirect, Web of Science, and Google Scholar. The review
identifies key methodologies such as supervised learning, feature selection, and distributed
detection architectures, emphasising their scalability and real-time applicability. Despite high
reported accuracy levels, challenges persist in computational overhead, latency, and the
standardisation of datasets. A significant gap is evident in protocol-specific detection
approaches, particularly for ICMP-reflective Smurf attacks, which have critical implications
for SDN environments. These gaps highlight the need for specialised, protocol-aware machine
learning techniques that can seamlessly integrate into SDN frameworks. This study
underscores the necessity of addressing existing limitations to enhance detection systems'
efficiency and reliability. Interdisciplinary collaboration and innovative research are essential
to developing robust solutions that cater to the dynamic and evolving nature of network security
threats. Advanced detection models, capable of adapting to diverse conditions, will be
instrumental in reinforcing SDN security and mitigating the impact of Smurf DDoS attacks
effectively. The findings contribute to the ongoing discourse on leveraging machine learning
for intrusion detection, setting the stage for further advancements in the field.

Keywords: Software-defined networks, Smurf ddos attack, Lightweight machine learning,
Intrusion detection systems, Network security

1. Introduction

Software-defined networking (SDN) represents a paradigm shift in modern network
architecture through the separation of the control plane from the data plane. This architectural
decoupling enables centralised control, enhanced programmability, and improved network
agility (Hussain et al., 2022). As a result, SDN has gained significant traction in emerging
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technologies such as 5G, cloud computing, and the Internet of Things (IoT), where dynamic
traffic management and adaptive policy enforcement are essential (Nawaz et al., 2024). The
flexibility and scalability offered by SDN have positioned it as a core enabler in the evolution
of next-generation networks, thereby fostering innovations in various digital domains.
However, despite these advantages, the centralised nature of SDN introduces inherent security
challenges that make it susceptible to a wide range of cyber threats.

Among these threats, Distributed Denial of Service (DDoS) attacks have emerged as a critical
concern due to their potential to incapacitate the SDN controller the central component
responsible for orchestrating network operations. A particularly destructive variant of DDoS is
the Smurf attack, which exploits the Internet Control Message Protocol (ICMP) in conjunction
with IP broadcast mechanisms to launch reflective amplification attacks (Ribeiro et al., 2023).
Attackers employ IP spoofing to generate excessive traffic volumes, resulting in resource
exhaustion of both the controller and forwarding devices and causing severe degradation in
network performance (Hasan et al., 2024). These attack strategies highlight the limitations of
traditional defense mechanisms in dynamic and centralised network environments such as
SDN. Consequently, there is a growing demand for lightweight and intelligent detection
approaches that can provide real-time responsiveness and adaptability beyond the capabilities
of Intrusion Detection Systems (IDS).

Intrusion Detection Systems (IDS) are security mechanisms designed to monitor network
traffic, detect malicious activities, and alert administrators to potential threats. Conventional
IDS, particularly those based on static rules, struggle to address such threats in dynamic SDN
environments (Sebopelo et al., 2021). Their dependence on predefined signatures and lack of
adaptability hinder their effectiveness against evolving and large-scale attacks. In contrast,
Machine Learning (ML) techniques have emerged as promising alternatives, capable of
learning behavioural patterns from both historical and real-time network traffic (Dina &
Manivannan, 2021). These methods support anomaly detection without requiring explicit rule
definitions. Many existing ML-based IDS models, such as Decision Trees, Random Forests,
Support Vector Machines (SVM), and Artificial Neural Networks (ANN), have demonstrated
strong detection capabilities; however, they often impose substantial computational demands,
making them less suitable for real-time detection in resource-constrained SDN environments.
Their high complexity often leads to significant memory consumption, longer training
durations, and latency during detection processes. These limitations reduce their practicality
for real-time deployment in SDN architectures. Lightweight ML models offer a more efficient
solution, featuring streamlined algorithmic designs, reduced model sizes, and faster processing
times. Design techniques such as dimensionality reduction, model pruning, and shallow
network architectures help maintain acceptable detection accuracy while minimising
computational overhead. These properties enhance suitability for latency-sensitive and
resource-constrained SDN deployments. Figure 1 shows the Ngram trends for the present
study.

43



44 Musa et al. /MJISTEM 1 (2025) 42-67

@ Ngrams not found: Smurf DDoS
0.000000350% -
0.000000300% - Software - Defined Networks
0.000000250% -
0.000000200% -
0.000000150% -
0.000000100% -

0.000000050% -
lightweight ML

2014 2015 2016 2017 2018 2019 2020 2021 2022
Figure 1: Ngram trends

The observed Ngram trends provide strong justification for the present study. The graph
demonstrates a consistent rise in academic interest related to SDNs and a parallel, though more
gradual, increase in references to lightweight ML approaches. This trajectory reflects the
growing recognition of the need for scalable and resource-efficient security mechanisms in
modern network infrastructures. However, the complete absence of the term "Smurf DDoS"
from the corpus highlights a critical gap in contemporary scholarly discourse. This lack of
attention to Smurf and ICMP-reflective DDoS attacks, despite their relevance as legacy threats
with renewed significance in SDN contexts, suggests that these specific attack types have not
been adequately explored in recent literature. The omission is particularly significant given that
such attacks can exploit SDN vulnerabilities yet are often overshadowed by more generalised
or volumetric DDoS categories. Similarly, no standard framework currently exists for
comparing lightweight ML techniques specifically aimed at detecting Smurf DDoS attacks
within SDN environments. The existing body of research is fragmented, featuring a wide range
of datasets, evaluation criteria, and experimental methodologies, which complicates
benchmarking and reproducibility.

Accordingly, this systematic literature review addresses the evident gap in current research by
conducting a comprehensive analysis of lightweight machine-learning approaches for detecting
Smurf and ICMP-reflective DDoS attacks in SDNs. It identifies, synthesises, and evaluates
peer-reviewed studies with a focus on balancing detection accuracy and computational
efficiency, assessing real-world deployment readiness, and examining the characteristics of
datasets employed in existing work. The review aims to uncover prevailing trends, highlight
limitations, and outline areas in need of further investigation, thereby contributing to the
advancement of robust and efficient SDN security frameworks. Establishing a consistent
framework for evaluating lightweight ML models will support researchers and network
engineers in designing efficient, scalable, and resilient IDS solutions. These insights are
expected to contribute meaningfully to the development of robust SDN security mechanisms
against persistent DDoS threats.
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1.1 Research Objectives

This systematic review aims to critically examine and synthesise existing research on
lightweight machine learning models developed for the detection of Smurf DDoS attacks
within SDN environments. Specifically, the study seeks to:

1. Identify and categorise lightweight machine learning models proposed for the detection
of Smurf DDoS attacks in SDN environments.

2. Examine the features, datasets, and evaluation metrics commonly employed in these
studies.

3. Analyse how the reviewed models achieve a balance between detection accuracy,
computational efficiency, and deployment feasibility.

4. Highlight the main limitations, research gaps, and potential directions for future
investigation within the existing literature.

2. Methodology

This systematic literature review (SLR) was conducted using a structured and reproducible
approach aimed at identifying, evaluating, and synthesising existing research on lightweight
machine learning models for Smurf DDoS attack detection in SDNs. The methodology follows
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, ensuring transparency, replicability, and academic rigour.

2.1 Information Sources and Search Strategy

A comprehensive and systematic search was conducted across five major academic databases:
ScienceDirect, Web of Science, and Google Scholar. The search strategy involved the use of
carefully constructed Boolean operators (AND, OR), combining relevant keywords to
maximise retrieval of pertinent literature. The primary search string was: ("Smurf attack" OR
"Smurf DDoS") AND ("Software Defined Network" OR "SDN") AND ("machine learning"
OR "ML") AND ("lightweight" OR "efficient" OR "low complexity") AND ("intrusion
detection" OR "attack detection"). Synonyms and alternative phrasings were incorporated
where necessary to ensure broad coverage and inclusivity of diverse terminologies used across
studies. To enhance the quality and relevance of the results, filters were applied to restrict the
search to peer-reviewed articles published in English between January 2015 and 1% June 2025.
The search results were exported to Mendeley- Reference Management Software (Version
1.19.8) for deduplication and further screening. The details of the search strategy, including the
specific search strings used for each database, were documented to ensure transparency and
reproducibility of the systematic review process.

2.2 Inclusion and Exclusion Criteria

The selection of studies for this systematic literature review was guided by a clearly defined
set of inclusion and exclusion criteria designed to ensure methodological rigour and thematic
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relevance. Studies were included to determine whether they explicitly addressed the detection
or mitigation of Smurf attacks or closely related ICMP-based DDoS attacks within SDN
environments. Eligible research was further required to employ lightweight or resource-
efficient machine-learning techniques. Only peer-reviewed publications, including journal
articles, conference papers, and book chapters, were considered. To maintain linguistic
consistency and contemporary relevance, only studies published in English between 2015 and
2025 were included.

Exclusion criteria were applied to eliminate studies that did not meet the scope or quality
thresholds of the review. Specifically, research focusing solely on general DDoS detection
without reference to Smurf or ICMP-based variants was excluded, as were studies relying
exclusively on traditional (non-machine learning) methods. Articles that lacked
implementation or evaluation in an SDN context were also removed from consideration.
Additionally, non-peer-reviewed sources such as whitepapers, theses, technical reports, or blog
posts were excluded. These criteria were systematically applied during the screening and
eligibility assessment phases to ensure that the final selection comprised only high-quality,
contextually relevant studies.

2.3 Study Selection Process

The study selection process followed a structured, multi-stage approach to ensure the relevance
and quality of the included literature, encompassing the definition of the study scope and
keywords, systematic literature search, critical assessment of selected studies, and the
interpretation and synthesis of findings, as illustrated in Figure 2.
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Figure 2: Study Selection Process

Each phase of the selection process was documented using a Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) flow diagram to ensure a strict and
organised approach (Mustapha et al., 2024b), as shown in Figure 3.

All studies matching the predefined search criteria were retrieved from the selected digital
databases. This initial identification phase was followed by a screening process, during which
duplicate records were removed, and the remaining titles and abstracts were reviewed to
eliminate clearly irrelevant studies. Full-text articles were assessed in detail to verify their
compliance with the established inclusion criteria. The final stage involved the inclusion of
studies that satisfied all methodological and thematic quality thresholds for the review.
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2.5 Quality Assessment

A structured quality assessment checklist guided the evaluation of methodological rigour and
relevance in the selected studies using Microsoft Excel. Key criteria included clarity of research
objectives and methodology, justification and suitability of the machine learning models
employed, availability of implementation details and datasets, as well as transparency in
performance evaluation and reported metrics. Each study received a quality rating of High,
Medium, or Low based on these factors (Mustapha et al., 2024a). Studies rated as High (80-
100%) clearly articulate their research objectives and methodology, provide appropriate
justification for the selection of machine learning models, offer sufficient details regarding
implementation and datasets, and transparently report performance results with comprehensive
metrics. Those classified as Medium (60-79%) generally present clear objectives and
methodology but lack adequate detail in one or more areas, such as model justification,
availability of datasets, or transparency in performance evaluation. The studies were retained
for inclusion in the synthesis and discussion, ensuring that only rigorously conducted and
relevant research contributed to the review's findings. Studies assessed as Low (0-59%) exhibit
unclear or poorly defined objectives and methodology, provide insufficient or vague
information about implementation and datasets, and/or fail to report performance metrics
adequately. These studies were excluded from the synthesis and discussion. Table 1 shows the
quality assessment criteria.

Table 1: Quality Assessment Criteria

S/ Study Design | ML Model | Performance Implementatio | Transparency | Quality of
N and Justificatio | Evaluation n Details and | and Reporting
Methodology | n and | and Metrics Dataset Reproducibilit | and

Suitability Availability y Presentatio
n
1. Clarity of | Relevance Appropriatenes | Availability and | Transparency in | Clarity and
research and s of evaluation | accessibility of | methodology completenes
objectives and | justification | metrics and | datasets used and model | s of result
alignment with | for chosen | methods training process | presentation
study goals ML
model(s)
il. Robustness of | Suitability Validity  and | Description of | Reproducibility | Proper
methodologica | of ML | reliability  of | implementation | based on | interpretatio
1 approach model  for | performance process and | available n and
SDN-based | results experimental information discussion of
Smurf attack setup findings
detection
iii. | Validity of | Innovation Consideration Documentation | Disclosure of | Use of
data collection | or novelty in | of of pre- | tools, platforms, | visualisation
and analysis | ML model | computational | processing, and ] and
techniques application efficiency and | feature hyperparameter | structured
scalability selection, etc. S reporting of
results
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2.6 Data Extraction and Synthesis

Information from the selected studies was systematically extracted using a structured coding
form designed to ensure consistency and completeness. Extracted data included publication
metadata (such as authorship, year), specific machine learning algorithms employed, such as
decision tree, random forest, support vector machine, and the lightweight strategies applied
(such as model pruning and feature selection). Additionally, dataset characteristics and
experimental setup details were recorded. The study's accuracy was collected to enable
quantitative comparison. The form also captured reported advantages, trade-offs, and
limitations to provide a comprehensive view of each approach.

The synthesis of findings employed both quantitative and qualitative methods. Quantitative
data were organised into comparative tables to facilitate direct evaluation of model
effectiveness and efficiency across studies. Qualitative analysis involves a thematic
examination to identify recurring patterns, emerging research trends, and gaps within the
current literature. This dual approach allowed for a thorough exploration of each research
question and provided a clear overview of the state of lightweight machine learning techniques
for Smurf DDoS detection in SDN.
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Figure 3: PRISMA flow diagram

The PRISMA flow diagram illustrates the systematic process followed in identifying and
selecting studies for inclusion in the review. Initially, 1,814 records were identified through
database searches: 1,777 from Web of Science, 2 from Science Direct, and 35 from Google
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Scholar. Following the removal of 35 duplicate records, 1,779 unique records were screened.
During the screening phase, 1,627 records were excluded, including 5 with zero citations. Of
the remaining 152 full-text articles assessed for eligibility, 124 were excluded for various
reasons: 75 did not report or measure the key outcomes of interest, 39 had inappropriate study
designs such as editorials, commentaries, or preprints, and 10 were not published in English.
Ultimately, 28 studies met the inclusion criteria and were incorporated into the final analysis.

3. Results

Recent advances in SDN security research have increasingly focused on machine learning and
deep learning techniques for detecting DDoS attacks, demonstrating high accuracy across
diverse datasets and architectures. However, significant gaps persist in developing lightweight,
protocol-specific detection methods tailored to ICMP-based amplification attacks, such as
Smurf floods. Most existing studies prioritise generalised detection capabilities and high
accuracy, often relying on computationally intensive models optimised for Transmission
Control Protocol (TCP) or application-layer threats while neglecting the unique traffic patterns
of ICMP-reflective attacks. Furthermore, many solutions do not adequately evaluate scalability
or real-time deployment feasibility in resource-constrained SDN environments, which are
common in the Internet of Things (IoT) and edge computing contexts where processing power
and memory are limited. This study addresses these critical gaps through a systematic review
of lightweight machine learning approaches specifically designed for detecting Smurf and
ICMP-reflective DDoS attacks in SDNs. Its contribution lies in providing a focused analysis
of efficient, protocol-aware defense mechanisms, which remain underexplored in current
research, thereby offering valuable insights toward practical and scalable security solutions for
modern SDN deployments. Table 2 shows the summary of the selected studies.
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Table 2: Selected Studies

approaches

scenarios

Author(s) ML Model Lightweight Dataset Used Accuracy SDN Context Findings Research Gap / Journal
(Year) Strategy (%) Justification Quartile
Sendil & | Decision  Tree | Fast inference, | Custom SDN | 99.9 Ryu controller | High accuracy with | No  focus on | Q2
Rajagopalan (DT) SDN dataset (real-time low FAR; fast | specific DDoS
(2024) programmability SDN) execution  suitable | types like Smurf or
for real-time use ICMP-reflective
Kavitha & | ML (unspecified) | Distributed Custom dataset 99.99 [IoT-SDN Robust detection in | No protocol-level | Q2
Ramalakshmi detection in IoT- multi- I0T-SDN using ML; | analysis; not
(2024) SDN controller handles optimised for
infrastructure layer | lightweight
threats constraints
Hirsi et al. | Random Forest Custom  dataset, | Custom + | 98.97 Centralised Accurate traffic | No Smurf/ICMP- | Q2
(2024) scalable CICDDo0S2019 SDN classification using | specific focus;
classification Random Forest; new | lightweight
SDN-specific performance not
dataset prioritised
Santos-Neto et | Hybrid ML + | Entropy thresholds | DARPA + real | >99 Mininet + | ML improves | Still Q2
al. (2024) entropy via ML traffic hybrid SDN threshold precision; | computationally
faster convergence | intensive;  lacks
vs SVM/RF protocol-targeted
detection
Kapourchali et | ML (unspecified) | In-switch (P4) | Custom P4 traffic | Not available | P4-based SDN | Reduced controller | Focuses on HTTP | Q1
al. (2024) detection CPU overhead and | slow rate, not
detection delay with | Smurf or ICMP-
in-switch ML reflective attacks
Gadallah et al., | AE-BGRU (DL) | Layered feature | Custom dataset 99.91% SDN control + | DL model detects | Uses heavy DL | Q1
(2024) selection data planes both control- and | architecture;  no
data-plane  attacks | ICMP or Smurf-
with custom features | specific insight
Yoon & Kim | Attention (DCA, | Selective attention | Virtual  testbed | Outperforms | ONOS + | Novel DCA model | Does not explore | QI
(2024) DL) (ONOS) DLs Mininet improves detection | lightweight ML or
over existing DL | ICMP-reflective

Received October 27, 2025

Accepted December 31, 2025




ISSN: 3121-6552

https://doi.org/10.5281/zenodo.18153223

Alietal. (2023) | ML/DL (Review) | Comparative Multiple datasets | Not available | Broad  SDN | Provides taxonomy | Does not focus on | Q1
analysis review of ML/DL DDoS | lightweight or
strategies in SDN protocol-level
threats
Setitra et al.,, | MLP-CNN SHAP + Bayesian | CICDDoS-2019, | 99.98 SDN Strong detection | Model complexity | Q3
(2023) tuning InSDN controller layer | performance; useful | is not ideal for
SHAP explanations | lightweight
deployment
Mohammadi et | ML (unspecified) | Traffic pattern | Custom SDN | Not available | Ryu controller | Detected HTTP | Focuses on | Q2
al. (2023) analysis testbed flood; reduced | application layer;
bandwidth and | not relevant to
forwarding rule load | ICMP-based
DDoS
Ko etal. (2023) | Random Forest Permutation Kaggle (84- 1 99.97 General SDN | High accuracy using | No low-resource | Q1
feature selection feature) top 20 features; | or Smurf/ICMP-
reduced complexity | specific evaluation
Maetal. (2023) | Random Forest Edge-based CICDDoS-2019 99.99 Edge-SDN Fast and accurate | No Ql
parallel computing detection using edge | ICMP/reflective
CPU attack distinction;
focus on
infrastructure
Bahashwan et | ML/DL/Hybrid Literature Mixed Not available | Broad  SDN | Summarised ML/DL | No model | Q2
al. (2023) (Review) synthesis review trends; highlighted | proposed;
SDN DDoS gaps Smurf/ICMP-
reflective  attacks
not addressed
Fu & Zou, | Decision  Tree | Conditional Custom dataset High SDN Used entropy for | Lack of evaluation | N/A
(2023) (C4.5) entropy filtering (unspecified) | architecture pre-classification; under Smurf or
improved ICMP conditions
performance
Nawaz et al. | Deep Neural | Feature Custom + 1 99.80 SDN control- | High accuracy using | Not suitable for | N/A
(2023) Network correlation, epoch | advanced datasets data deep features; good | real-time or low-
tuning generalisation resource
constraints
Ussatova et al. | Various (RF, | Feature selection + | Custom 22- 1 99-100 SDN Balanced  models | No specific | N/A
(2022) XGBoost, etc.) SMOTE feature simulation performed best with | consideration for
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decision-tree Smurf or ICMP-
families flood detection
Wang & Wang, | CNN + ELM Lightweight DL | Custom SDN | 95.24 Real-time Achieved good | Doesn't  address | Q2
(2022) hybrid dataset SDN defense latency and | protocol-level
detection results | threats
using hybrid DL (Smurf/ICMP)
Yungaicela- DL + DRL Flow sampling + | Mininet + Apache | 98 (IDS), 100 | SDN testbed Detected and | Not tested for | QI
Naula et al., modular IPS (IPS) mitigated slow-rate | Smurf/reflective
(2022) DDoS; strong IPS | volumetric DDoS
component
Wang (2022) CNN + ELM Online DL hybrid | Real-time SDN | High Centralised Same as Liping, | No ICMP or | Q2
data SDN achieved effective | Smurf-specific
detection focus
Tang et al., | ML (unspecified) | PF framework | Custom LDoS | 96.00 LDoS in SDN | Framework Not applicable to | Q1
(2022) (OpenFlow) traffic mitigated low-rate | ICMP or Smurf
TCP attacks with | DDoS types
low system cost
Kaur & Gupta, | Tuned SVM Six-tuple Custom SDN data | 98.00 OpenFlow Good accuracy and | No evidence of | Q3
(2022) optimisation SDN tuning; suitable for | ICMP pattern
early detection detection or
lightweight
benchmarking
Cui et al. | ML + thresholds | Taxonomy (46 | Theoretical Not available | Broad  SDN | Detailed No ICMP or real- | Q1
(2021) (Review) techniques) classification categorisation of | time model
detection techniques | analysis included
Ahuja et al. | Hybrid SVC + | Novel SDN- | Custom SDN | 98.80 Custom Achieved low FAR | Doesn't  address | QI
(2021) RF specific features dataset topology with high accuracy Smurf or ICMP
variants
Karthika & | Deep  learning | Unsupervised Simulated Not available | DL in SDN Reviews No concrete | Q3
Karmel, (2021) | (unspecified) feature extraction | Mininet unsupervised DL in | evaluation; lacks
SDN attack-specific
discussion
Perez-Diaz et | J48, RF, MLP, | Modular detection | CIC DoS dataset | 95 ONOS + | Identified and | No link to | Q2
al. (2020) SVM, among Mininet mitigated LDoS reflective ICMP-
others based threats
Dong & Sarem | Improved KNN + | Custom classifier | Not available Not available | SDN traffic Proposed  degree- | Not validated for | Q2
(2020) DDoS degree logic based method for | Smurf/ICMP
DDoS scenarios
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Polat et al. | KNN, SVM, NB, | Wrapper feature | Custom SDN | 98.30 SDN with | KNN +  feature | Doesn't  address | Q3
(2020) ANN selection dataset overloaded selection ~ worked | inference latency
controller well for accuracy or ICMP flood
types
Swami et al. | Survey (no | SDN self-defense | Theoretical Not available | SDN General SDN | No empirical | Q1
(2019) model) discussion architecture security review testing, no D
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3.1 Selected Studies Features
3.1.1 Publication Year Distribution

The analysis of the reviewed literature concerning ML approaches for DDoS detection in SDNs
reveals a notable surge in scholarly activity, especially between 2022 and 2024. Among the 28
examined studies, 15 appeared during this period, reflecting an active and evolving research
domain. However, specific applications of lightweight ML strategies targeting emerging and
protocol-specific DDoS threats, such as Smurf and ICMP-reflective attacks, remain
insufficiently explored. This highlights the necessity and timeliness of conducting a focused,
systematic review. Figure 4 shows the annual publication.

Count
H

01 L 4 L L &

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 4: Annual Publication
3.1.2 Machine Learning Model Diversity

Regarding ML model categories, a diverse array emerges. Deep learning methodologies,
including Convolutional Neural Networks (CNN) and Autoencoder Bidirectional Gated
Recurrent Units (AE-BGRU), appear most frequently, featured in six studies. Random Forest
and Decision Tree algorithms also demonstrate significant prevalence. Nonetheless, five
studies employed generalised or unspecified ML models, and three were survey or review
articles without proposing novel models. Such heterogeneity indicates a lack of consensus and
standardised methodologies, particularly in relation to lightweight models optimised for the
constraints inherent in SDN environments and reflective DDoS attack detection. Figure 5
shows ML model diversity.
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Figure 5: Machine Learning Model Diversity
3.1.3 Adoption of Lightweight Strategies

In terms of lightweight strategies, a minority of studies explicitly implemented feature selection
techniques, fast inference mechanisms, or distributed in-switch detection. Thirteen out of 28
studies neither specified nor applied any dedicated lightweight strategy. This gap underscores
the ongoing challenge of balancing computational efficiency and detection performance, which
represents a critical requirement for real-time deployment within resource-constrained SDN
architectures. Figure 6 shows the lightweight strategy.

No/lightweight strategy unspecified

Distributed / in-switch detection (P4)

Entropy/pre-filtering

Lightweight Strategy

Fast inference / online / real-time

|
Hybrid lightweight DL | N

[

[

I

I

Feature selection (SHAP, wrapper)

o
N
S
[e)]
(o]
=
o
=
N
=
N

Figure 6: Lightweight Strategy
3.1.4 Dataset Variability and Standardisation Issues

Datasets used across the studies exhibit considerable variability. Custom datasets predominate,
appearing in 13 papers, followed by established benchmarks such as CICDDoS and virtual
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testbeds like Mininet. The diversity and fragmentation of datasets complicate direct
comparison and benchmarking efforts. Additionally, most studies did not focus explicitly on
Smurf or ICMP-reflective DDoS attack datasets, indicating a pressing demand for more
targeted and standardised data resources. Figure 7 shows the dataset used.

Mixed / theoretical | NN

Kaggle
DARPA / real traffic

Mininet / virtual testbed

Dataset Type

CICDDoS or CIC DoS

O
O
I
I
Custom datasets |

0 2 4 6 8 10 12 14

Number

Figure 7: Dataset Used

3.1.5 Accuracy Reporting and Evaluation Consistency

The reported accuracy metrics are generally high, with over one-third of the studies achieving
detection accuracies equal to or exceeding 99%. Nonetheless, eight studies lacked accuracy
values, reflecting inconsistencies in evaluation reporting. This variability hinders
comprehensive assessment of trade-offs between accuracy and computational complexity, a
crucial consideration for the practical adoption of lightweight ML models within SDN contexts.
Figure 8 shows the accuracy level.

Not available / N/A

High (unspecified)

Accuracy Level

99% and above

12

o
N
SN
[e)]
(o]
S

Number

Figure 8: Accuracy Level
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3.1.6 SDN Deployment Contexts

Regarding SDN operational environments, the majority of studies concentrated on centralised
controller architectures such as Ryu and ONOS (12 studies), with fewer investigations into
distributed or in-switch detection paradigms. Given the architectural vulnerability of SDN
controllers against volumetric DDoS attacks, including Smurf variants, exploring lightweight
detection mechanisms deployed at multiple network points remains imperative. Figure 9 shows
the SND deployment context.

General SDN (simulated, testbed) _
Broad / theoretical / review _

In-switch / P4-based -

SDN Type

Distributed (loT, Edge, Multi-controller) -

Centraized SON (rye, onos) |

0 2 4 6 8 10 12 14

Number

Figure 9: SDN Deployment Context
3.1.7. Quality and Dissemination of Research

Journal quartile distribution reveals that most studies published in the first and second quartile
(Q1 and Q2) journals reflect high-quality research. Nevertheless, this observation also indicates
an ongoing need for rigorous investigation and wider dissemination of findings, especially
concerning lightweight ML models and protocol-specific attack types. Figure 10 shows the
journal quartile.
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3.1.8 Identified Research Gaps and Limitations

A critical analysis of the reviewed literature reveals notable research gaps that substantiate the
need for targeted investigation. Specifically, the detection of Smurf and ICMP-reflective DDoS
attacks remains markedly underexplored, with 14 studies explicitly acknowledging this
limitation. Furthermore, eight studies report inadequate consideration of lightweight or
resource-constrained implementations, which are an essential requirement for real-time
deployment in SDN environments. Additional limitations include the absence of protocol-
specific analysis and evaluations concerning detection latency, both of which are pivotal for
assessing the operational viability of proposed models. Although detection accuracy is
consistently prioritised across studies, comparatively few investigations examine aspects such
as real-time performance, hybrid model optimisation, or enhancements in controller efficiency.
This disproportionate focus suggests that practical deployment challenges related to
computational overhead and system responsiveness remain insufficiently addressed. These
observed deficiencies underscore the necessity of a systematic review centered on lightweight
machine learning techniques explicitly designed for the detection of Smurf and ICMP-
reflective DDoS attacks within SDN architectures. Figure 11 shows the research gaps/
limitations.

No new model proposed (review papers)

No protocol-level or latency evaluation

Focused on other DDoS types (Such as,
HTTP)

Research Gap

Lacks lightweight/low-resource focus _

No Smurf or ICMP/reflective detection

Figure 11: Research Gaps / Limitations

3.2 Research Objective 1: Proposed lightweight machine learning models for
detecting Smurf DDoS attacks in SDN environments

The existing body of literature reveals a significant gap in the development of ML models
explicitly designed for the detection of Smurf DDoS attacks within SDN environments.
Numerous studies have proposed ML-based methods for detecting general DDoS threats.
However, none of the reviewed works directly address the distinctive characteristics of Smurf
attacks, particularly the exploitation of ICMP echo requests sent to broadcast addresses using
spoofed source IPs to achieve amplification and network disruption (CERT, 1998).
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Nonetheless, certain ML approaches exhibit indirect relevance through their focus on low-rate
or reflective attack behaviours. Notably, models that emphasise protocol-layer traffic features
or analyse temporal anomalies such as packet inter-arrival time variations and irregular control
plane utilisation may be inherently capable of identifying Smurf-type activity, even if not
explicitly validated for this use case. For instance, decision tree-based classifiers presented by
Sendil & Rajagopalan (2024) and Ussatova et al. (2022) and in-switch detection frameworks
utilising programmable data planes, such as those proposed by Kapourchali et al. (2024), show
promise in this regard. Figure 12 illustrates the conceptual differences between Smurf attacks
and other volumetric or low-rate DDoS methods in SDN topologies. In the Smurf scenario, an
attacker transmits ICMP echo requests to a network's broadcast address while spoofing the
victim's IP address. As a result, all hosts on the network reply to the spoofed IP, creating a
significant amplification effect. In contrast, traditional volumetric DDoS attacks, such as
TCP/UDP floods, typically originate directly from malicious hosts and target either the SDN
controller or data plane devices without leveraging broadcast mechanisms.

Host 1

legi ‘\J:Zcho Reply

ICMP Echo Request y

| Smurf Attacker I (broadcast) Switch 1 |

\
\
o
------ b W,

Host 2 f------- EchoReply ! Spoofed Victim IP |
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l DDoS Attacker i TCPIUDPFlood | gyitcn 3 |

Figure 12: Smurf Attack vs Other DDoS in SDN Topology

The conceptual diagram illustrates the flow of legitimate and malicious traffic within SDN
topology, emphasising how Smurf and other DDoS attacks exploit network components. The
layout follows a left-to-right structure, beginning with three hosts, Host 1, Host 2, and Host 3,
each connected respectively to Switch 1, Switch 2, and Switch 3 via legitimate green-labeled
paths. These switches represent the data plane; a central SDN controller connects to Switch 2,
issuing control instructions that govern traffic handling across the network. A Smurf attacker
sends an ICMP Echo Request with a spoofed victim IP address to Switch 1, targeting the
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broadcast domain. As a result, all three hosts reply with ICMP Echo Replies, which are
forwarded toward the spoofed victim IP, producing an amplification effect characteristic of
Smurf attacks. These reply paths are marked with red dashed arrows, showing how benign
hosts unwittingly contribute to overwhelming the victim.

Conversely, a DDoS attacker on the right initiates a TCP/UDP volumetric flood directed
specifically at Switch 3, simulating traditional resource-exhaustion attacks. This distinction
helps highlight the protocol-level differences between reflective Smurf attacks and direct-
volume attacks. The SDN controller's involvement in governing Switch 2 through OpenFlow
rules underscores the centralised control capabilities and vulnerabilities of SDN architecture.
This visual distinction reinforces the need for lightweight and protocol-aware detection
mechanisms in SDN environments to address both reflective and volumetric DDoS threats
effectively.

3.3 Research Objective 2: Features, datasets, and evaluation metrics are
commonly used in these studies

The reviewed studies consistently prioritise traffic features that reflect control-plane activity
and flow-level behaviours. Commonly used input features include packet size, destination IP
entropy, packet inter-arrival time, flow duration, and protocol type. A few studies, such as those
by Fu & Zou, (2023) and Gadallah et al. (2024), introduce additional features specific to SDN
environments, including switch-buffer size, unknown destination rates, and custom transport
layer headers.

Regarding feature selection, methods such as Information Gain, F-test, and Chi-square
statistics are widely employed to reduce dimensionality and improve model interpretability.
Feature importance analysis, particularly via SHAP or permutation-based methods, has also
been applied in recent works such as Ko et al. (2023) and Setitra et al. (2023).

In terms of datasets, the CICDDo0S2019 dataset is the most frequently utilised benchmark
across empirical evaluations. A limited number of studies generate custom datasets using SDN
emulation platforms such as Mininet or ONOS (Ma et al., 2023; Sendil Vadivu & Rajagopalan,
2024). However, none of the examined datasets include synthetic or real Smurf-type attacks,
which restricts the applicability of conclusions regarding ICMP-reflective detection.

Evaluation metrics predominantly include classification accuracy, precision, recall, and F1-
score. A smaller number of studies also report inference time, false alarm rate, and system
resource consumption, especially those asserting lightweight characteristics. Figure 13 shows
the heatmap illustrating metric performance distribution across the reviewed literature. (1 =
reported, 0 = not reported)
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Figure 13: heatmap illustrating metric performance distribution across the reviewed literature

3.4 Research Objective 3: Reviewed models balance detection accuracy with
computational efficiency and deployment feasibility.

High classification accuracy is consistently reported across studies, with many models
achieving performance above 98 percent. However, claims regarding computational efficiency
and real-time feasibility are less frequently substantiated. Only a limited number of studies
report explicit metrics on inference time or controller resource utilisation. For example, the
work by Ma et al., (2023) indicate that their edge-deployed model achieved predictions within
0.4 seconds. The study by Kapourchali et al., (2024) reports significant reductions in bandwidth
and CPU consumption due to the use of P4-based in-switch detection. Although these efforts
indicate progress, most studies still employ deep learning architectures (such as DNNs or GRU-
based models) that inherently involve significant computational overhead. These include the
AE-BGRU model by Gadallah et al. (2024) and the attention-based DCA model by Yoon &
Kim, (2024), both of which prioritise detection capability over lightweight performance.

Models that utilise shallow classifiers, including decision trees and random forests, tend to
provide better alignment with lightweight deployment objectives (Ko et al., 2023; Sendil &
Rajagopalan, 2024). However, systematic trade-off analyses comparing detection performance
with inference time or memory footprint are largely absent across the reviewed literature. The
Figure shows scatterplot mapping models by accuracy versus efficiency (such as inference time
or computational cost), which would substantially enhance understanding in this section. This
helps distinguish high-performing lightweight models from deep models requiring substantial
resources (Figure 14).
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Figure 14: Accuracy vs Efficiency of SDN DDoS Detection Models

3.5 Research Objective 4: Main limitations, gaps, and future opportunities
identified in the literature

Multiple limitations are recurrent across the reviewed studies. First, there is a critical lack of
research explicitly targeting Smurf or ICMP-reflective DDoS detection in SDN environments.
Although some models demonstrate a technical capacity for low-rate detection, the absence of
protocol-specific evaluation restricts their applicability to this class of attacks. Second, no
standardised benchmarking framework exists for assessing the lightweight nature of proposed
models. Although some studies claim real-time capability, many omit key metrics such as
memory usage, CPU load, and power efficiency, which are particularly relevant for edge- or
controller-level deployment in SDN. Third, the generalizability of most reviewed models
remains limited due to the overreliance on a small number of datasets. Many studies use
CICDDo0S2019 or generate isolated synthetic data without modeling realistic SDN traffic
scenarios, reflective amplification, or complex mixed-attack strategies. Fourth, there is an
underutilisation of adaptive or reinforcement learning techniques that could provide continuous
learning in dynamic SDN environments. Only one study incorporates deep reinforcement
learning for slow-rate DDoS mitigation (Yungaicela-Naula et al., 2022).

Figure 15 shows a conceptual roadmap that outlines these research gaps and maps them to
potential future opportunities that would clarify this section's implications for both researchers
and practitioners.
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Figure 15: Conceptual roadmap

4. Conclusions and Future Work

This systematic review demonstrates that substantial advancements have been made in the
application of machine learning techniques for DDoS detection in SDNs; however, the specific
detection of Smurf and ICMP-reflective attacks remains significantly underrepresented in
current literature. Lightweight models such as decision trees, Naive Bayes, and optimised
ensemble methods exhibit considerable potential, particularly when integrated with feature
selection techniques and hybrid architectures. Despite this progress, the adoption of these
models in practical SDN environments is constrained by limitations, including inadequate data
availability, the absence of protocol-specific datasets, insufficient benchmarking of lightweight
strategies, and minimal attention to deployment metrics such as inference latency and controller
resource consumption. Standardised evaluation frameworks capable of supporting meaningful
cross-study comparisons are also lacking, which hampers the development of scalable and
deployable solutions. Addressing these challenges requires focused research on ICMP-specific
datasets, unified performance evaluation protocols, and the design of adaptive, resource-
efficient detection systems that can operate effectively within dynamic SDN contexts. Such
advancements will significantly strengthen the ability of SDN infrastructures to detect and
mitigate Smurf-type threats.

Future work should therefore focus on:

1. Designing Smurf/ICMP-specific datasets that accurately simulate reflective attacks
within SDN topologies.

2. Developing standardised evaluation frameworks that balance detection accuracy with
runtime efficiency and deployment feasibility.

3. Exploring lightweight, incremental, or edge-deployable learning models to
accommodate real-time detection needs.
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4. Investigating cross-layer data fusion that leverages both control and data plane metrics
for enhanced detection fidelity.

Conflict of Interest

The authors do not have conflict of intrest.

Author Contributions

Musa Asmau Mamah: Conceptualization, Methodology, Data curation, Formal analysis,
Investigation, Writing — original draft. V. O. Waziri: Conceptualization, Supervision,
Validation, Writing — review & editing. S. Ahmed: Methodology, Data curation, Investigation,
Writing — review & editing. Noel M. D: Investigation, Visualization, Synthesis of findings,
Writing — review & editing.

Funding

No funding received for this study.

Acknowledgments

The authors sincerely acknowledge all researchers whose articles were selected and analysed
in this study. Their scholarly contributions provided the foundation for this systematic review
and significantly enriched the insights presented. The authors also appreciate the support and
academic environment provided by the Department of Cyber Security Science, Federal
University of Technology, Minna, Nigeria.

Ethical Statements

This study relied solely on previously published literature and did not involve human
participants or animals; therefore, ethical approval was not required.

Data and Code Availability

All data used in this study were obtained from publicly available sources, and no new datasets
or custom code were generated during the course of the research.

References

Ahuja, N., Singal, G., Mukhopadhyay, D., & Kumar, N. (2021). Automated DDOS attack
detection in software defined networking. Journal of Network and Computer
Applications, 187. https://doi.org/10.1016/j.jnca.2021.103108

Ali, T. E., Chong, Y. W., & Manickam, S. (2023). Machine Learning Techniques to Detect a
DDoS Attack in SDN: A Systematic Review. Applied Sciences (Switzerland), 13(5).
https://doi.org/10.3390/app13053183

Bahashwan, A. A., Anbar, M., Manickam, S., Al-Amiedy, T. A., Aladaileh, M. A., &
Hasbullah, I. H. (2023). A Systematic Literature Review on Machine Learning and Deep



ISSN: 3121-6552 https://doi.org/10.5281/zenodo.18153223

Learning Approaches for Detecting DDoS Attacks in Software-Defined Networking.
Sensors, 23(9). https://doi.org/10.3390/s23094441

Cui, Y., Qian, Q., Guo, C., Shen, G., Tian, Y., Xing, H., & Yan, L. (2021). Towards DDoS
detection mechanisms in Software-Defined Networking. Journal of Network and
Computer Applications, 190, 103156. https://doi.org/10.1016/j.jnca.2021.103156

Dina, A. S., & Manivannan, D. (2021). Intrusion detection based on Machine Learning
techniques in computer networks. [Internet of Things (Netherlands), 16.
https://doi.org/10.1016/;.10t.2021.100462

Dong, S., & Sarem, M. (2020). DDoS Attack Detection Method Based on Improved KNN with
the Degree of DDoS Attack in Software-Defined Networks. IEEE Access, 8, 5039—5048.
https://doi.org/10.1109/ACCESS.2019.2963077

Fu, Y., & Zou, D. (2023). A DDoS attack detection method based on conditional entropy and
decision tree in SDN. Chongging Daxue Xuebao/Journal of Chongqing University, 46(7),
1-8. https://doi.org/10.11835/j.issn.1000.582X.2023.07.001

Gadallah, W. G., Ibrahim, H. M., & Omar, N. M. (2024). A deep learning technique to detect
distributed denial of service attacks in software-defined networks. Computers and
Security, 137. https://doi.org/10.1016/j.cose.2023.103588

Hasan, A., Igbal, T., Naseer, M., Sarwar, N., Ali, A., & Shabir, M. (2024). Advanced Detection
and Mitigation of Smurf Attacks Using Al and SDN. 2024 International Conference on
Decision Aid Sciences and Applications, DASA 2024.
https://doi.org/10.1109/DASA63652.2024.10836590

Hirsi, A., Audah, L., Salh, A., Alhartomi, M. A., & Ahmed, S. (2024). Detecting DDoS Threats
using Supervised Machine Learning for Traffic Classification in Software Defined
Networking. IEEE Access, 12, 166675-166702.
https://doi.org/10.1109/ACCESS.2024.3486034

Hussain, M., Shah, N., Amin, R., Alshamrani, S. S., Alotaibi, A., & Raza, S. M. (2022).
Software-Defined Networking: Categories, Analysis, and Future Directions. Sensors,
22(15). https://doi.org/10.3390/s22155551

Kapourchali, R. F., Mohammadi, R., & Nassiri, M. (2024). P4httpGuard: detection and
prevention of slow-rate DDoS attacks using machine learning techniques in P4 switch.
Cluster Computing, 27(6), 8047-8064. https://doi.org/10.1007/s10586-024-04407-5

Karthika, P., & Karmel, A. (2021). Analysis of Different Attacks on Software Defined Network
and Approaches to Mitigate using Intelligent Techniques. International Journal of
Advanced Computer Science and Applications, 12(9), 338-348.
https://doi.org/10.14569/1IJACSA.2021.0120938

Kaur, G., & Gupta, P. (2022). A robust tuned classifier-based distributed denial of service
attacks detection for quality of service enhancement in software-defined network. Journal
of Intelligent and Fuzzy Systems, 43(3), 2693-2710. https://doi.org/10.3233/JIFS-212946

Kavitha, D., & Ramalakshmi, R. (2024). Machine learning-based DDOS attack detection and
mitigation in SDNs for [oT environments. Journal of the Franklin Institute, 361(17).
https://doi.org/10.1016/j.jfranklin.2024.107197

65



66 Musa et al. /MJISTEM 1 (2025) 42-67

Ko, K. M., Baek, J. M., Seo, B. S., & Lee, W. B. (2023). Comparative Study of Al-Enabled
DDoS Detection Technologies in SDN. Applied Sciences (Switzerland), 13(17).
https://doi.org/10.3390/app 13179488

Ma, R., Wang, Q., Bu, X., & Chen, X. (2023). Real-Time Detection of DDoS Attacks Based
on Random Forest in SDN. Applied Sciences (Switzerland), 13(13).
https://doi.org/10.3390/app 13137872

Mohammadi, R., Lal, C., & Conti, M. (2023). HTTPScout: A Machine Learning based
Countermeasure for HTTP Flood Attacks in SDN. International Journal of Information
Security, 22(2), 367-379. https://doi.org/10.1007/s10207-022-00641-3

Mustapha, A., Abdul-Rani, A. M., Saad, N., & Mustapha, M. (2024a). Advancements in traffic
simulation for enhanced road safety: A review. Simulation Modelling Practice and
Theory, 137. https://doi.org/10.1016/j.simpat.2024.103017

Mustapha, A., Abdul-Rani, A. M., Saad, N., & Mustapha, M. (2024b). Ergonomic principles
of road signs comprehension: A literature review. Tramnsportation Research Part F:
Traffic Psychology and Behaviour, 101(May 2023), 279-305.
https://doi.org/10.1016/j.tr£.2023.12.020

Nawaz, G., Junaid, M., Akhunzada, A., Gani, A., Nawazish, S., Yaqub, A., Ahmed, A., & Ajab,
H. (2023). Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network.
Computers, Materials and Continua, 77(2), 2157-2178.
https://doi.org/10.32604/cmc.2023.026952

Nawaz, H., Ali, M. A, Rai, S. 1., & Maqgsood, M. (2024). Comparative Analysis of Cloud based
SDN and NFV in 5g Networks. The Asian Bulletin of Big Data Management, 4(1).
https://doi.org/10.62019/abbdm.v4il.114

Perez-Diaz, J. A., Valdovinos, 1. A., Choo, K. K. R., & Zhu, D. (2020). A Flexible SDN-Based
Architecture for Identifying and Mitigating Low-Rate DDoS Attacks Using Machine
Learning. IEEE Access, 8, 155859-155872.
https://doi.org/10.1109/ACCESS.2020.3019330

Polat, H., Polat, O., & Cetin, A. (2020). Detecting DDoS attacks in software-defined networks
through feature selection methods and machine learning models. Sustainability
(Switzerland), 12(3). https://doi.org/10.3390/su12031035

Ribeiro, M. A., Pereira Fonseca, M. S., & de Santi, J. (2023). Detecting and mitigating DDoS
attacks with moving target defense approach based on automated flow classification in
SDN networks. Computers and Security, 134. https://doi.org/10.1016/j.cose.2023.103462

Santos-Neto, M. J., Bordim, J. L., Alchieri, E. A. P., & Ishikawa, E. (2024). DDoS attack
detection in SDN: Enhancing entropy-based detection with machine learning.

Concurrency  and  Computation:  Practice  and  Experience, 36(11).
https://doi.org/10.1002/cpe.8021

Sebopelo, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2021). A Review of Intrusion
Detection Techniques in the SDN Environment. 2021 3rd International Multidisciplinary
Information  Technology  and  Engineering  Conference, IMITEC  2021.
https://doi.org/10.1109/IMITEC52926.2021.9714581



ISSN: 3121-6552 https://doi.org/10.5281/zenodo.18153223

Sendil Vadivu, D., & Rajagopalan, N. (2024). RyuGuard—Combining Ryu and machine
learning for proactive DDoS defense in software-defined networks. Concurrency and
Computation: Practice and Experience, 36(28). https://doi.org/10.1002/cpe.8289

Setitra, M. A., Fan, M., Agbley, B. L. Y., & Bensalem, Z. E. A. (2023). Optimized MLP-CNN
Model to Enhance Detecting DDoS Attacks in SDN Environment. Network, 3(4), 538—
562. https://doi.org/10.3390/network3040024

Swami, R., Dave, M., & Ranga, V. (2019). Software-defined Networking-based DDoS Defense
Mechanisms. ACM Computing Surveys, 52(2). https://doi.org/10.1145/3301614

Tang, D., Yan, Y., Zhang, S., Chen, J., & Qin, Z. (2022). Performance and Features: Mitigating
the Low-Rate TCP-Targeted DoS Attack via SDN. IEEE Journal on Selected Areas in
Communications, 40(1), 428—444. https://doi.org/10.1109/JSAC.2021.3126053

Ussatova, O., Zhumabekova, A., Begimbayeva, Y., Matson, E. T., & Ussatov, N. (2022).
Comprehensive DDoS Attack Classification Using Machine Learning Algorithms.
Computers, Materials and Continua, 73(1), 577-594.
https://doi.org/10.32604/cmc.2022.026552

Wang, J., & Wang, L. (2022). SDN-Defend: A Lightweight Online Attack Detection and
Mitigation  System  for DDoS  Attacks in  SDN.  Sensors, 22(21).
https://doi.org/10.3390/s22218287

Yoon, N., & Kim, H. (2024). Detecting DDoS based on attention mechanism for Software-
Defined Networks. Journal of Network and Computer Applications, 230.
https://doi.org/10.1016/j.jnca.2024.103928

Yungaicela-Naula, N. M., Vargas-Rosales, C., Pérez-Diaz, J. A., & Carrera, D. F. (2022). A
flexible SDN-based framework for slow-rate DDoS attack mitigation by using deep

reinforcement learning. Journal of Network and Computer Applications, 205.
https://doi.org/10.1016/j.jnca.2022.103444

67



