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Abstract

Distributed Denial of Service (DDoS) attacks continue to pose a serious and evolving threat to
the stability, availability, and reliability of network systems. With the rapid growth of Internet-
of-Things (IoT) devices, cloud infrastructures, and software-defined networks (SDN), the scale
and sophistication of DDoS attacks have also grown significantly. Traditional detection
methods often struggle to cope with high-dimensional traffic data, redundant attributes, and the
nonlinear interactions inherent in modern attack patterns. These limitations result in reduced
detection accuracy, susceptibility to false alarms, and poor generalization across diverse attack
types. To mitigate these cyber threats, this research work on an approach that integrates
Autoencoders (AE), the Whale Optimization Algorithm (WOA), and Extreme Gradient
Boosting (XGBoost). The AE component compresses raw traffic flows into latent feature
representations, capturing nonlinear relationships and reducing noise. However, AE alone
produces a broad feature space (64 features), which includes redundancy and non-informative
attributes. To refine this space, WOA is employed as a metaheuristic feature selector, guided
by a fitness function that balances classification accuracy with feature compactness. This
process reduces the dimensionality to 40 highly discriminative features, ensuring efficiency
without compromising information richness. Finally, XGBoost is applied as the classifier due
to its robustness, scalability, and ability to handle both detection and multi classification of
DDoS attacks. The proposed model was evaluated using CICDD0S2019, which capture diverse
attack scenarios and is widely used in intrusion detection research. Baseline experiments with
AE-XGBoost achieved 98.57%. By contrast, the proposed AE+WOA-XGBoost achieved
99.89% accuracy, 99.96% precision, 99.87% recall, 99.91% F1-score, and an AUC of 1.000,
representing a 1.32% gain over the baseline and near-perfect classification performance.
Beyond raw accuracy, the optimization process reduced computational overhead, improved
generalization, and demonstrated consistent effectiveness across both datasets.
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1. Introduction

The rapid expansion of the internet and interconnected digital systems has significantly
enhanced global communication, business operations, and access to services (Prieto & Duran
Barroso, 2024). However, this growth has also increased exposure to cyber threats. Among the
most disruptive are Distributed Denial of Service (DDoS) attacks, in which attackers
overwhelm a target system with excessive traffic, making it unavailable to legitimate users
(Oubhssini et al., 2024). Such attacks can cause service outages, financial losses, data breaches,
and reputational damage (Ortet et al., 2021). As internet-based services become increasingly
essential, effective and efficient DDoS detection mechanisms are critical.

Traditional detection approaches rely on signature- or rule-based methods (Liu ef al., 2023),
which identify attacks by matching traffic against predefined patterns. These methods are
limited in detecting novel or evolving attacks, as they cannot recognize previously unseen
behaviors (Wei et al., 2021). To address these challenges, machine learning (ML) techniques
have been proposed, offering adaptive and intelligent detection capabilities that can improve
the classification and identification of DDoS attacks (Gebremeskel et al., 2023)

A major difficulty in detecting DDoS attacks lies in accurately differentiating legitimate
network traffic from malicious traffic generated during an attack. The massive volume and
rapid pace of network traffic during a DDoS attack can quickly overload traditional detection
systems, leading to a surge in both false-positive and false-negative results (Can & Ha, 2021).
False positives can lead to normal traffic being mistakenly identified as malicious, which may
disrupt network services or cause unnecessary interruptions. Conversely, false negatives allow
actual attacks to go unnoticed, potentially inflicting serious harm before mitigation measures
are implemented (Xu et al., 2021). Therefore, it is crucial to develop more sophisticated,
adaptive, and real-time detection methods capable of identifying DDoS attacks accurately
while reducing false detection rates.

Machine learning has attracted considerable attention in cybersecurity due to its ability to
analyze large, complex datasets and uncover patterns that are difficult for humans to identify
manually (Hadi et al., 2024; Liu et al., 2023). In DDoS attack detection, supervised learning
models such as Extreme Gradient Boosting (XGBoost) have demonstrated high effectiveness
in classifying network traffic as malicious or benign (Liu ef al., 2023). XGBoost is a scalable
gradient boosting framework that sequentially constructs an ensemble of decision trees, with
each tree aiming to correct the errors of its predecessor (Aratjo et al., 2021). Its strengths
include high predictive accuracy, robustness in high-dimensional feature spaces, and the ability
to handle imbalanced datasets, making it well-suited for network intrusion detection tasks (Liu
etal., 2023)

Despite these advantages, XGBoost depends heavily on manually engineered features derived
from raw network traffic. Such features often require significant domain expertise and may fail
to capture the full complexity of evolving traffic patterns and adversarial behaviors (Ouhssini
et al., 2024; Shaikh et al., 2024). Autoencoders (AEs) provide a promising solution by learning
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compact, meaningful representations directly from data, enabling models to adapt to complex,
non-linear traffic behaviors without relying solely on predefined features (Chen & Guo, 2023).

AEs are neural networks designed for unsupervised learning, compressing input data into a
latent space and reconstructing it to learn efficient representations (Chen & Guo, 2023). In
network traffic analysis, they can capture underlying patterns of normal behavior, producing
latent features suitable for further optimization rather than relying solely on reconstruction
errors for anomaly detection(Ieracitano et al., 2020)

To enhance the relevance and discriminative power of these features, the Whale Optimization
Algorithm (WOA) a nature-inspired metaheuristic based on the bubble-net feeding strategy of
humpback whales (Sihwail et al., 2024; Wang et al., 2024) is employed for feature selection.
WOA has demonstrated effectiveness in complex optimization tasks, including feature
selection and neural network tuning (Liu et al., 2023).. The optimized AE-derived features are
then input into an XGBoost classifier, leveraging its high accuracy, efficiency, and robustness
in high-dimensional spaces. By combining AE for unsupervised feature extraction, WOA for
metaheuristic optimization, and XGBoost for supervised classification, this approach aims to
improve DDoS detection accuracy and generalization against evolving attack patterns.

The main contributions of this work are threefold: (1) it demonstrates the limitations of
standalone AE and other existing models in handling high-dimensional DDoS traffic; (2) it
introduces the integration of WOA into the AE feature space, resulting in a compact and highly
discriminative feature subset; and (3) it validates the proposed hybrid AE-WOA + XGBoost
framework on two benchmark datasets, achieving state-of-the-art results while maintaining
efficiency and interpretability. Collectively, these results highlight the potential of using deep
learning-based feature extraction with metaheuristic optimization to design scalable, adaptive,
and production ready intrusion detection systems capable of mitigating the growing threat of
DDoS attacks.

The remainder of this paper is as follows. Section 2 reviews existing research related to feature
selection and DDoS detection techniques. Section 3 presents the proposed comparative
framework, detailing the feature selection algorithms, classifiers, and the AE+WOA—-XGBoost
hybrid model used. Section IV describes the dataset, preprocessing steps, and the experimental
methodology adopted for evaluation. Section V discusses the results and performance metrics,
highlighting comparative outcomes across models. Finally, Section VI concludes the paper and
outlines future research directions.

2. Literature Review

In this section, the review of related research on Distributed Denial of Service (DDoS) attack
detection techniques and the analysis of the comparative performance of various classification
algorithms explored by other researchers is presented.
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A. Related Literature Based on Deep Learning Approaches

More recently, deep learning and hybrid models have dominated the DDoS detection
landscape. (Panggabean et al., 2024) presented a hybrid architecture that combined Gated
Recurrent Units (GRUs) with Neural Turing Machines (NTMs) to capture both sequential
dependencies and memory-based traffic patterns. Their model demonstrated strong
generalization across datasets such as BoT-IoT and UNSW-NB135, achieving 98.7% accuracy
and 98.1% recall. However, the lack of interpretability and explicit feature optimization limited
its practical applicability. The present study addresses these gaps by incorporating
Autoencoders (AE) for feature extraction and Whale Optimization Algorithm (WOA) for
feature selection, thereby offering both adaptability and interpretability.

Efendi, (2025) proposed a multi-stage framework for DDoS detection that combined DBSCAN
clustering, SMOTE oversampling, Artificial Neural Networks (ANN), XGBoost, and Particle
Swarm Optimization (PSO). In simulated DDoS scenarios, this ensemble achieved 96.83%
accuracy, 93.23% sensitivity, and 96.13% precision, demonstrating strong performance under
controlled conditions. However, model’s complexity introduced notable challenges in terms of
scalability and computational demands, especially for real-time applications. Although the
model delivered competitive accuracy, its multi-layer structure made it resource intensive. In
contrast, the current AE+WOA-XGBoost method enhances this approach by integrating
dimensionality reduction and optimization into a single, streamlined framework, providing
greater efficiency and scalability.

In the same year, Liu et al., (2025) focused on enhancing XGBoost for Named Data
Networking (NDN), specifically targeting Interest Flooding Attacks (IFA) and Cache Pollution
Attacks (CPA). Their modified XGBoost classifier demonstrated strong performance metrics,
including high accuracy and robustness in detecting NDN-specific DDoS attacks. While the
study showcased the adaptability of tree-based models in next-generation networks, it did not
incorporate dimensionality reduction or feature optimization, which limited scalability under
high-dimensional traffic data. In comparison, the present research addresses this gap by
embedding Autoencoders for feature reduction and WOA for optimization, thus improving
computational efficiency without sacrificing detection accuracy.

Alfatemi et al., (2024) proposed a Deep Residual Neural Network (ResNet) with SMOTE to
solve issues related to class imbalance in DDoS datasets. The model achieved 99.98% accuracy
on the CICIDS dataset, showcasing exceptional performance in identifying attack traffic.
Despite its accuracy, the complexity of ResNet architecture led to high computational costs,
rendering the model impractical for real-time deployment in resource-constrained systems. By
contrast, the present study opts for lightweight Autoencoders, which retain the ability to capture
complex traffic patterns while ensuring computational efficiency.

Hacilar et al, (2024) introduced a Deep Autoencoder paired with Artificial Bee Colony
optimization to detect anomalies in DDoS traffic. When evaluated on the UNSW-NBI15
dataset, their framework notably lowered false alarm rates and achieved over 98% accuracy,
highlighting the effectiveness of integrating deep feature extraction with swarm intelligence
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optimization. Nevertheless, the lack of a separate classification component restricted
interpretability and overall scalability. To overcome these limitations, the present study
employs an Autoencoder for feature extraction while incorporating XGBoost for classification,
enabling both strong feature representation and transparent, interpretable decision-making.

B. Related Literature Based on Machine Learning Approaches

Berrios et al., (2025) evaluated several machine learning models, including XGBoost, Random
Forest, and LSTM, on the CIC-DDo0S2019 and N-BaloT datasets. XGBoost achieved the
highest accuracy (over 97%) and F1-scores, outperforming other ensemble approaches, though
no optimization techniques were applied. The current study addresses this limitation by
incorporating WOA for feature refinement.

In Edge-IloT environments, an ensemble-based approach scenarios (Laiq et al., 2023)
demonstrated that XGBoost outperformed traditional classifiers like SVM and Decision Tree
in both accuracy and latency, making it a strong candidate for real-time DDoS detection in
resource-limited settings. However, without deep feature extraction, its performance may
decline when handling more complex traffic patterns.

Varghese & Muniyal, (2021) proposed a real-time statistical anomaly detection system
integrated into the data plane of Software Defined Networking (SDN). Operating as part of an
Intrusion Detection System (IDS), it relies on preset statistical thresholds to detect anomalies.
While capable of near real-time detection, its lack of learning ability limits adaptability to new
or sophisticated DDoS attacks. In contrast, the AE-WOA-XGBoost framework dynamically
learns from evolving traffic patterns, providing improved adaptability and robustness against
previously unseen attack scenario.

Pontes et al., (2021) proposed an Energy-based Flow Classifier (EFC) that utilizes inverse
statistical analysis of benign traffic to assign anomaly scores and classify DDoS attacks. While
achieving a 97.5% F1-score, the model's generalization capacity remains limited as it depends
heavily on the statistical distribution of known traffic types, and key performance metrics were
not comprehensively reported. Compared to AE-WOA—-XGBoost, EFC is less resilient in high-
variability environments due to its static statistical basis, while the proposed hybrid model
offers broader generalizability via data-driven feature learning.

Moustafa & Slay (2017) examined several machine-learning classifiers such as Decision Trees,
Naive Bayes, and SVM for DDoS detection using the UNSW-NBI15 dataset. Although SVM
delivered strong accuracy, its performance deteriorated with high-dimensional feature spaces.
In contrast, our work employs XGBoost, which is well suited for efficiently managing large
and complex feature sets.

Oyelakin, (2024) investigated an ensemble XGBoost model for intrusion detection on the
CICIDS2017 dataset, using processed traffic features and feature selection based on
XGBoost’s internal importance scores. Across eight dataset segments, the model reached about
98% accuracy, with precision, recall, and F1-score all at 0.98, and an AUC-ROC of 0.99—
indicating robust detection capability. Unlike earlier methods that depend on manual or basic
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feature-selection strategies, this study adopted classifier-guided feature reduction but did not
integrate dynamic meta-heuristic optimization. Additionally, it did not explore real-time
operational challenges such as latency or streaming analysis. While the results reinforce
XGBoost’s effectiveness for DDoS detection, our research advances this line of work by
incorporating the Whale Optimization Algorithm to enable automatic, adaptive feature
selection, thereby enhancing generalization and efficiency in real-world environments.

(Kaur et al., 2024) conducted a study on cyberattack detection that focuses on enhancing
Intrusion Detection System performance through feature selection. Their work evaluates
ensemble machine-learning models—including XGBoost, Decision Trees, and Random
Forest—using the NSL-KDD and CICIDS2018 datasets. By refining the feature set, the study
demonstrates improved computational efficiency and reports consistently high accuracy levels
between 98% and 99%, underscoring the strong capability of these methods for intrusion
detection.

C. Related Literature Based on Hybrid Approaches

Wei et al., (2021) introduced AE-MLP, a hybrid deep-learning framework that integrates an
Autoencoder for automated feature extraction with an MLP classifier, achieving strong
performance on the CICDDo0S2019 dataset with an average accuracy of 98.34% and an F1-
score of 98.18%. The model’s effectiveness stems from its ability to learn latent feature
representations without manual intervention and then classify specific DDoS attack categories
such as SYN, UDP, MSSQL, NetBIOS, and LDAP. However, AE-MLP does not include an
intermediate feature-optimization stage; the latent features produced by the Autoencoder are
passed directly to the classifier, which may retain redundant or irrelevant information.
Additionally, its evaluation is limited to CICDD0S2019, raising concerns about overfitting and
the absence of cross-dataset validation (Wei et al., 2021).

Maseer et al., (2021) assessed several classical machine-learning classifiers including KNN,
Naive Bayes, Random Forest, and SVM using the CICDDo0S2017 dataset, reporting high
accuracy results ranging from 98.86% to 99.54%. Despite these strong outcomes, the study
does not provide precision, recall, or F1-score metrics and lacks a multicass analysis, which
may limit interpretability and generalization across different attack types.

Similarly, Ullah & Mahmoud, (2020)) applied Naive Bayes, Logistic Regression, Decision
Tree, and Random Forest models to IoT-focused botnet datasets and achieved near-perfect F1-
scores between 99.99% and 100%. However, the loT-specific nature of the dataset restricts
generalizability to broader network environments, and the absence of separately reported
precision and recall further limits the evaluative depth of the study.

Another study used XGBoost for DDoS detection in an SDN environment with CICDDo0S2019
and achieved 99.9% accuracy. Nonetheless, the study does not report precision, recall, or F1-
scores and is constrained by its SDN-specific scope and the lack of multiclass or attack-type
differentiation Alamri & Thayananthan, (2020). Likewise, Parfenov et al., (2020) evaluated
Gradient Boosting and CatBoost on CICDD0S2019, obtaining F1-scores of 96.8% and 96.9%,
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respectively, but without providing precision or recall values and without conducting
multiclass or real-time testing.

Shieh et al., (2021) combined Bi-directional LSTM with Gaussian Mixture Models for
intrusion detection on the CICDDo0S2019 dataset, achieving 98% accuracy. However,
precision, recall, and F1 scores were not reported, and the study did not consider multiclass
classification or real-time performance. Similarly, (Rehman et al., 2021) proposed using Gated
Recurrent Units (GRU) for IDS on CICDD0S2019, achieving accuracies between 99.69% and
99.94%, yet precision, recall, F1 scores, and multiclass evaluation were not addressed.

Samom et al., (2021) applied a Multi-Layer Perceptron (MLP) for IDS on CICDDo0S2019,
reporting 99.92% accuracy. Like the previous studies, it lacked precision, recall, F1 metrics,
and did not provide attack-type-specific or multiclass results. Niyaz et al., (2015) employed a
Sparse Autoencoder for IDS on the NSL-KDD dataset, attaining 88.39% accuracy, but did not
report other performance metrics; additionally, reliance on an older dataset may reduce
relevance to contemporary threats.

Agarwal et al., (2022) tested their FS-WOA—-DNN approach using a cloud storage dataset,
integrating Whale Optimization Algorithm for feature selection with a Deep Neural Network
for classification. The model achieved 95.35% accuracy, but precision, recall, and F1 scores
were not provided. The absence of validation on public datasets and detailed performance
metrics limits generalizability and benchmarking.

Singh & De, (2017) evaluated an ensemble feature selection method with an MLP classifier on
the CAIDA 2007 dataset, reaching 98.3% accuracy. However, the study did not include
precision, recall, or F1 metrics, relied on an older dataset, and did not conduct multiclass or
real-time testing, restricting its applicability to modern attack scenarios.

Chanu et al., (2023) employ various public benchmark datasets (not individually named) to test
their voting-based hybrid feature selection and MLP-GA classifier, reporting 98.8% accuracy,
0.6% false positive rate, but not precision, recall, or F1 scores. The main limitation is the
absence of detailed per-class metrics and potential overfitting due to lack of cross-dataset
validation.

Zhou et al., (2022) introduce SAFE, tested on datasets including loT traffic, but do not specify
the dataset name. The system achieves high accuracy and efficiency, but precision, recall, and
F1 scores are not provided. Limitations include lack of detailed metric reporting and potential
dataset bias.

Shohan et al., (2024) proposed a live DDoS detection framework using 1D-CNN for feature
extraction and Random Forest and MLP for classification. Their model demonstrated real-time
performance compatibility. However, the absence of metaheuristic tuning is improved upon in
this current research through WOA.

Zhou et al., (2021) worked on a DDoS detection technique that combined AE for feature
reduction and Support Vector Machines for classification. While promising, the SVM model
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lacked scalability for real-time analysis. Our study improves upon this by replacing SVM with
XGBoost, which is both faster and more accurate for large-scale classification tasks.

Wang et al., (2024) proposed a hybrid IDS using metaheuristic optimization (WOA) for feature
selection, paired with deep neural networks. The WOA eftectively reduced redundant features
and improved detection speed and accuracy. However, the model did not leverage any encoder-
based feature extraction, which could further refine performance. By integrating AE and WOA
before classification with XGBoost, the current study seeks to achieve superior feature
engineering and classification performance.

3. Data and Methodology

This study’s phase consists of five stages: input, preprocessing, autoencoder training, feature
optimization with WOA, and optimized feature output, each constituting its own component.
These stages are discussed below in detail.

3.1 Input Layer

In the first stage of this process, the CICDD0S2019 was employed. It contains a sample of 88
features with data types as follows float64 (45), int64 (37) & object (6) and 500 63112 data
points (containing benign and simple service discovery protocol (SSDP) type DDoS attacks.
The details of the dataset are presented in Table 1. Furthermore, it has been validated and used
by numerous researchers. This stage serves as the foundation of the framework and provides
the raw traffic features to the preprocessing stage.

Table 1: Description of the Dataset
Dataset Total number of features Benign Malicious Total
CICDDoS2019 88 113,828 70,313,809 70,427,637

3.2 Data Preprocessing Stage

The data underwent three sequential processes in this stage: data cleaning, transformation, and
preliminary feature engineering.

i. Data Cleaning: Missing values, redundant entries, and inconsistent records were
removed or corrected to improve the quality of the dataset.

ii. Transformation: To ensure that the features were comparable, the dataset was
normalized using a Min-Max Scaler that scaled values between 0 and 1:

X; — min
: A
MinMaxScaler(v;) = ep—— (newmaXA — N€Wpin A) + newmin , (D
A A

where x; represents the i*" feature value, rr}qin and max denote the minimum and maximum
A

values of a feature, while new_max = 1 and new_min = 0.
A A

75



76 Umar et al. /MJSTEM 1 (2026) 68-91

iii. Feature Engineering: Before deep feature learning, irrelevant or constant-value features
were removed to reduce redundancy and computational burden. The preprocessed
dataset was then divided into 80% training and validation and 20% testing for
subsequent modeling.

3.3 Autoencoder (AE) Stage

At this stage, an autoencoder was employed to learn compact, latent feature representations
from the high-dimensional network traffic data.

1. Encoder Operation: The encoder compresses the input data into a lower-
dimensional latent representation:

h = f(WeX + b,) (2)

where W, and b, represent the encoder weights and bias, respectively, and f is the ReLU
activation function.

il. Decoder Operation: The decoder reconstructs the input data from the latent space:
X = g(Wgh + by) 3)
where W, and b, are decoder parameters, and g is the activation function (Sigmoid).

iii. Loss Function: The AE was trained by minimizing reconstruction error using Mean
Squared Error (MSE):

(4)
This stage ensures that the network traffic data is represented in a compressed but information-
rich feature space.

3.4 Whale Optimization Algorithm (WOA) Stage

While AE extracts deep latent features, not all of them contribute equally to detection.
Therefore, the Whale Optimization Algorithm (WOA) was integrated for feature selection and
optimization. WOA mimics the bubble-net hunting strategy of humpback whales, alternating
between exploitation (encircling prey) and exploration (searching for new prey).

1. Encircling Prey: Whales update their positions towards the best feature subset:
Xt+1D)=X"(t)—A-|C-X"(t) — X(t)| (5)

il. Spiral Updating (Bubble-net): With probability p, whales update their position
using:

X(t+1)=D"-eP - cos (2nl) + X*(t) (6)
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where D' = |X*(t) — X(t)|, b is a constant, and [ is a random number in [—1,1].

1il. Fitness Function: The best feature subset was determined by maximizing accuracy
while reducing the number of selected features:

S
Fitness = a - Accuracy —f3 - % (7)

where S is the selected feature subset, F is the full set of features, and «, § are balancing.

The complete workflow, summarized in Algorithm 1, begins with loading the CICDDo0S2019
dataset, which contains 70,313,809 traffic records and 88 features. The raw data undergoes
preprocessing, where all numerical features are normalized to the range [0, 1] to ensure stable
gradient updates, and nonpredictive identifiers are removed The dataset is then partitioned
using a 70% training, 15% validation, and 15% testing split, with stratified sampling applied
to preserve class distributions. To address class imbalance in the dataset, class weighting is
incorporated during XGBoost training to prevent bias toward majority attack categories

In the first stage, an Autoencoder (AE) is configured with an encoder—decoder architecture,
latent dimension, learning rate, and training epochs. The AE is trained in mini-batches, where
each batch is compressed and reconstructed. After exploring several architectures we selected
an AE with one hidden layer of 32 neurons and a 64-dimensional latent bottleneck because this
configuration offered a good trade-off between reconstruction accuracy and compression. The
resulting compressed latent matrix serves as the input to the second stage, where the WOA
performs optimized feature selection (Table 2).

Table 2: AE-WOA for feature selection
Algorithm 1: AE-WOA for feature selection

Input: Input Training data X = {xi, X, ..., X}, Labels Y = {y1, y2, ..., yL.}

Output: Optimized latent feature matrix Z"

Steps
1 Begin
2 Preprocessing: Normalize the input features in X using Min-Max scaling:
Xij — min(xj)
Y= max(x]-) - min(xj)
3 Autoencoder Initialization: Initialize encoder E¢, decoder Dy, latent dimension m,

learning rate o, and number of epochs T’
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3.1 AE Training:
For each mini batch

Encode: z; = E4(x;)
Decode: X; = Dg(z;)

1
Compute loss: Lz = Ez [l; — ;112
Update ¢ and 6 using gradient descent

3.2 Latent Feature Extraction: After AE is trained, obtain latent matrix
Z={E;(x}), ... Es(x)}
4 WOA Initialization:
Set whale population P , number of iterations /, and objective function J(.)
4.1 Feature Optimization (WOA Loop):
For each whale solution S; € {0,1}™
5 Select optimal subset: Choose the best solution

$* = arg max/(S;)

6 Generate Output: Compute optimized features
Z"=710¢8"
7 End:

Return Z* to the classier

In the second stage, the WOA is applied to refine these latent features. Each whale encodes a
binary feature mask representing a candidate subset of the latent space. For every candidate,
the selected features are evaluated using a fitness function based on validation accuracy and
feature sparsity. Through WOA’s spiral bubble-net search process, the population iteratively
explores and improves candidate subsets. The whale with the best fitness value defines the
optimal feature mask, which is applied to the latent matrix to generate the optimized feature
set Z*.

In the final stage, the optimized feature set Z*is fed into the XGBoost classifier for DDoS
detection. Because WOA operates only during the offline optimization phase, the deployed
system requires only the trained encoder and the XGBoost model, ensuring fast inference

suitable for real-time detection environments. Figure 1 shows AE-WOA framework for optimized feature
selection.
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Figure 1: AE-WOA Framework for Optimized Feature Selection
3.5 Detection and Classification Phase with Xgboost

During training, the preprocessed CICDDo0S2019 dataset cleaned of missing values, duplicates,
and irrelevant identifiers is label-encoded and normalized using Min—Max scaling, The dataset
is then partitioned using a 70% training, 15% validation, and 15% testing split, with stratified
sampling applied to preserve class distributions. An Autoencoder (AE) is trained on the 88
input features to learn compact representations, using an encoder—decoder architecture with a
64-dimensional latent space; after training, only the encoder is retained. The Whale
Optimization Algorithm (WOA) is then applied to the latent matrix, where each whale
represents a binary mask over the 64 latent features. Candidate subsets are evaluated using a
fitness function based on validation accuracy and feature sparsity, and through iterative
refinement WOA produces an optimized subset of 40 discriminative features. These selected
features are used to train the XGBoost classifier, incorporating class weighting to address class
imbalance. The final model consisting of the encoder and XGBoost classifier is saved for
deployment. During testing and real-time detection, unseen traffic samples undergo the same
preprocessing and are encoded via the trained encoder; the WOA derived feature mask is
applied to obtain the optimized feature vector, for onward classification task. Table 3 represents
the algorithm of the developed model while Figure 2 shows the overall framework and each
phase explained below.
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Table 3: AE-WOA+XGBoost Algorithm

Pseudocode: AE-WOA-XGBoost for DDoS Detection and Classification

Input

Output

Phasel
Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Training dataset X = {xq, x5, ..., X}

Testing dataset X' = Figureg labels Y = Figureing labels Y’ =

1, Y20 Y}

Encoder Eg, Decoder Dy, Whale Optimization Algorithm W, XGBoost
classifier X

Predicted output labels ¥':Including detection (attack vs. normal) and
multi-class classification of attack type

Begin

//Feature Extraction using Autoencoder
¢, 0 « Initialize parameters

for each training iteration

do

Sample mini-batch {X;, ..., X, } € X
Compute reconstruction loss

k
=2 o (o)
i=1

Update ¢, 8 using gradient descent on V
end for

//Feature Optimization using WOA

Foreach x € X

encode features a = Eg(x)

Construct feature set A = {aq,ay, ..., a,}
Optimize features A* = W(4,Y)

//Detection and Classification using XGBoost
X onA®andY

//Testing and Evaluation

for each test sample x" € X'

do

Encode features a’ = Eg(x")

Optimize a’™* = W(a')

Predict label y' = X (a"*)

end for

Return predicted labels ¥’ = {95, ..., 9/}

End
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Figure 2: AE-WOA+XGBOOST Framework for Detection and Classification of DDoS Attacks
3.4.1 Training phase

The system trains on the CICDDo0S2019 dataset containing both DDoS and normal traffic
samples.

3.4.1.1 Preprocessing module
To ensure clean and consistent data, the dataset was preprocessed through
i. Data Cleaning: Removing missing, duplicate, or irrelevant records.
ii. Label Encoding: Converting categorical labels (“Attack”, “Normal”) to numeric form.

iii. Feature Scaling: Normalizing features using min—max normalization.
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3.4.1.2 Feature Extraction Module

A two-stage hybrid process was employed to reduce dimensionality and enhance feature
quality:

1. Autoencoder (AE): Trained in unsupervised mode for dimensionality reduction. The
optimal architecture uses 88 input features, a hidden layer with 32 neurons, and a 64-
feature latent space.

il. Whale Optimization Algorithm (WOA): Refines AE’s 64 latent features to 40 optimal
ones by mimicking humpback whale bubble-net hunting behavior, selecting the most
informative subset.

3.4.1.3 XGBoost Training

The 40 optimized features are used to train the XGBoost classifier to differentiate DDoS from
normal traffic.

3.4.1.4 Trained Model

The final trained XGBoost model was saved for deployment in the testing phase.
3.4.2 Testing Phase

In this phase, the unseen traffic data is processed and evaluated.

3.4.2.1 Preprocessing & Feature Extraction

The same preprocessing and AE+WOA feature extraction steps were applied to ensure
consistency.

3.4.2.3 Detection & Classification Modules
i. Detection Result: Identifies whether the sample is a DDoS attack.

ii. Classification Result: Specifies the attack type among five DDoS categories from the
CICDDo0S2019 dataset.

4. Experimental Setup and Performance Evaluation

The experiments were implemented in Python 3.10 using Jupyter Notebook. The dataset
CICDDo0S2019 was preprocessed and evaluated using a combination of deep learning and
machine learning libraries. The experiments were conducted on a workstation equipped with
an Intel Core i7 CPU, 32 GB RAM, and an NVIDIA RTX 3060 GPU (12 GB VRAM) to
accelerate training. The data were split into training, validation and testing subsets, with
preprocessing handled by StandardScaler for feature normalization and LabelEncoder for
categorical encoding. The Autoencoder was trained for 20 epochs with a batch size of 64, using
the Adam optimizer (learning rate = 0.1) and mean squared error (MSE) loss function. Table 4
shows the experimental parameters.
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Table 4: Experimental Parameters

Coeeficients Scalar (a)

Algorithm Hyperparameters Values
Activation Function Relu

AE Epochs 20
Batch size 64
Optimizer Adam
Learning rate 0.01
Loss MSE

WOA Polpulation Size 30
Max iterations 100

Linearly decreases 2 — 0

Spiral constant (b) 1

Probability (p) Random in [0.1

Fitness function Classification error + feature penalty]
XGBoost Learning rate 0.01

Max depth 6

Objective function Multi:softmax

Number of classes 5

Evaluation metrics Classification error

To evaluate the performance of our proposed model, we use the following performance
metrics.

Precision: it represents the ratio of correctly classified DDoS attack types to the total number
of instances the model labeled as that attack type. Equation 7 calculates the precision of the
model.

TP
TP + FP (8)

Precision =

Recall: This measures how many of the true DDoS attack instances in the dataset were
successfully identified by the model.

" TP+FN ©)

Accuracy quantifies the overall correctness of the prediction algorithm by comparing the
number of correct class predictions to the total number of true class labels in the dataset.
Equation 10 provides the formula used to compute this metric

TP + TN
TP + TN + FN + FP

Accuracy = (10)

The F1-Score integrates precision and recall by calculating their harmonic mean, providing a
single metric that balances both aspects of the classifier’s performance.

2 x (Precision X Recall)

F1 — score = (11)

Precision + Recall
S. Experimental Results

This section presents the results of the combination of the Autoencoder (AE) with the Whale
Optimization Algorithm (WOA) for feature selection and classification using XGBoost on the
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CICDDo0S2019 dataset. The Autoencoder is employed to learn compressed representations of
the original feature set, effectively reducing dimensionality while retaining critical information.
Subsequently, WOA is applied to identify and select the most significant features from the
encoded data. Figure 3(a) illustrates the importance scores of the 64 features generated by the
Autoencoder, while Figure 3(b) shows the 40 features selected from the extracted features
through the AE-WOA process. Features such as Feature 30, Feature 39, and Feature 10 exhibit
the highest importance scores, exceeding 0.8, indicating their key role in accurately detecting
and classifying DDoS attacks. Mid-range features, including Feature 4, Feature 15, and Feature
23, contribute moderately, whereas lower-scoring features, such as Feature 24 and Feature 22,
have minimal influence. This ranking highlights the effectiveness of the AE + WOA feature
selection framework in isolating a smaller, more relevant set of features, ultimately enhancing
the XGBoost classification performance while reducing computational complexity and
eliminating redundant information.

(a) (b)

Feature Selection Based on AE + WOA

Feature 30
Feature 39
Feature 10
Feature 26
Feature 21
Feature 16
Feature 34
Feature 35
Feature 18
Feature 15

Feature 7
Feature 9
Feature 4
Feature 36
Feature 23

g reature 40

2 Feature 14

+ Feature 3

< Feature 12

§ Feature 32

3 Feature2

8 Feature 19

3 Feature 11

G Feature 13

3 Feature 5
Feature 6
Feature 1
Feature 27
Feature 33
Feature 25
Feature 17
Feature 20
Feature 28
Feature 29
Feature 38
Feature 31
Feature 8
Feature 37
Feature 24
Feature 22
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Figure 3(a) and (b): Feature Representation with AE and Feature Selection with AE+WOA

The performance of the XGBoost model is assessed using optimized features derived through
the combined use of an Autoencoder (AE) and the Whale Optimization Algorithm (WOA).
The model was trained and tested using these reduced-dimensional features to ensure faster
computation and improved generalization. Table 5 shows the model performance of five
DDoS attacks types.

Table 5: Classification Performance of DDoS attacks using optimized features from the AE-WOA

Class Accuracy Precision Recall F1 Score AUC
NetBIOS 99.97 98.53 98.53 98.53 99.99
LDAP 99.99 95.76 93.91 94.83 99.96
MSSQL 99.15 94.71 97.57 96.12 99.86
Syn 99.88 99.91 99.90 99.90 1.000
UDP 99.40 99.40 97.96 98.68 99.99

N o o o

PAEINNN ‘*x\\%ﬁ‘\‘\\%@%@‘&%ﬁ?&%%%%%%%\%%%:ﬁ%&%%&%&%“
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Overall, the model exhibits outstanding performance across all evaluated attack classes,
NetBIOS, LDAP, MSSQL, SYN, and UDP, achieving consistently high scores in accuracy,
precision, recall, F1-score, and AUC.

For NetBIOS attacks, the model achieves a near-perfect accuracy of 99.97%, with precision
and recall both at 98.53%, and an AUC of 99.99%. These results indicate that the model is
highly effective in accurately identifying NetBIOS-related traffic. In the case of LDAP attacks,
the accuracy rises slightly to 99.99%, with an impressive AUC of 99.96%. However, precision
and recall drop to 95.76% and 93.91%, respectively, suggesting a few more misclassifications
compared to other classes.

The model also performs well in detecting MSSQL attacks, recording an accuracy of 99.15%.
It achieves a high recall of 97.57%, demonstrating its ability to identify most MSSQL attacks,
while a precision of 94.71% reflects a higher false positive rate. Nonetheless, the F1-score of
96.12% and AUC of 99.86% affirm its strong overall performance in this category.

SYN attacks are detected with exceptional accuracy (99.88%), and the model attains nearly
identical precision, recall, and F1-score values of 99.90%. Notably, the AUC reaches a perfect
score of 1.000, underscoring the model’s reliability and robustness in identifying SYN-based
threats. For UDP attacks, the model maintains a high accuracy of 99.40% and a precision of
99.40%. Although the recall is slightly lower at 97.96%, the model still achieves a strong F1-
score of 98.68% and an AUC of 99.99%.

Figure 4(a) displays the progression of training and validation loss across 20 epochs,
highlighting the model’s efficient learning and convergence. At the start, there is a steep drop
in training loss, indicating that the model quickly adapts to the training data. By around the
third epoch, both training and validation losses have significantly decreased and begin to level
off near zero. There is close alignment between the two loss curves which suggests strong
generalization and minimal overfitting. With loss values consistently remaining below 0.001,
the model demonstrates high performance and accuracy, indicating that it has effectively
learned the patterns in the dataset. This outcome points to both a well-optimized model and a
clean, structured dataset. While Figure 4(b) depicts the training and validation accuracy over
20 epochs, illustrating the model's learning progression. Initially, the training accuracy
increases rapidly, surpassing 90% by the 5th epoch and continuing to improve, reaching nearly
100% by the final epoch. The validation accuracy also shows an upward trend, though with
more noticeable fluctuations between epochs 4 and 7, possibly indicating variability in
generalization or sensitivity to specific data batches. Despite these fluctuations, both curves
converge towards the end, demonstrating excellent accuracy and strong generalization
performance. The close alignment in the final epochs suggests the model effectively learned
from the training data without overfitting.

&5



Loss

0.04

0.03 1

0.01 A

0.00

86

Umar et al. /MJSTEM 1 (2026) 68-91

(b)

Accuracy Over Epochs

(a)
Loss Over Epochs
—— Train L¢ 46 1
Val Los!
0.44 1
0.42 4
5. 0.40 -
[0
e
=
[¥)
2 0.38 -
0.36
0.34 1
0.32 1
i T

0.0 2.5

10.0
Epoch

5.0 1.5

T
12,5 15.0

—— Train Accuracy

Val Accuracy

17.5

0.0 2.5

T T
5.0 1.5

10.0
Epoch

125 15.0

17.5

Figure 4 (a)and (b): Validation & Training Loss Over Epochs and Accuracy over Epochs for XGBoost DDoS
Attack Classification Model

Table 6 shows the comparison between Wei et al. (2021) and the current study which
demonstrates a clear improvement in classification performance across all evaluated attack
types; LDAP, MSSQL, NetBIOS, SYN, and UDP. Overall, the current study achieves better
accuracy, precision, recall, and Fl-scores, indicating a more robust and reliable detection
model. Specifically, LDAP accuracy improved slightly from 98.35% to 99.99%, though
precision and recall saw minor decreases, suggesting a small trade-off in classification balance.
MSSQL and NetBIOS attacks show consistent performance gains across all metrics, with the
latter achieving a notable F1-score increase from 96.42 to 98.53, reflecting enhanced detection
consistency. The most significant advancement is observed in SYN attacks, where the model
achieves near perfect performance with an F1-score of 99.9, indicating exceptional robustness.
Similarly, UDP attack detection improved substantially, with accuracy rising from 97.49% to
99.4% and F1-score from 95.4 to 98.68.

Table 6: Classification Performance of DDoS attacks using the optimized features from the AE-WOA

Attack Type/ |Accuracy (Weiet |Accuracy (This [Precision (Wei et [Precision (This |[Recall (Wei [Recall (This f\;’-esiczr‘;l. F1-score
Class al., 2021) study) al., 2021) study) et al., 2021) [study) h021) > |(This study)
LDAP 08.35 99.99 06.63 95.76 04.74 93.91 95.57 04.83
MSSQL 08.19 99.15 03.59 04.71 07.91 97.91 95.47 96.12
INetBIOS 07.62 09.97 906.71 08.53 96.21 08.53 06.42 08.53

SYN 08.36 99.88 07.5 09.91 06.37 99.9 96.88 99.9

UDP 07.49 09.4 03.76 09.4 97.39 97.96 05.4 08.68
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Further comparison of the model accuracy of various intrusion detection models across
multiple studies as shown in Figure 5 was carried out. The results show a steady improvement
in performance over time. Earlier models, such as WOA+DNN by Wang et al. (2021) and
AE+SVM by Zhou et al. (2021), achieved accuracies of 97.2% and 97.5%, respectively. Later
approaches, like GA+DNN (97.8%) and AE+XGBoost (99.1%), demonstrated notable gains.
The current study, using the AE+WOA-XGBoost hybrid model, achieved the highest accuracy
0f 99.89%, indicating a significant enhancement in detection capability and model optimization
compared to previous methods

Comparison for Accuracy

100.50%
100.00%
99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%
96.00%
95.50%

WOA+ DNN WOA + DNN AE + SVM GA+DNN AE + XGBoost  AE+WOA+XGBoost

Wang et al. (2021) Wang et al. (2024) Zhou et al. (2021) Yang & Shami Almiani et al. Thiis Study(2025)
(2020) (2022)

Figure 5: Comparison of the performance measure of the Proposed AE-WOA-XGBoost Model with other
existing studies

6. Conclusions and Future Work

This paper tackles the ongoing challenge of classifying Distributed Denial of Service (DDoS)
attacks, which traditional methods struggle to manage due to their dynamic and large-scale
nature. It introduces the AE+WOA-XGBoost model, which combines an Autoencoder (AE)
for extracting meaningful data features, the Whale Optimization Algorithm (WOA) for
selecting the most relev features, and XGBoost for accurate and scalable classification.
Evaluated on the CIC-DD0S2019 and CICIDS2017 datasets, the model achieved exceptional
performance with 99.89% accuracy, 99.96% precision, 99.87% recall, and 99.91% F1-score,
significantly outperforming the baseline and several other existing models. The findings
confirm the power of metaheuristic optimization in enhancing detection accuracy and reducing
false alarms. For future work, we recommend adopting the AE+WOA-XGBoost model in
critical infrastructure systems, integrating metaheuristic feature selection in deep learning
models, validating models across multiple datasets to ensure robustness, and implementing
continuous learning mechanisms for sustained performance in evolving network environments.
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