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Abstract 

Distributed Denial of Service (DDoS) attacks continue to pose a serious and evolving threat to 
the stability, availability, and reliability of network systems. With the rapid growth of Internet-
of-Things (IoT) devices, cloud infrastructures, and software-defined networks (SDN), the scale 
and sophistication of DDoS attacks have also grown significantly. Traditional detection 
methods often struggle to cope with high-dimensional traffic data, redundant attributes, and the 
nonlinear interactions inherent in modern attack patterns. These limitations result in reduced 
detection accuracy, susceptibility to false alarms, and poor generalization across diverse attack 
types. To mitigate these cyber threats, this research work on an approach that integrates 
Autoencoders (AE), the Whale Optimization Algorithm (WOA), and Extreme Gradient 
Boosting (XGBoost). The AE component compresses raw traffic flows into latent feature 
representations, capturing nonlinear relationships and reducing noise. However, AE alone 
produces a broad feature space (64 features), which includes redundancy and non-informative 
attributes. To refine this space, WOA is employed as a metaheuristic feature selector, guided 
by a fitness function that balances classification accuracy with feature compactness. This 
process reduces the dimensionality to 40 highly discriminative features, ensuring efficiency 
without compromising information richness. Finally, XGBoost is applied as the classifier due 
to its robustness, scalability, and ability to handle both detection and multi classification of 
DDoS attacks. The proposed model was evaluated using CICDDoS2019, which capture diverse 
attack scenarios and is widely used in intrusion detection research. Baseline experiments with 
AE–XGBoost achieved 98.57%. By contrast, the proposed AE+WOA-XGBoost achieved 
99.89% accuracy, 99.96% precision, 99.87% recall, 99.91% F1-score, and an AUC of 1.000, 
representing a 1.32% gain over the baseline and near-perfect classification performance. 
Beyond raw accuracy, the optimization process reduced computational overhead, improved 
generalization, and demonstrated consistent effectiveness across both datasets.  
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1. Introduction 

The rapid expansion of the internet and interconnected digital systems has significantly 
enhanced global communication, business operations, and access to services (Prieto & Durán 
Barroso, 2024). However, this growth has also increased exposure to cyber threats. Among the 
most disruptive are Distributed Denial of Service (DDoS) attacks, in which attackers 
overwhelm a target system with excessive traffic, making it unavailable to legitimate users 
(Ouhssini et al., 2024). Such attacks can cause service outages, financial losses, data breaches, 
and reputational damage (Ortet et al., 2021). As internet-based services become increasingly 
essential, effective and efficient DDoS detection mechanisms are critical. 

Traditional detection approaches rely on signature- or rule-based methods (Liu et al., 2023), 
which identify attacks by matching traffic against predefined patterns. These methods are 
limited in detecting novel or evolving attacks, as they cannot recognize previously unseen 
behaviors (Wei et al., 2021). To address these challenges, machine learning (ML) techniques 
have been proposed, offering adaptive and intelligent detection capabilities that can improve 
the classification and identification of DDoS attacks  (Gebremeskel et al., 2023) 

A major difficulty in detecting DDoS attacks lies in accurately differentiating legitimate 
network traffic from malicious traffic generated during an attack. The massive volume and 
rapid pace of network traffic during a DDoS attack can quickly overload traditional detection 
systems, leading to a surge in both false-positive and false-negative results (Can & Ha, 2021). 
False positives can lead to normal traffic being mistakenly identified as malicious, which may 
disrupt network services or cause unnecessary interruptions. Conversely, false negatives allow 
actual attacks to go unnoticed, potentially inflicting serious harm before mitigation measures 
are implemented (Xu et al., 2021). Therefore, it is crucial to develop more sophisticated, 
adaptive, and real-time detection methods capable of identifying DDoS attacks accurately 
while reducing false detection rates.  

Machine learning has attracted considerable attention in cybersecurity due to its ability to 
analyze large, complex datasets and uncover patterns that are difficult for humans to identify 
manually (Hadi et al., 2024; Liu et al., 2023). In DDoS attack detection, supervised learning 
models such as Extreme Gradient Boosting (XGBoost) have demonstrated high effectiveness 
in classifying network traffic as malicious or benign (Liu et al., 2023). XGBoost is a scalable 
gradient boosting framework that sequentially constructs an ensemble of decision trees, with 
each tree aiming to correct the errors of its predecessor (Araújo et al., 2021). Its strengths 
include high predictive accuracy, robustness in high-dimensional feature spaces, and the ability 
to handle imbalanced datasets, making it well-suited for network intrusion detection tasks (Liu 
et al., 2023) 

Despite these advantages, XGBoost depends heavily on manually engineered features derived 
from raw network traffic. Such features often require significant domain expertise and may fail 
to capture the full complexity of evolving traffic patterns and adversarial behaviors (Ouhssini 
et al., 2024; Shaikh et al., 2024). Autoencoders (AEs) provide a promising solution by learning 
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compact, meaningful representations directly from data, enabling models to adapt to complex, 
non-linear traffic behaviors without relying solely on predefined features (Chen & Guo, 2023).  

AEs are neural networks designed for unsupervised learning, compressing input data into a 
latent space and reconstructing it to learn efficient representations (Chen & Guo, 2023). In 
network traffic analysis, they can capture underlying patterns of normal behavior, producing 
latent features suitable for further optimization rather than relying solely on reconstruction 
errors for anomaly detection(Ieracitano et al., 2020) 

To enhance the relevance and discriminative power of these features, the Whale Optimization 
Algorithm (WOA) a nature-inspired metaheuristic based on the bubble-net feeding strategy of 
humpback whales (Sihwail et al., 2024; Wang et al., 2024) is employed for feature selection. 
WOA has demonstrated effectiveness in complex optimization tasks, including feature 
selection and neural network tuning (Liu et al., 2023).. The optimized AE-derived features are 
then input into an XGBoost classifier, leveraging its high accuracy, efficiency, and robustness 
in high-dimensional spaces. By combining AE for unsupervised feature extraction, WOA for 
metaheuristic optimization, and XGBoost for supervised classification, this approach aims to 
improve DDoS detection accuracy and generalization against evolving attack patterns. 

The main contributions of this work are threefold: (1) it demonstrates the limitations of 
standalone AE and other existing models in handling high-dimensional DDoS traffic; (2) it 
introduces the integration of WOA into the AE feature space, resulting in a compact and highly 
discriminative feature subset; and (3) it validates the proposed hybrid AE–WOA + XGBoost 
framework on two benchmark datasets, achieving state-of-the-art results while maintaining 
efficiency and interpretability. Collectively, these results highlight the potential of using deep 
learning-based feature extraction with metaheuristic optimization to design scalable, adaptive, 
and production ready intrusion detection systems capable of mitigating the growing threat of 
DDoS attacks.  

The remainder of this paper is as follows. Section 2 reviews existing research related to feature 
selection and DDoS detection techniques. Section 3 presents the proposed comparative 
framework, detailing the feature selection algorithms, classifiers, and the AE+WOA–XGBoost 
hybrid model used. Section IV describes the dataset, preprocessing steps, and the experimental 
methodology adopted for evaluation. Section V discusses the results and performance metrics, 
highlighting comparative outcomes across models. Finally, Section VI concludes the paper and 
outlines future research directions. 

2. Literature Review 

In this section, the review of related research on Distributed Denial of Service (DDoS) attack 
detection techniques and the analysis of the comparative performance of various classification 
algorithms explored by other researchers is presented. 
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A. Related Literature Based on Deep Learning Approaches 

More recently, deep learning and hybrid models have dominated the DDoS detection 
landscape. (Panggabean et al., 2024) presented a hybrid architecture that combined Gated 
Recurrent Units (GRUs) with Neural Turing Machines (NTMs) to capture both sequential 
dependencies and memory-based traffic patterns. Their model demonstrated strong 
generalization across datasets such as BoT-IoT and UNSW-NB15, achieving 98.7% accuracy 
and 98.1% recall. However, the lack of interpretability and explicit feature optimization limited 
its practical applicability. The present study addresses these gaps by incorporating 
Autoencoders (AE) for feature extraction and Whale Optimization Algorithm (WOA) for 
feature selection, thereby offering both adaptability and interpretability. 

Efendi, (2025) proposed a multi-stage framework for DDoS detection that combined DBSCAN 
clustering, SMOTE oversampling, Artificial Neural Networks (ANN), XGBoost, and Particle 
Swarm Optimization (PSO). In simulated DDoS scenarios, this ensemble achieved 96.83% 
accuracy, 93.23% sensitivity, and 96.13% precision, demonstrating strong performance under 
controlled conditions. However, model’s complexity introduced notable challenges in terms of 
scalability and computational demands, especially for real-time applications. Although the 
model delivered competitive accuracy, its multi-layer structure made it resource intensive. In 
contrast, the current AE+WOA-XGBoost method enhances this approach by integrating 
dimensionality reduction and optimization into a single, streamlined framework, providing 
greater efficiency and scalability. 

In the same year, Liu et al., (2025) focused on enhancing XGBoost for Named Data 
Networking (NDN), specifically targeting Interest Flooding Attacks (IFA) and Cache Pollution 
Attacks (CPA). Their modified XGBoost classifier demonstrated strong performance metrics, 
including high accuracy and robustness in detecting NDN-specific DDoS attacks. While the 
study showcased the adaptability of tree-based models in next-generation networks, it did not 
incorporate dimensionality reduction or feature optimization, which limited scalability under 
high-dimensional traffic data. In comparison, the present research addresses this gap by 
embedding Autoencoders for feature reduction and WOA for optimization, thus improving 
computational efficiency without sacrificing detection accuracy. 

Alfatemi et al., (2024) proposed a Deep Residual Neural Network (ResNet) with SMOTE to 
solve issues related to class imbalance in DDoS datasets. The model achieved 99.98% accuracy 
on the CICIDS dataset, showcasing exceptional performance in identifying attack traffic. 
Despite its accuracy, the complexity of ResNet architecture led to high computational costs, 
rendering the model impractical for real-time deployment in resource-constrained systems. By 
contrast, the present study opts for lightweight Autoencoders, which retain the ability to capture 
complex traffic patterns while ensuring computational efficiency. 

Hacılar et al., (2024) introduced a Deep Autoencoder paired with Artificial Bee Colony 
optimization to detect anomalies in DDoS traffic. When evaluated on the UNSW-NB15 
dataset, their framework notably lowered false alarm rates and achieved over 98% accuracy, 
highlighting the effectiveness of integrating deep feature extraction with swarm intelligence 
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optimization. Nevertheless, the lack of a separate classification component restricted 
interpretability and overall scalability. To overcome these limitations, the present study 
employs an Autoencoder for feature extraction while incorporating XGBoost for classification, 
enabling both strong feature representation and transparent, interpretable decision-making. 

B. Related Literature Based on Machine Learning Approaches 

Berríos et al., (2025) evaluated several machine learning models, including XGBoost, Random 
Forest, and LSTM, on the CIC-DDoS2019 and N-BaIoT datasets. XGBoost achieved the 
highest accuracy (over 97%) and F1-scores, outperforming other ensemble approaches, though 
no optimization techniques were applied. The current study addresses this limitation by 
incorporating WOA for feature refinement. 

In Edge-IIoT environments, an ensemble-based approach scenarios (Laiq et al., 2023) 
demonstrated that XGBoost outperformed traditional classifiers like SVM and Decision Tree 
in both accuracy and latency, making it a strong candidate for real-time DDoS detection in 
resource-limited settings. However, without deep feature extraction, its performance may 
decline when handling more complex traffic patterns. 

Varghese & Muniyal, (2021) proposed a real-time statistical anomaly detection system 
integrated into the data plane of Software Defined Networking (SDN). Operating as part of an 
Intrusion Detection System (IDS), it relies on preset statistical thresholds to detect anomalies. 
While capable of near real-time detection, its lack of learning ability limits adaptability to new 
or sophisticated DDoS attacks. In contrast, the AE–WOA–XGBoost framework dynamically 
learns from evolving traffic patterns, providing improved adaptability and robustness against 
previously unseen attack scenario.  

Pontes et al., (2021) proposed an Energy-based Flow Classifier (EFC) that utilizes inverse 
statistical analysis of benign traffic to assign anomaly scores and classify DDoS attacks. While 
achieving a 97.5% F1-score, the model's generalization capacity remains limited as it depends 
heavily on the statistical distribution of known traffic types, and key performance metrics were 
not comprehensively reported. Compared to AE–WOA–XGBoost, EFC is less resilient in high-
variability environments due to its static statistical basis, while the proposed hybrid model 
offers broader generalizability via data-driven feature learning. 

Moustafa & Slay (2017) examined several machine-learning classifiers such as Decision Trees, 
Naive Bayes, and SVM for DDoS detection using the UNSW-NB15 dataset. Although SVM 
delivered strong accuracy, its performance deteriorated with high-dimensional feature spaces. 
In contrast, our work employs XGBoost, which is well suited for efficiently managing large 
and complex feature sets. 

Oyelakin, (2024) investigated an ensemble XGBoost model for intrusion detection on the 
CICIDS2017 dataset, using processed traffic features and feature selection based on 
XGBoost’s internal importance scores. Across eight dataset segments, the model reached about 
98% accuracy, with precision, recall, and F1-score all at 0.98, and an AUC-ROC of 0.99—
indicating robust detection capability. Unlike earlier methods that depend on manual or basic 
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feature-selection strategies, this study adopted classifier-guided feature reduction but did not 
integrate dynamic meta-heuristic optimization. Additionally, it did not explore real-time 
operational challenges such as latency or streaming analysis. While the results reinforce 
XGBoost’s effectiveness for DDoS detection, our research advances this line of work by 
incorporating the Whale Optimization Algorithm to enable automatic, adaptive feature 
selection, thereby enhancing generalization and efficiency in real-world environments. 

(Kaur et al., 2024) conducted a study on cyberattack detection that focuses on enhancing 
Intrusion Detection System performance through feature selection. Their work evaluates 
ensemble machine-learning models—including XGBoost, Decision Trees, and Random 
Forest—using the NSL-KDD and CICIDS2018 datasets. By refining the feature set, the study 
demonstrates improved computational efficiency and reports consistently high accuracy levels 
between 98% and 99%, underscoring the strong capability of these methods for intrusion 
detection.  

C. Related Literature Based on Hybrid Approaches 

Wei et al., (2021) introduced AE-MLP, a hybrid deep-learning framework that integrates an 
Autoencoder for automated feature extraction with an MLP classifier, achieving strong 
performance on the CICDDoS2019 dataset with an average accuracy of 98.34% and an F1-
score of 98.18%. The model’s effectiveness stems from its ability to learn latent feature 
representations without manual intervention and then classify specific DDoS attack categories 
such as SYN, UDP, MSSQL, NetBIOS, and LDAP. However, AE-MLP does not include an 
intermediate feature-optimization stage; the latent features produced by the Autoencoder are 
passed directly to the classifier, which may retain redundant or irrelevant information. 
Additionally, its evaluation is limited to CICDDoS2019, raising concerns about overfitting and 
the absence of cross-dataset validation (Wei et al., 2021). 

Maseer et al., (2021) assessed several classical machine-learning classifiers including KNN, 
Naive Bayes, Random Forest, and SVM using the CICDDoS2017 dataset, reporting high 
accuracy results ranging from 98.86% to 99.54%. Despite these strong outcomes, the study 
does not provide precision, recall, or F1-score metrics and lacks a multicass analysis, which 
may limit interpretability and generalization across different attack types.  

Similarly, Ullah & Mahmoud, (2020)) applied Naive Bayes, Logistic Regression, Decision 
Tree, and Random Forest models to IoT-focused botnet datasets and achieved near-perfect F1-
scores between 99.99% and 100%. However, the IoT-specific nature of the dataset restricts 
generalizability to broader network environments, and the absence of separately reported 
precision and recall further limits the evaluative depth of the study. 

Another study used XGBoost for DDoS detection in an SDN environment with CICDDoS2019 
and achieved 99.9% accuracy. Nonetheless, the study does not report precision, recall, or F1-
scores and is constrained by its SDN-specific scope and the lack of multiclass or attack-type 
differentiation Alamri & Thayananthan, (2020). Likewise, Parfenov et al., (2020) evaluated 
Gradient Boosting and CatBoost on CICDDoS2019, obtaining F1-scores of 96.8% and 96.9%, 
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respectively, but without providing precision or recall values and without conducting 
multiclass or real-time testing. 

Shieh et al., (2021) combined Bi-directional LSTM with Gaussian Mixture Models for 
intrusion detection on the CICDDoS2019 dataset, achieving 98% accuracy. However, 
precision, recall, and F1 scores were not reported, and the study did not consider multiclass 
classification or real-time performance. Similarly, (Rehman et al., 2021) proposed using Gated 
Recurrent Units (GRU) for IDS on CICDDoS2019, achieving accuracies between 99.69% and 
99.94%, yet precision, recall, F1 scores, and multiclass evaluation were not addressed. 

Samom et al., (2021) applied a Multi-Layer Perceptron (MLP) for IDS on CICDDoS2019, 
reporting 99.92% accuracy. Like the previous studies, it lacked precision, recall, F1 metrics, 
and did not provide attack-type-specific or multiclass results. Niyaz et al., (2015) employed a 
Sparse Autoencoder for IDS on the NSL-KDD dataset, attaining 88.39% accuracy, but did not 
report other performance metrics; additionally, reliance on an older dataset may reduce 
relevance to contemporary threats. 

Agarwal et al., (2022) tested their FS-WOA–DNN approach using a cloud storage dataset, 
integrating Whale Optimization Algorithm for feature selection with a Deep Neural Network 
for classification. The model achieved 95.35% accuracy, but precision, recall, and F1 scores 
were not provided. The absence of validation on public datasets and detailed performance 
metrics limits generalizability and benchmarking. 

Singh & De, (2017) evaluated an ensemble feature selection method with an MLP classifier on 
the CAIDA 2007 dataset, reaching 98.3% accuracy. However, the study did not include 
precision, recall, or F1 metrics, relied on an older dataset, and did not conduct multiclass or 
real-time testing, restricting its applicability to modern attack scenarios. 

Chanu et al., (2023) employ various public benchmark datasets (not individually named) to test 
their voting-based hybrid feature selection and MLP-GA classifier, reporting 98.8% accuracy, 
0.6% false positive rate, but not precision, recall, or F1 scores. The main limitation is the 
absence of detailed per-class metrics and potential overfitting due to lack of cross-dataset 
validation. 

Zhou et al., (2022) introduce SAFE, tested on datasets including IoT traffic, but do not specify 
the dataset name. The system achieves high accuracy and efficiency, but precision, recall, and 
F1 scores are not provided. Limitations include lack of detailed metric reporting and potential 
dataset bias. 

Shohan et al., (2024) proposed a live DDoS detection framework using 1D-CNN for feature 
extraction and Random Forest and MLP for classification. Their model demonstrated real-time 
performance compatibility. However, the absence of metaheuristic tuning is improved upon in 
this current research through WOA.  

Zhou et al., (2021) worked on a DDoS detection technique that combined AE for feature 
reduction and Support Vector Machines for classification. While promising, the SVM model 
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lacked scalability for real-time analysis. Our study improves upon this by replacing SVM with 
XGBoost, which is both faster and more accurate for large-scale classification tasks. 

Wang et al., (2024) proposed a hybrid IDS using metaheuristic optimization (WOA) for feature 
selection, paired with deep neural networks. The WOA effectively reduced redundant features 
and improved detection speed and accuracy. However, the model did not leverage any encoder-
based feature extraction, which could further refine performance. By integrating AE and WOA 
before classification with XGBoost, the current study seeks to achieve superior feature 
engineering and classification performance. 

3. Data and Methodology 

This study’s phase consists of five stages: input, preprocessing, autoencoder training, feature 
optimization with WOA, and optimized feature output, each constituting its own component. 
These stages are discussed below in detail. 

3.1 Input Layer 

In the first stage of this process, the CICDDoS2019 was employed. It contains a sample of 88 
features with data types as follows float64 (45), int64 (37) & object (6) and 500 63112 data 
points (containing benign and simple service discovery protocol (SSDP) type DDoS attacks. 
The details of the dataset are presented in Table 1. Furthermore, it has been validated and used 
by numerous researchers. This stage serves as the foundation of the framework and provides 
the raw traffic features to the preprocessing stage. 

Table 1: Description of the Dataset 
Dataset Total number of features Benign Malicious Total 
CICDDoS2019 88 113,828 70,313,809 70,427,637 

 

 3.2 Data Preprocessing Stage 

The data underwent three sequential processes in this stage: data cleaning, transformation, and 
preliminary feature engineering. 

i. Data Cleaning: Missing values, redundant entries, and inconsistent records were 
removed or corrected to improve the quality of the dataset. 

ii. Transformation: To ensure that the features were comparable, the dataset was 
normalized using a Min-Max Scaler that scaled values between 0 and 1: 

MinMaxScaler(𝑣௜
ᇱ) =

𝑥௜ − min
஺

 

max
஺

  − min
஺

 
⋅ ൫ new୫ୟ୶ ஺ −  new୫୧୬  ಲ൯ +  new୫୧୬  ಲ               (1)  

where 𝑥௜ represents the 𝑖୲୦  feature value, min
஺

  and max
஺

  denote the minimum and maximum 

values of a feature, while 𝑛𝑒𝑤_max
஺

  = 1 and 𝑛𝑒𝑤_min
஺

  = 0. 
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iii. Feature Engineering: Before deep feature learning, irrelevant or constant-value features 

were removed to reduce redundancy and computational burden. The preprocessed 
dataset was then divided into 80% training and validation and 20% testing for 
subsequent modeling. 

3.3 Autoencoder (AE) Stage 

At this stage, an autoencoder was employed to learn compact, latent feature representations 
from the high-dimensional network traffic data. 

i. Encoder Operation: The encoder compresses the input data into a lower-
dimensional latent representation: 

ℎ = 𝑓(𝑊௘𝑋 + 𝑏௘) (2) 

where 𝑊௘ and 𝑏௘ represent the encoder weights and bias, respectively, and 𝑓 is the ReLU 
activation function. 

ii. Decoder Operation: The decoder reconstructs the input data from the latent space: 

𝑋̂ = 𝑔(𝑊ௗℎ + 𝑏ௗ) (3) 

where 𝑊ௗ and 𝑏ௗ are decoder parameters, and 𝑔 is the activation function (Sigmoid). 

iii. Loss Function: The AE was trained by minimizing reconstruction error using Mean 
Squared Error (MSE): 

𝐿 =
1

𝑛
෍  

௡

௜ୀଵ

 ฮ𝑋௜ − 𝑋̂௜ฮ
ଶ

(4) 

This stage ensures that the network traffic data is represented in a compressed but information-
rich feature space.  

3.4 Whale Optimization Algorithm (WOA) Stage 

While AE extracts deep latent features, not all of them contribute equally to detection. 
Therefore, the Whale Optimization Algorithm (WOA) was integrated for feature selection and 
optimization. WOA mimics the bubble-net hunting strategy of humpback whales, alternating 
between exploitation (encircling prey) and exploration (searching for new prey). 

i. Encircling Prey: Whales update their positions towards the best feature subset: 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ⋅ |𝐶 ⋅ 𝑋∗(𝑡) − 𝑋(𝑡)| (5) 

ii. Spiral Updating (Bubble-net): With probability 𝑝, whales update their position 
using: 

𝑋(𝑡 + 1) = 𝐷ᇱ ⋅ 𝑒௕௟ ⋅ cos (2𝜋𝑙) + 𝑋∗(𝑡) (6) 
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where 𝐷ᇱ = |𝑋∗(𝑡) − 𝑋(𝑡)|, 𝑏 is a constant, and 𝑙 is a random number in [−1,1]. 

iii. Fitness Function: The best feature subset was determined by maximizing accuracy 
while reducing the number of selected features: 

 Fitness = 𝛼 ⋅  Accuracy − 𝛽 ⋅
|𝑆|

|𝐹|
(7) 

where 𝑆 is the selected feature subset, 𝐹 is the full set of features, and 𝛼, 𝛽 are balancing. 

The complete workflow, summarized in Algorithm 1, begins with loading the CICDDoS2019 
dataset, which contains 70,313,809 traffic records and 88 features. The raw data undergoes 
preprocessing, where all numerical features are normalized to the range [0, 1] to ensure stable 
gradient updates, and nonpredictive identifiers are removed The dataset is then partitioned 
using a 70% training, 15% validation, and 15% testing split, with stratified sampling applied 
to preserve class distributions. To address class imbalance in the dataset, class weighting is 
incorporated during XGBoost training to prevent bias toward majority attack categories 

In the first stage, an Autoencoder (AE) is configured with an encoder–decoder architecture, 
latent dimension, learning rate, and training epochs. The AE is trained in mini-batches, where 
each batch is compressed and reconstructed. After exploring several architectures we selected 
an AE with one hidden layer of 32 neurons and a 64-dimensional latent bottleneck because this 
configuration offered a good trade-off between reconstruction accuracy and compression. The 
resulting compressed latent matrix serves as the input to the second stage, where the WOA 
performs optimized feature selection (Table 2). 

Table 2: AE-WOA for feature selection 

Algorithm 1: AE-WOA for feature selection 

Input:   Input Training data 𝑋  = {x1, x2, ..., xL}, Labels 𝑌  = {y1, y2, ..., yL} 

Output: Optimized latent feature matrix Z* 

Steps  

1 Begin 

2 Preprocessing: Normalize the input features in 𝑋 using Min-Max scaling: 

𝑥௜,௝
ᇱ =

𝑥௜,௝ − min൫𝑥௝൯

max൫𝑥௝൯ − min൫𝑥௝൯
 

3 Autoencoder Initialization: Initialize encoder Eϕ, decoder Dθ, latent dimension m, 
learning rate α, and number of epochs T 
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3.1 AE Training: 

For each mini batch 

 
 Encode: 𝑧௜ = 𝐸థ(𝑥௜

ᇱ)

 Decode: 𝑥̂௜ = 𝐷ఏ(𝑧௜)

 Compute loss: ℒ஺ா =
1

𝑘
෍  ‖𝑥௜ − 𝑥̂௜‖

ଶ

 Update 𝜙 and 𝜃 using gradient descent 

 

3.2 Latent Feature Extraction: After AE is trained, obtain latent matrix 

𝐙 = ൛𝐸థ(𝑥ଵ
ᇱ ), … , 𝐸థ(𝑥௡

ᇱ )ൟ 

4 WOA Initialization: 

Set whale population 𝑃 , number of iterations I , and objective function J(. )  

4.1 Feature Optimization (WOA Loop):  

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑤ℎ𝑎𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆i  𝜖 {0,1}m 

5 Select optimal subset: Choose the best solution 

𝐒∗ = arg max𝐽(𝐒௜) 

6 Generate Output: Compute optimized features 

𝒁 
*   = 𝐙 ʘ S* 

7 End: 

Return 𝑍 
*   to the classier 

 

In the second stage, the WOA is applied to refine these latent features. Each whale encodes a 
binary feature mask representing a candidate subset of the latent space. For every candidate, 
the selected features are evaluated using a fitness function based on validation accuracy and 
feature sparsity. Through WOA’s spiral bubble-net search process, the population iteratively 
explores and improves candidate subsets. The whale with the best fitness value defines the 
optimal feature mask, which is applied to the latent matrix to generate the optimized feature 
set 𝑍∗. 

In the final stage, the optimized feature set 𝑍∗is fed into the XGBoost classifier for DDoS 
detection. Because WOA operates only during the offline optimization phase, the deployed 
system requires only the trained encoder and the XGBoost model, ensuring fast inference 
suitable for real-time detection environments. Figure 1 shows AE-WOA framework for optimized feature 

selection. 
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Figure 1: AE-WOA Framework for Optimized Feature Selection 

3.5 Detection and Classification Phase with Xgboost 

During training, the preprocessed CICDDoS2019 dataset cleaned of missing values, duplicates, 
and irrelevant identifiers is label-encoded and normalized using Min–Max scaling, The dataset 
is then partitioned using a 70% training, 15% validation, and 15% testing split, with stratified 
sampling applied to preserve class distributions. An Autoencoder (AE) is trained on the 88 
input features to learn compact representations, using an encoder–decoder architecture with a 
64-dimensional latent space; after training, only the encoder is retained. The Whale 
Optimization Algorithm (WOA) is then applied to the latent matrix, where each whale 
represents a binary mask over the 64 latent features. Candidate subsets are evaluated using a 
fitness function based on validation accuracy and feature sparsity, and through iterative 
refinement WOA produces an optimized subset of 40 discriminative features. These selected 
features are used to train the XGBoost classifier, incorporating class weighting to address class 
imbalance. The final model consisting of the encoder and XGBoost classifier is saved for 
deployment. During testing and real-time detection, unseen traffic samples undergo the same 
preprocessing and are encoded via the trained encoder; the WOA derived feature mask is 
applied to obtain the optimized feature vector, for onward classification task. Table 3 represents 
the algorithm of the developed model while Figure 2 shows the overall framework and each 
phase explained below. 
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Table 3: AE-WOA+XGBoost Algorithm 
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Pseudocode: AE-WOA-XGBoost for DDoS Detection and Classification 
Input Training dataset 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} 

Testing dataset 𝑋ᇱ = Figureg labels 𝑌 = Figureing labels 𝑌ᇱ =
{𝑦ଵ

ᇱ , 𝑦ଶ
ᇱ , … , 𝑦௠

ᇱ } 

Encoder 𝐸థ, Decoder 𝐷ఏ, Whale Optimization Algorithm 𝒲, XGBoost 
classifier 𝒳 

 
Output Predicted output labels 𝑌̂ᇱ:Including detection (attack vs. normal) and 

multi-class classification of attack type 

 
Phase1 Begin 
Phase 2 //Feature Extraction using Autoencoder 

 Initialize parameters 
for each training iteration 
do 
Sample mini-batch {𝑋ଵ, … , 𝑋௞} ⊂ 𝑋 
Compute reconstruction loss 

𝑉 =
1

𝑘
෍  

௞

௜ୀଵ

ቛ𝑋௜ − 𝐷ఏ ቀ𝐸థ(𝑋௜)ቁቛ
ଶ
 

Update 𝜙, 𝜃 using gradient descent on 𝑉  

end for 

Phase 3 //Feature Optimization using WOA 
For each 𝑥 ∈ 𝑋 
encode features 𝑎 = 𝐸థ(𝑥) 
Construct feature set  𝐴 = {𝑎ଵ, 𝑎ଶ, … , 𝑎௡} 
Optimize features  𝐴∗ = 𝒲(𝐴, 𝑌)  

Phase 4 //Detection and Classification using XGBoost 
 𝒳 on 𝐴∗ and 𝑌 

Phase 5 //Testing and Evaluation  
for each test sample 𝑥ᇱ ∈ 𝑋ᇱ  

do 
Encode features 𝑎ᇱ = 𝐸థ(𝑥ᇱ) 
Optimize 𝑎ᇱ∗ = 𝒲(𝑎ᇱ) 
Predict label 𝑦̂ᇱ = 𝒳(𝑎ᇱ∗) 
end for 
Return predicted labels 𝑌̂ᇱ = {𝑦̂ଵ

ᇱ , … , 𝑦̂௠
ᇱ } 

Phase 6 End 
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Figure 2: AE-WOA+XGBOOST Framework for Detection and Classification of DDoS Attacks 

3.4.1 Training phase 

The system trains on the CICDDoS2019 dataset containing both DDoS and normal traffic 
samples. 

3.4.1.1 Preprocessing module 

To ensure clean and consistent data, the dataset was preprocessed through 

i. Data Cleaning: Removing missing, duplicate, or irrelevant records. 

ii. Label Encoding: Converting categorical labels (“Attack”, “Normal”) to numeric form. 

iii. Feature Scaling: Normalizing features using min–max normalization. 
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3.4.1.2 Feature Extraction Module 

A two-stage hybrid process was employed to reduce dimensionality and enhance feature 
quality: 

i. Autoencoder (AE): Trained in unsupervised mode for dimensionality reduction. The 
optimal architecture uses 88 input features, a hidden layer with 32 neurons, and a 64-
feature latent space. 

ii. Whale Optimization Algorithm (WOA): Refines AE’s 64 latent features to 40 optimal 
ones by mimicking humpback whale bubble-net hunting behavior, selecting the most 
informative subset. 

3.4.1.3  XGBoost Training 

The 40 optimized features are used to train the XGBoost classifier to differentiate DDoS from 
normal traffic. 

3.4.1.4 Trained Model 

The final trained XGBoost model was saved for deployment in the testing phase. 

3.4.2 Testing Phase 

In this phase, the unseen traffic data is processed and evaluated. 

3.4.2.1 Preprocessing & Feature Extraction 

The same preprocessing and AE+WOA feature extraction steps were applied to ensure 
consistency. 

3.4.2.3 Detection & Classification Modules 
i. Detection Result: Identifies whether the sample is a DDoS attack. 

ii. Classification Result: Specifies the attack type among five DDoS categories from the 
CICDDoS2019 dataset. 

4. Experimental Setup and Performance Evaluation 

The experiments were implemented in Python 3.10 using Jupyter Notebook. The dataset 
CICDDoS2019 was preprocessed and evaluated using a combination of deep learning and 
machine learning libraries. The experiments were conducted on a workstation equipped with 
an Intel Core i7 CPU, 32 GB RAM, and an NVIDIA RTX 3060 GPU (12 GB VRAM) to 
accelerate training. The data were split into training, validation and testing subsets, with 
preprocessing handled by StandardScaler for feature normalization and LabelEncoder for 
categorical encoding. The Autoencoder was trained for 20 epochs with a batch size of 64, using 
the Adam optimizer (learning rate = 0.1) and mean squared error (MSE) loss function. Table 4 
shows the experimental parameters. 
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Table 4: Experimental Parameters 
Algorithm Hyperparameters   Values 
 Activation Function Relu 
AE Epochs 20 
 Batch size 64 
 Optimizer Adam 
 Learning rate 0.01 
 Loss MSE 

WOA Polpulation Size 
Max iterations 
Coeeficients Scalar (a) 
Spiral constant (b) 
Probability (p) 
Fitness function 

30 
100 
Linearly decreases 2 → 0 
1 
Random in [0.1 
Classification error + feature penalty] 

XGBoost Learning rate 
Max depth 
Objective function 
Number of classes 
Evaluation metrics 

0.01 
6 
Multi:softmax 
5 
Classification error 

 

To evaluate the performance of our proposed model, we use the following performance 
metrics. 

Precision: it represents the ratio of correctly classified DDoS attack types to the total number 
of instances the model labeled as that attack type. Equation 7 calculates the precision of the 
model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ ା ி௉
                                          (8) 

Recall: This measures how many of the true DDoS attack instances in the dataset were 
successfully identified by the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
்௉

்௉ ା ிே
                                 (9) 

Accuracy quantifies the overall correctness of the prediction algorithm by comparing the 
number of correct class predictions to the total number of true class labels in the dataset. 
Equation 10 provides the formula used to compute this metric 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑁 +  𝐹𝑃
                                                                (10) 

The F1-Score integrates precision and recall by calculating their harmonic mean, providing a 
single metric that balances both aspects of the classifier’s performance. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
ଶ × (௉௥௘௖௜௦௜௢௡ × ோ௘௖௔௟௟)

௉௥௘௖௜௦௜௢௡ ା ோ௘௖௔௟௟
                (11) 

5. Experimental Results 

This section presents the results of the combination of the Autoencoder (AE) with the Whale 
Optimization Algorithm (WOA) for feature selection and classification using XGBoost on the 
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CICDDoS2019 dataset. The Autoencoder is employed to learn compressed representations of 
the original feature set, effectively reducing dimensionality while retaining critical information. 
Subsequently, WOA is applied to identify and select the most significant features from the 
encoded data. Figure 3(a) illustrates the importance scores of the 64 features generated by the 
Autoencoder, while Figure 3(b) shows the 40 features selected from the extracted features 
through the AE–WOA process. Features such as Feature 30, Feature 39, and Feature 10 exhibit 
the highest importance scores, exceeding 0.8, indicating their key role in accurately detecting 
and classifying DDoS attacks. Mid-range features, including Feature 4, Feature 15, and Feature 
23, contribute moderately, whereas lower-scoring features, such as Feature 24 and Feature 22, 
have minimal influence. This ranking highlights the effectiveness of the AE + WOA feature 
selection framework in isolating a smaller, more relevant set of features, ultimately enhancing 
the XGBoost classification performance while reducing computational complexity and 
eliminating redundant information. 

                                  (a)                                                                                    (b)  

 Figure 3(a) and (b): Feature Representation with AE and Feature Selection with AE+WOA 

The performance of the XGBoost model is assessed using optimized features derived through 
the combined use of an Autoencoder (AE) and the Whale Optimization Algorithm (WOA). 
The model was trained and tested using these reduced-dimensional features to ensure faster 
computation and improved generalization. Table 5 shows the model performance of five 
DDoS attacks types. 

Table 5: Classification Performance of DDoS attacks using optimized features from the AE-WOA 
Class Accuracy Precision Recall F1 Score AUC 
NetBIOS 99.97 98.53 98.53 98.53 99.99 
LDAP 99.99 95.76 93.91 94.83 99.96 
MSSQL 99.15 94.71 97.57 96.12 99.86 
Syn 99.88 99.91 99.90 99.90 1.000 
UDP 99.40 99.40 97.96 98.68 99.99 
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Overall, the model exhibits outstanding performance across all evaluated attack classes, 
NetBIOS, LDAP, MSSQL, SYN, and UDP, achieving consistently high scores in accuracy, 
precision, recall, F1-score, and AUC. 

For NetBIOS attacks, the model achieves a near-perfect accuracy of 99.97%, with precision 
and recall both at 98.53%, and an AUC of 99.99%. These results indicate that the model is 
highly effective in accurately identifying NetBIOS-related traffic. In the case of LDAP attacks, 
the accuracy rises slightly to 99.99%, with an impressive AUC of 99.96%. However, precision 
and recall drop to 95.76% and 93.91%, respectively, suggesting a few more misclassifications 
compared to other classes. 

The model also performs well in detecting MSSQL attacks, recording an accuracy of 99.15%. 
It achieves a high recall of 97.57%, demonstrating its ability to identify most MSSQL attacks, 
while a precision of 94.71% reflects a higher false positive rate. Nonetheless, the F1-score of 
96.12% and AUC of 99.86% affirm its strong overall performance in this category. 

SYN attacks are detected with exceptional accuracy (99.88%), and the model attains nearly 
identical precision, recall, and F1-score values of 99.90%. Notably, the AUC reaches a perfect 
score of 1.000, underscoring the model’s reliability and robustness in identifying SYN-based 
threats. For UDP attacks, the model maintains a high accuracy of 99.40% and a precision of 
99.40%. Although the recall is slightly lower at 97.96%, the model still achieves a strong F1-
score of 98.68% and an AUC of 99.99%. 

Figure 4(a) displays the progression of training and validation loss across 20 epochs, 
highlighting the model’s efficient learning and convergence. At the start, there is a steep drop 
in training loss, indicating that the model quickly adapts to the training data. By around the 
third epoch, both training and validation losses have significantly decreased and begin to level 
off near zero. There is close alignment between the two loss curves which suggests strong 
generalization and minimal overfitting. With loss values consistently remaining below 0.001, 
the model demonstrates high performance and accuracy, indicating that it has effectively 
learned the patterns in the dataset. This outcome points to both a well-optimized model and a 
clean, structured dataset. While Figure 4(b) depicts the training and validation accuracy over 
20 epochs, illustrating the model's learning progression. Initially, the training accuracy 
increases rapidly, surpassing 90% by the 5th epoch and continuing to improve, reaching nearly 
100% by the final epoch. The validation accuracy also shows an upward trend, though with 
more noticeable fluctuations between epochs 4 and 7, possibly indicating variability in 
generalization or sensitivity to specific data batches. Despite these fluctuations, both curves 
converge towards the end, demonstrating excellent accuracy and strong generalization 
performance. The close alignment in the final epochs suggests the model effectively learned 
from the training data without overfitting. 
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                           (a)                                                                                     (b) 

Figure 4 (a)and (b): Validation & Training Loss Over Epochs and Accuracy over Epochs for XGBoost DDoS 
Attack Classification Model 

Table 6 shows the comparison between Wei et al. (2021) and the current study which 
demonstrates a clear improvement in classification performance across all evaluated attack 
types; LDAP, MSSQL, NetBIOS, SYN, and UDP. Overall, the current study achieves better 
accuracy, precision, recall, and F1-scores, indicating a more robust and reliable detection 
model. Specifically, LDAP accuracy improved slightly from 98.35% to 99.99%, though 
precision and recall saw minor decreases, suggesting a small trade-off in classification balance. 
MSSQL and NetBIOS attacks show consistent performance gains across all metrics, with the 
latter achieving a notable F1-score increase from 96.42 to 98.53, reflecting enhanced detection 
consistency. The most significant advancement is observed in SYN attacks, where the model 
achieves near perfect performance with an F1-score of 99.9, indicating exceptional robustness. 
Similarly, UDP attack detection improved substantially, with accuracy rising from 97.49% to 
99.4% and F1-score from 95.4 to 98.68.  

Table 6: Classification Performance of DDoS attacks using the optimized features from the AE-WOA 

Attack Type / 
Class 

Accuracy (Wei et 
al., 2021) 

Accuracy (This 
study) 

Precision (Wei et 
al., 2021) 

Precision (This 
study) 

Recall (Wei 
et al., 2021) 

Recall (This 
study) 

F1-score 
(Wei et al., 
2021) 

F1-score 
(This study) 

LDAP 98.35 99.99 96.63 95.76 94.74 93.91 95.57 94.83 

MSSQL 98.19 99.15 93.59 94.71 97.91 97.91 95.47 96.12 

NetBIOS 97.62 99.97 96.71 98.53 96.21 98.53 96.42 98.53 

SYN 98.36 99.88 97.5 99.91 96.37 99.9 96.88 99.9 

UDP 97.49 99.4 93.76 99.4 97.39 97.96 95.4  98.68 
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Further comparison of the model accuracy of various intrusion detection models across 
multiple studies as shown in Figure 5 was carried out. The results show a steady improvement 
in performance over time. Earlier models, such as WOA+DNN by Wang et al. (2021) and 
AE+SVM by Zhou et al. (2021), achieved accuracies of 97.2% and 97.5%, respectively. Later 
approaches, like GA+DNN (97.8%) and AE+XGBoost (99.1%), demonstrated notable gains. 
The current study, using the AE+WOA-XGBoost hybrid model, achieved the highest accuracy 
of 99.89%, indicating a significant enhancement in detection capability and model optimization 
compared to previous methods 

 

 

Figure 5: Comparison of the performance measure of the Proposed AE-WOA-XGBoost Model with other 
existing studies 

6. Conclusions and Future Work 

This paper tackles the ongoing challenge of classifying Distributed Denial of Service (DDoS) 
attacks, which traditional methods struggle to manage due to their dynamic and large-scale 
nature. It introduces the AE+WOA-XGBoost model, which combines an Autoencoder (AE) 
for extracting meaningful data features, the Whale Optimization Algorithm (WOA) for 
selecting the most relev features, and XGBoost for accurate and scalable classification. 
Evaluated on the CIC-DDoS2019 and CICIDS2017 datasets, the model achieved exceptional 
performance with 99.89% accuracy, 99.96% precision, 99.87% recall, and 99.91% F1-score, 
significantly outperforming the baseline and several other existing models. The findings 
confirm the power of metaheuristic optimization in enhancing detection accuracy and reducing 
false alarms. For future work, we recommend adopting the AE+WOA-XGBoost model in 
critical infrastructure systems, integrating metaheuristic feature selection in deep learning 
models, validating models across multiple datasets to ensure robustness, and implementing 
continuous learning mechanisms for sustained performance in evolving network environments. 
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