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Abstract

Recent research on Large Language Models (LLMs) has led to remarkable ad-
vancements in general NLP AI assistants. Some studies have further explored the
use of LLMs for planning and invoking models or APIs to address more general
multi-modal user queries. Despite this progress, complex visual-based tasks still
remain challenging due to the diverse nature of visual tasks. This diversity is
reflected in two aspects: 1) Reasoning paths. For many real-life applications, it
is hard to accurately decompose a query simply by examining the query itself.
Planning based on the specific visual content and the results of each step is usually
required. 2) Flexible inputs and intermediate results. Input forms could be flexible
for in-the-wild cases, and involves not only a single image or video but a mixture
of videos and images, e.g., a user-view image with some reference videos. Besides,
a complex reasoning process will also generate diverse multimodal intermediate
results, e.g., video narrations, segmented video clips, etc. To address such general
cases, we propose a multi-modal AI assistant, AssistGPT, with an interleaved
code and language reasoning approach called Plan, Execute, Inspect, and Learn
(PEIL) to integrate LLMs with various tools. Specifically, the Planner is capable
of using natural language to plan which tool in Executor should do next based
on the current reasoning progress. Inspector is an efficient memory manager to
assist the Planner to feed proper visual information into a specific tool. Finally,
since the entire reasoning process is complex and flexible, a Learner is designed
to enable the model to autonomously explore and discover the optimal solution.
We conducted experiments on A-OKVQA and NExT-QA benchmarks, achieving
state-of-the-art results. Moreover, showcases demonstrate the ability of our system
to handle questions far more complex than those found in the benchmarks.

1 Introduction

Large language models (LLMs) [1–4], especially ChatGPT [5], have made remarkable progress in
recent months, significantly advancing the field of developing AI assistants. Despite these advances,
a single LLM serving as an AI assistant still exhibits inherent limitations in certain abilities, such
as understanding visual environments and comprehending complex tasks, which restrict their utility
in real-world applications. To address these shortcomings, a promising solution is to explore the
integration and collaboration of multiple domain experts e.g., pretrained models or APIs, to tackle
complex tasks. Numerous efforts have been made in this direction. Some works [6–8] utilize language
as a bridge and transform the visual input into pure texts using foundational visual models, such as
captioner [9–11], object detectors [12–14], and OCR models [15, 16]. Subsequently, the extracted
texts are fed into LLMs for reasoning tasks like question-answering. Nonetheless, as for complex

∗Corresponding author.

ar
X

iv
:2

30
6.

08
64

0v
2 

 [
cs

.C
V

] 
 2

8 
Ju

n 
20

23

https://showlab.github.io/assistgpt/


Run the selected tool

Answer: Right-click on 
the “Midjourney Bot"

visual-0 visual-1

User AssistGPT

Question: I am trying to add Midjourney
to my own server. I have clicked the  
'show member icon', what should I do in 
the next step? Show it on my provided 
screenshot.

visual-0: a 627 seconds video, …, Midjourney Beginner Tutorial
visual-1: an image, …, the chat window with a painting on it. 

Thought: Locate the video clip regarding adding Midjourney to one's personal server.  

Action:
subtitle_ground("When was the video discussing adding Midjourney to a server?", visual[0])

Observation: the target clip is from 03:58 – 04:15 

visual-2: a 17 seconds video, …, target clip for query "When was the video …?"

Object Detection

Subtitle Grounding

Video Narration

Region Grounding

OCR Detection

ASR …

Executor

visual-2

LLM          plans what tool 
to use

Generate brief summary of 
visual inputs and 

intermediate results

Thought: Infer what is the next step after 
selecting the 'show member' icon?  

Action:
subtitle_reason("What is the next step after selecting the 'show member' icon?", visual[2])

Observation: Right-click on the "mid-journey bot" 

Thought: Find "mid-journey bot" on screenshot

Action: text_ground("mid-journey bot", visual[1])

Observation:the region is found

Planner

Inspector

visual-3: an image, …, target region for query "mid-journey bot"

visual-3

It is a successful try, save the whole reasoning process as an in-context example

Check the reasoning path to 
retry or save successful tries

Learner Thought: I know the final answer.
Final Answer: (Right-click on the "mid-journey bot", visual[3])

Figure 1: In-the-wild example of AssistGPT. AssistGPT can reason in an interleaved language and
code format. Given a query input and visual inputs, AssistGPT plans the problem-solving path in
language, using structured code to call upon various powerful tools. The Inspector, part of the system,
can manage visual inputs and intermediate results, assisting the Planner to invoke tools. Meanwhile,
the Learner can assess the reasoning process and collect in-context examples.

visual scenarios such as a long-form video with complicated scene switching, as shown in Fig. 1,
the generated texts may go well beyond the query requirements. This can lead to an abundance of
superfluous information while crucial details relevant to the query may be omitted.

Some other concurrent works propose decomposing user queries into subtasks and plan to sequentially
call external models or APIs to answer them. Currently, there are two branches of methods. The first
one is language-based planning [17–20]. For instance, HuggingGPT and Chameleon [17, 19] propose
using an LLM as a controller, managing and organizing the cooperation of expert models. Another
branch of work is code-based planning [21–23]. ViperGPT [21] proposes to use Codex to write the
Python code to call visual-related APIs for handling multi-modal tasks. These approaches allow for
invoking the models only when necessary, which allows models to only output useful information
and optimize the use of computation resources.

Despite this progress, addressing high-level queries is still challenging. Specifically, current questions
in existing benchmarks usually directly imply how to plan the reasoning. For example, for questions
like "What is the red object used for?", no matter what the image is, the reasoning steps are relatively
fixed, i.e., recognize the red object, then figure out its function. However, for more complex questions,
there could be diverse reason paths. For example, for question “How much black pepper should I
use for 700g beef?” in Fig. 2, the variations in the presentation of relevant information, whether it’s
in the form of subtitles, actions, text within videos, or a combination of these, can result in distinct
reasoning paths. Therefore, as shown in Fig. 2, once a reason-only approach makes a mistake, it
becomes difficult for it to self-correct.

Similar approaches are already proposed in the NLP field, such as ReAct [24] and ToolFormer [25].
However, there is a unique challenge in multimodal tasks: How to handle non-textual intermediate
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Thought: I need to see if the video gives 
specific measurements for using black 
pepper on beef.
Acton: Subtitle Ground 
Action Input: black pepper for beef 

Thought: I need to infer the amount of 
black pepper for 700g beef based on the 
information from the video.
Acton: Subtitle Reason
Action Input: how much black pepper should 
I use for 700g beef?

Question: How much black 
pepper should I use for 700g 
beef? Thought: … use Subtitle Ground Module to …

visual-0: a 197 seconds video, user-
provided, sparse subtitle, How to Cook 
Perfect Beef Stir Fry Every Time

subtitle_ground("black pepper for beef", 
visual[0])
Observation: Clip Not Found.

Thought: I need to know more information..

video_narration("Describe it", visual[0])

Observation: …
3-6: a person cutting a piece of beef on a cutting board. 
some texts on the frame (Beef 350 g Taste) …

narration_reason("how much ...", visual[0])

Thought: I need to infer how much black 
pepper should I use for 700g beef … 

Observation: 1 tsp

Reason-only with Language

ReAct with PEILInputs

video_segment = VideoSegment(video)
for frame in video_segment.frame_iterator():

if frame.exists("beef") and \
frame.exists("black pepper"):

return frame.simple_query("How much 
black pepper should I use for 700g beef?")

code = generate_code(question)

Code:

Code Execution:

answer = execute_code(code, video)

Parse Question:

Risk: the subtitles may not provide relevant context.
Risk: When introducing the measurements, 
beef and pepper may not be appeared together.

Reason-only with Code

Figure 2: Comparison of PEIL and two mainstream reasoning methods in multi-modal tasks.

result? For ReAct and ToolFormer, the outputs of external models can be directly fed into the Planner
and passed to subsequent models. While the intermediate results obtained in multimodal tasks usually
are cropped regions for the image grounding module, and segmented video clips for the temporal
location module, as shown in Fig. 1. In complex cases, it is hard for Planner to manage which
information should be fed into the next module.

In this paper, we propose a multi-modal AI Assistant system, named AssistGPT (The design
of our model’s icon is inspired by the HAL 9000 from the movie “A Space Odyssey”, a fictional
artificial intelligence character), with interleaved language and code reasoning method, inheriting
the advantages of flexible reasoning in ReAct and robust tool invocation in Program-based planning.
Specifically, our system consists of four parts, Planner, Executor, Inspector, and Learner. We show
how our system works in Fig. 1. Similar to ReAct, the Planner thinks about what needs to be done next
based on the current reasoning progress and invoking external models. What sets our method apart is
the use of formatted code to invoke external models. The Executor wraps external tools into a uniform
input and output format, allowing the tool to be invoked with structural commands. Simultaneously,
we have also proposed an Inspector, which manages visual inputs and intermediate results during the
reasoning process. It provides the Planner with summaries and metadata of all currently available
visual materials. The combination of the Inspector and the Executor allows the model to efficiently
implement complex reasoning. Moreover, it is challenging for the model to ensure correct reasoning
in a zero-shot scenario. The Planner might output invalid code or unreasonable paths. To enable
the system to continuously improve, we proposed the Learner, which checks whether the prediction
process is reasonable or judges the correctness of the predicted results based on annotations. It allows
the system to try multiple times and record successful examples as in-context examples.

The current version of AssistGPT integrates 10+ tools for different functions, including image
detection, captioning, region grounding, temporal grounding, OCR Module, object enumeration,
speech-to-text, etc. By combining these functionalities, AssistGPT can accomplish a wide range of
multi-modal tasks which are still hard for existing systems.

In summary, our contributions are as follows: 1) We constructed a general multimodal AI assistant
that can accomplish diverse visual-related tasks with the cooperation of multiple models. 2) We
propose a new compositional reasoning method that reasons over in an interleaved language and
code manner. A simple learning mechanism is also proposed to improve the AssistGPT’s ability in
planning. 3) We showcase AssistGPT’s capabilities not only the benchmark results but also some
realistic applications for processing complex images and long-form videos, understanding high-level
queries, and handling flexible inputs.

2 Related Work

Multi-modal Systems. Prior to the advent of LLM, remarkable works were done to design multi-
modal models for one or several specific tasks, such as focusing on visual appearance [26–31], visual-
related knowledge [32–37], action [38–40], ego-centric videos [41–44], instructional videos [45–47],
scene text [48–51], etc. They have achieved commendable results in specific tasks, however, their
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generalizability is relatively limited, making it challenging to address more complex and diverse
questions in real-world scenarios.

Recently, two types of strategies are proposed for developing a general multi-modal system. One is
pre-training LLM to support visual features as conditional inputs. The representative models are GPT-
4 [52], PaLM-E [53], BLIP-2 [54], and Mini-GPT4 [55]. Despite these methods being capable of
directly processing multi-modal input, they still exhibit limitations in addressing advanced functional
needs, such as image spatial grounding, long-form video grounding, and audio comprehension.
Additionally, the computational cost of scaling these models can be extremely high. The alternative
strategy aims to combine multiple models or APIs to accomplish complex multi-modal reasoning.
For instance, models like the Socratic model [6] and Visual ChatGPT [8] achieve this by connecting
ChatGPT with image generation models. HuggingGPT [17] combines a variety of Huggingface
models with LLMs. ViperGPT [21] employs Codex [56] to call visual APIs via Python programming.
Our AssistGPT falls into the second category by combining and invoking various modules for
multi-modal reasoning, but we propose a new framework PEIL for integrating external tools and
models.

Compositional Reasoning. Compositional reasoning methods in the field of visual question an-
swering usually decompose questions into several subtasks, each addressed by a specific module.
This kind of method offers strong interpretability due to its modular structure and the clear division
of responsibilities among the individual components. This idea was initially put forward by [57].
Subsequently, [58, 59] introduced an end-to-end variant based on LSTM and CNN. Traditional com-
positional reasoning methods are limited by language models’ parsing capabilities, often requiring
ground-truth question decomposition or reinforcement learning for optimal module usage.

With the advent of LLMs, question decomposition can be accomplished remarkably well in a zero-
shot manner. Chain-of-thought prompts [60], Toolformer [25], and ReAct [24] enable models to plan
how to solve an NLP problem. HuggingGPT [17] and ViperGPT [21] are multi-modal systems that
use LLM to parse a question into a series of reasoning steps. However, for complex queries, the
model needs to determine the subsequent steps based on not only questions but also visual inputs
or feedback from previously executed modules. MMReAct [61] introduced the idea of ReAct to a
multi-modal system to overcome it, while it is still under development and hasn’t demonstrated its
effectiveness on the benchmark. Previous methods reason over either language reasoning or code, and
as stated in the introduction, both have certain shortcomings. Our work first proposes an interleaved
language and code reasoning manner which can better handle general queries and complex visual
inputs.

Learning Schemes for Modular System. Early modular models primarily employed end-to-end
Reinforcement Learning (RL) to train each module’s planning and acting from scratch. While this
approach is practical for lightweight models, RL can introduce substantial overhead for systems
where each module is an LLM. Toolformer [25] proposes a self-supervised technique that optimizes
planning requiring only a handful of demonstrations for each API. Specifically, Toolformer attempts
various APIs to find successful examples and then fine-tunes the model. In contrast, we propose a
straightforward mechanism in the multi-modal field, which can guide the system to retry and preserve
the successful explorations as in-context examples.

3 AssistGPT

Overview. AssistGPT is a general multi-modal AI assistant system that can dynamically engage
various tools in an interleaved language and code manner. Specifically, given a general language query
and reference images or videos as inputs, the goal of AssistGPT is to generate the desired answer.
As shown in Fig. 3, AssistGPT is achieved by cooperation with four core modules: (a) Planner, (b)
Executor, (c) Inspector, and (d) Learner. The Planner § 3.1 aims to control the whole reasoning
process, with the Executor § 3.2 supplying valuable feedback to Planner by executing external tools.
The Inspector § 3.3 manages the input and intermediate results and assists the Planner in feeding
proper content to the Executor. The Learner § 3.4 is capable of assessing the system performance and
record successful explorations as in-context examples. In the following sections, we will go through
each module in detail.
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1. Validation 
Check

yes

User

Thought:  I need to find …
Action:

[… repeat above 𝑁𝑁 times until getting final answer] 
Thought: I know the final answer
Final Answer: …

Planner

Instruction Prompt:
Answer the following question as best as you can.
[Tool Set Illustration]
Text Detection Module: Used for detect the text 
[In-Context Example]
Question: …. Thought: … Acton: … Observation:…

Executor Inspector

Error Message 
Generation: 

<module> only 
takes video as 

input. 

no

2. Module Execution:

3. Post processing:
Crop image / Segment Video

BLIP Grounding 
DINO

Observation: …

…
Attribute Value

type video
source user-provided

duration 17
summary [caption]

… …

Image/Keyframe Captioner 
and Metadata Tool 

Summary of Metadata:
visual-1: a 17 seconds video, segmented 
video from visual-0, dense subtitle, target 
clip for query "When was the video …

video_narration("Describe what 
happens near the end of the video.", 
visual[0])

Summary: visual-0, a 48.27 seconds video, 
sparse subtitle, user provided video, a toy 
train on the floor …

narration_reasoning("why did the 
train stopped a while near the end 
of the video?", visual[0])

Final Answer: no more space to push cart x

1-st Try

1. Self-Check or 
GT Comparison

video_ground("Locate the end of the 
video.", visual[0])

video_narration("Describe it.", 
visual[1])

Final Answer: blocked by boy’s hand

narration_reasoning("why did the 
train stopped a while near the end of 
the video?", visual[1])

visual-1: a 12 seconds video, sparse subtitle, 
segmented video from visual-0, target clip 
for query “Locate the end …

2. In-Context Memory Bank:
Save as in-context example for 

better planning and module prompts

Learner

Observation: Output of a tool

Summary: visual-1: a 17 seconds video, …

module_name(arg1, arg2)

Inspector

Inspector

Executor

Summary of Input Videos and Images: 
visual-0, a 48.27 seconds video, …

Input Query: When was the video … ?

User✅

module_name(arg1, arg2)

Input Query: why did the train stopped a 
while near the end of the video?

User

Executor

Input Videos 
& Images

Processed
Videos 

& Images

2-nd Try

if fail

if success

evaluate

evaluate

❓

✅

Figure 3: Diagrammatic illustration of AssistGPT system. It consists of four core modules:
● Planner: control the whole reasoning process; ● Executor: execute external tool and return
feedback to Planner; ● Inspector: manage the input and intermediate outcomes; ● Learner: assess
the system performance and record successful trials as in-context examples.

3.1 Planner

The ● Planner employs a highly intelligent LLM i.e., GPT-4 [52] as the central brain to control the
global reasoning planning. It begins the planning process by taking inputs from three types of in-
formation: an Instruction Prompt consisting of the [Tool Set Illustration] and [In-Context

Example]2, Input Query , and the Summary of Visual Inputs created by ● Inspector.

Then it generates the appropriate output for the next step, which consist of two parts: Thought: a
language phrase indicates what should be done next. While it doesn’t affect the module or API
call directly, it aids the LLM planning procedure. Action: a structural string obeys the pre-defined
template provided in the instructions. It specifies which external tool to call and what arguments to
input, e.g., caption("what color is the car?", visual[0]) .

After each time ● Executor call to an external tool, the tool returns outputs in the form of natural
language, which we refer to as Observation . If the tool generates an intermediate outcome,
e.g., a segmented video, our ● Inspector will store it and generate a Summary for it. Both the
Observation and Summary will be fed to the ● Planner to guide the planning of the next step.

The following sections will introduce more details of Action, Observation , and Summary .

Currently, we integrate 13 functional tools in AssistGPT to power multi-modal assistance, as shown
in Tab. 1. These modules can be mainly categorized into three types:

• Descriptor: To effectively comprehend and utilize the data derived from intricate multimodal
environments e.g., image, video, audio, and text, we employ a variety of fundamental models as
basic descriptors for perception. These models, including (a) Image Caption, (b) Video Narration,
(c) Object Detection, (d) Text Detection, and (e) ASR Translation, enable us to extract enough
information from diverse source, thus enhancing our understanding of the multimodal sceanrio.

2The successful trials recorded by Learner, will be introduced later.
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Table 1: Module used in AssistGPT. A module may have different models, separated by a slash (/).

Module Usage Core Model Input Output Module Usage Core Model Input Output

(a) Image Caption BLIP series [9–11] T, I T (h) Text Ground Program + SSA [62, 63] T, I T, I
(b) Video Narration BLIP series [9–11] T, V T (i) Subtitle Ground GPT [5] T, Sub. T, V
(c) Object Detection G. Dino [64] / GLIP [13] T, I T (j) Knowledge Reason GPT [5] T T
(d) Text Detection Google OCR I T (k) Narration Reason GPT [5] T, Nar. T
(e) ASR Translation Whisper [65] A T (l) Subtitle Reason GPT [5] T, Sub. T
(f) Region Ground OFA [66] T, I T, I (m) Temporal Reason Rule-based T, V T, V

(g) Narration Ground GPT / CLIP [67] T, Nar. T, V I: Image, V: Video, T: Text, A: Audio, Nar.: Narration, Sub.: Subtitle

• Locator: As the saying goes, a picture is worth a thousand words. Images or videos typically
contain a wealth of information - objects, attributes, actions, events, and so on. However, the
abundance of information can sometimes obstruct our problem-solving process. One crucial
solution is to pinpoint the most crucial and valuable information from the rich sea of visual,
textual, and audio data This part incorporates several modules such as the (f) Region Ground, (g)
Narration Ground, (h) Text Ground, and (i) Subtitle Ground.

• Reasoner: The initial two sets of tools primarily deal with collect and identify of data, whereas
the third set focuses on reasoning, utilizing the extracted information and external knowledge.
This part incorporates modules such as (j) Knowledge Reason, (k) Narration Reason, (l) Subtitle
reason, and (m) Temporal Reason modules. These modules primarily utilize LLM at their core by
taking different types of information and prompts as inputs or a simple program.

3.2 Executor

The ● Executor takes the code generated by the ● Planner as input, then call a module to produce
the output by carrying out three steps to obtain the final result. These steps include validation check,
module execution, and post-processing, as shown in Fig. 3.

• Validation Check: Even powerful LLM like GPT-4 can sometimes generate illegal code. For
example, an image caption module accept a long video as input. We have designed a legality
check for each module to determine whether the code is executable. Moreover, if code includes
errors, we do not interrupt the entire reasoning process. Instead, we return an error message as
the output code to the ● Planner, allowing it to optimize the planning process in real-time.

• Module Execution: We standard various modules or APIs into a unified interface using the
code-style template i.e., [Module_Name](<text_query>, <visual_index>). Each module
is designed to accept multiple text queries and visual data (images or videos) as input. In
each standarded module, we provide instructions on its function and the requirements of the
argument, which is used for [Tool Set Illustration] in ● Planner. Additionally, for the sake
of simplicity and accuracy in Planning, the generated code is simplified. Later, a simple rule-based
function will map it to the executable codes and then execute it to obtain the final result.

• Post-processing: For all modules, the generated results will be translated into a language format
to inform the ● Planner about the outcome, as the Observation part illustrated above. For
instance, for the Narration Ground module, the model will return whether it has found the relevant
segment. If so, output the start and end times of the segment. Additionally, many Ground-related
modules will send their segmented video or cropped image region to the subsequent visual
outcome manager i.e., ● Inspector.

3.3 Inspector

The objective of the ● Inspector is to manage the visual inputs provided by the user and the
intermediary results produced by our system to assist the ● Planner in deciding which source should
be directed to which module. Specifically, the ● Inspector records the metadata of each visual
element, which includes its type (image or video), source (provided by the user or generated by
the system), and a brief description of the content (obtained from the caption model, or the title of
an online video). For videos, there is some additional metadata, such as the duration of the video,
whether it contains audio and subtitles. The ● Inspector monitors the inputs from the user and the
outputs from the ● Executor. As soon as a new visual element is received, it appends the metadata,
noted as Summary in the above, to the reasoning history of the ● Planner. With the cooperation of
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the ● Planner, ● Executor, and ● Inspector, our system can generate answers to difficult queries
with complex visual inputs.

3.4 Learner

Despite the robot generalization capabilities of LLMs, they can still easily encounter errors when
dealing with multi-modal type queries. Thus, it is essential for an AI assistant to have self-valuate
mechanism. To achieve this goal, we hope that the model can self-check the reasonableness of its
output. On the other hand, when ground truth is available, we intend to gather successful prediction
instances as in-context examples. Specifically, AssistGPT will repeatedly attempt to provide the
answer when the response is not satisfactory until either passes the self-check, or correct answer
is given (when ground truth is available) or a predefined maximum number of attempts is reached.
● Learner includes an evaluator implemented by the LLM, which operates in two modes: self-
assessment and ground-truth comparison. These modes are activated depending on the availability of
ground truth, and we discuss the two of them separately.

• Self-assessment mode is activated when there is no user feedback or ground truth available. It
takes the reasoning trace and the results of each step as input, allowing GPT to assess whether the
reasoning is complete, consistent, and adhere to the required format.

• Ground-truth comparison mode is activated when annotators provide ground truth. In this
mode, GPT evaluates whether the AssistGPT’s prediction is semantically consistent with the
provided ground truth.

Furthermore, ● Learner encourages to keep trying until it receives positive feedback or reachs the
maximum number of attempts. After conducting N times explorations, several outcomes may arise:

• No adjustments required: If the model delivers the correct answer on its initial attempt, this sug-
gests that AssistGPT can well-solve the current question effectively. Therefore, no improvement
is required.

• Plan Revision: If the model produces the correct answer after making n attempts, where
1 < n ≤ N , this implies that there is room for improving the model’s planning capabilities.
Therefore, we save the successful reasoning trace to [In-Context Memory Bank]. Consequently,
when the model comes across a similar query in the future, it can use this as an in-context example.

• Function Updates: If the model still fails to provide the correct answer even after N attempts, it
is highly probable that the problem resides in a specific module or API rather than the planning
process. It may necessitate incremental updates to the module. We will leave this for future work.

4 Experiments

4.1 Experimental Setting

Datasets. Our system is evaluated on A-OKVQA [33] and NExT-QA [68] benchmarks designed to
test comprehensive multimodal capabilities, including visual facts, commonsense, temporal sequences,
causality, etc. A-OKVQA [33] is an innovative benchmark for knowledge-aware visual question
answering with 25K questions that demand a high-level comprehension of commonsense and world
knowledge. These questions in A-OKVQA go beyond the information contained in the image and
cannot be answered solely by querying a knowledge base. Besides, the question is diverse, spanning
a wide range of domains such as commonsense reasoning, visually-grounded, knowledge-based,
and physical understanding. In our experiments, we assess the model performance under the in-
context learning setting on the validation set, which consists of 1,145 questions. NExT-QA [68] is
a benchmark for evaluating the AI system’s causal reasoning, temporal action reasoning, and rich
object interactions in video question answering. NExT-QA has a total of 5,440 videos, with averaging
44 seconds in length, and approximately 52K manually annotated question-answer pairs. In our
experiments, we assess the model performance under the in-context learning setting on the validation
set, which consists of 4,996 questions.

Implementation Details. In the following experiments, we use GPT-4 API provided by OpenAI [52]
as Planner. In the A-OKVQA experiments, we set Caption Module as BLIP2 or InstructBLIP
(abbreviated as Ins.BLIP), use the Gounding Dino for the Object Detection model, and Google
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OCR for Text Detection. For the NExT-QA experiments, our Video Narration Module is based on
InstructBLIP Vicuna-7B [11]. Our experiments are performed on 4 A5000 GPUs.

4.2 Quantitative Results

Table 2: Comparison of SOTAs on A-OKVQA dataset.
D.A. and M.C. indicate direct answer and multi-choice.
ICL: In-context Learning. ZS: Zero-shot inference.

Model D. A. M.C.

Su
p.

LXMERT [29] 30.7 51.4
KRISP [36] 33.7 51.9
GPV-2 [69] 48.6 60.3
InstructBLIP Vicuna-7B [11] 64.0 75.7

IC
L PromptCap [70] 56.3 73.2

AssistGPT (BLIP2 FlanT5XL [54]) 42.6 73.7
AssistGPT (Ins.BLIP Vicuna-7B) 44.3 74.7

Table 3: Ablation study of our AssistGPT
on A-OKVQA dataset. Ins.BLIP used here
is the pre-trained version.

LLM Model D.A. M.C.

- Ins.BLIP 13.4 53.8

Ins.BLIP + GPT-4 27.9 55.2

A
ss

is
tG

PT

Reason only 28.8 65.9
ReAct 30.1 68.2
PIE 32.4 72.4
PEIL w. Self-Check 41.2 74.2
PEIL w. GT-Check 44.3 74.7

Comparison with State-of-the-arts. From the results in Table 2, it can be seen that in the multi-
choice track, our two versions of AssistGPT (i.e., with light-weight BLIP2 FlanT5XL and more
powerful Ins.BLIP Vicuna-7B) achieve the best among all current methods on in-context learning
setting. It’s worth noting that we use a pre-trained version of InstructBLIP, which performs at 53.3%,
as shown in Table 3. When integrated into our system, it can enhance its performance to the level of
fine-tuning model. For direct answer questions, while our performance on it may not match that of
recently proposed models, it is still comparable to previous supervised SOTA, like GPV-2 [69].

Our performance on direct answers did not surpass previous methods. The main reason is that for
open-ended questions, models relying on LLM tend to output complete phrases rather than a single
word as the final answer, even when we prompt them to provide as concise an answer as possible.
For instance, for a given question "What flag is represented on the wall?", AssistGPT outputted the
answer, "United States flag", but the correct answer does not include the word "flag", therefore it’s
deemed incorrect. This type of error is very common in AssistGPT. In the appendix, we show more
examples to analyze the failure cases. Moreover, compared to the SOTA method, PromptCap [70], it
specifically trained a caption model toward generating captions for A-OKVQA, which is also the
reason for its good performance, while our system is more general.

From the results in Table 4, AssistGPT achieved higher performance than recently proposed su-
pervised methods, demonstrating the effectiveness of our approach. We can see that our model’s
performance mainly shows a more promising improvement in Causal and Descriptive questions,
mainly due to our model continuously obtaining detailed information related to the question from
the videos. Moreover, our method does not perform well on temporal questions. The main reason
for this is that there are relatively few open-world temporal grounding models available, and main-
stream work still involves fine-tuning on closed-world datasets. Therefore, we have to use the image
captioner InstructBLIP with GPT-4 to achieve temporal grounding. The effect is not as good as that
of fine-tuned models but has a more generalization ability. Furthermore, its performance is also
very close to recent concurrent work, ViperGPT [21]. The ViperGPT is a little bit superior to ours,
possibly because it has designed a sophisticated rule-based method, iteratively checking whether
objects appear in the frame to perform temporal grounding.

Ablation Study. We have designed several variants of AssistGPT to test the effectiveness of our
proposed method. The most basic baseline is InstructBLIP (note that all following models are
using Vicuna-7B version), which is the main source of visual information in AssistGPT. Since
InstructionBLIP cannot necessarily output the answer in the required format, we design a variant,
InstructionBLIP+GPT-4 allows GPT-4 to further refine the output of InstructionBLIP. The Reason-
only model directly plans all the steps the models need to run, similar to previous works [17]. The
ReAct model is capable of executing language-based ReAct. However, without Inspector and Code-
like invocation forms, a subsequent model can only accept the output of the previous model, which is
similar to [61]. We also ablate the Learner, which has three versions, PIE (i.e., w/o. Learner), PEIL
w. Self-Check and PEIL w. GT-Check.

From the results in Table 3, we can see that the Reason-only model, which plans all the steps
the models need to execute, showed a notable improvement in D.A. and M.C. This indicates that
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Table 4: Comparison of our AssistGPT with SOTAs on NExT-QA dataset.

Method Causal Temporal Descriptive All

Su
p.

HGA 44.22 52.49 44.07 49.74
VQA-T [71] 49.60 51.49 63.19 52.32
ATP [72] 53.10 50.20 66.80 54.30
VGT [73] 52.28 55.09 64.09 55.02
MIST [74] 54.62 56.64 66.92 57.18

IC
L ViperGPT [21] - - - 60.00

AssistGPT 60.02 51.38 67.26 58.36

integrating multiple models can enhance model performance. The ReAct model, despite not having
Inspector and Code-like invocation forms, showed a further improvement in both metrics, surpassing
the Reason-only model. This suggests the effectiveness of ReAct manner. But involving our
interleaved language and code, i.e., PIE, brings a more significant improvement on M.C. Finally,
the two variants of PIE with partial ablations, PEIL w. Self-Check and PEIL w. GT-Check, scored
the highest on both tracks, showing the effectiveness of the Learner. The Learner shows a more
significant improvement on D.A. tracks because models on D.A. often fail to output extremely short
answers as required by A-OKVQA. The Learner can mitigate it by collecting in-context examples.

4.3 Qualitative Results

Question1 : What kind of room is on the left of the yellow train? You must choose one 
answer from: nursery room, bathroom, changing room, waiting room

visual-0: an image, user-provided, a yellow and white 
train pulling into a train station

Thought: Check the visual 
information about the room on 
the left of the yellow train.
Action:

caption("What kind of room is 
on the left of the yellow 
train?", visual[0])

Observation: There is no room on 
the left of the yellow train.

Thought: The observation 
contradicts the visual 
description. I will try to 
locate the room in the image.
Action:

region_ground("room on the left of 
the yellow train", visual[0])

Observation: region found

visual-1: an image, cropped …

Thought: Now that I have the 
cropped image of the room, I 
can check its type.
Action:

caption("What kind of room is 
this?", visual[1])

Observation: Train station

Thought: Now that I have the 
cropped image of the room, I 
can check its type. Action:

caption("Is this a nursery room? 
Is this a bathroom? …", 
visual[1])

Observation: The answers for each 
question are: no, no, no, no

Thought: None of the given 
options match the observation.
Final Answer: None of the given 
options match the room.

AssistGPT: First Try

caption("Please provide more 
detailed information about this 
room?", visual[1])

Observation: The image depicts a 
group of people gathered at a 
train station, waiting for a 
train to arrive. 

AssistGPT: Successful Try

knowledge_reason("Based on the 
detailed information about the 
room, which of the following 
options is the most likely 
match: nursery room, bathroom, 
changing room, waiting room??", 
visual[1])

Observation: waiting room

region_ground("room on the left of the 
yellow train", visual[0])

Thought: I know the final answer.
Final Answer: waiting room

Reason-only Baseline

Describe the image in detail: The image depicts a busy train station, with 
several people standing on the platform waiting for their trains. There is a 
yellow and white train parked on one of the tracks, with passengers boarding 
and disembarking from the train. In the background, there are several 
other ….

InstructBLIP:

Answer the question based on the above information of the image:
Question: … You must choose one answer from: …

The information provided about the image does not specify what kind of 
room is on the left of the yellow train. Thus, it's impossible to definitively 
answer this question based on the given details.

GPT-4:

Question2 : why does the baby 
stop for a while near the end 
of the video? You must …

Thought: Locate the final moment 
in the video.
Action:

temporal_reason("end", 
visual[0])

Observation: The target clip is 
from 02:05-02:21.

visual-1: a 16 seconds video, 
cropped …

Thought: I need to know more 
information about the video.
Action:

Video_narration("did the baby 
play with the toy? was the baby 
attracted by the chair? did the 
baby look at the person filming? 
did the baby trip? did the baby 
reading from paper?", visual[1])

Observation: The answers for each 
question are: yes, no, yes, no, 
no

visual-0: a 81 seconds video, 
dense subtitle, user 
provided video, a little 
girl riding a tricycle on a 
sidewalk

Thought: I need to infer why

does the baby stop for a while near 
the end of the video?
Action:

knowledg_reason("why does the 
baby stop for a while near the 
end of the video? …", visual[1])

Observation: to look at the 
person filming

Thought: I know the final answer.
Final Answer: to look at the 
person filming

Figure 4: Qualitative results on A-OKVQA (Question 1) and NExT-QA dataset (Question 2).

In Fig. 4, we visualize some prediction cases from A-OKVQA (Question 1) and NExT-QA (Question
2). From both examples, it can be seen that AssistGPT can decompose the question into reasonable
sub-tasks and then complete them step by step, ultimately obtaining the final answer. Moreover, due to
the interleaved code and language reasoning method, the model can effectively invoke the necessary
content as input. From the reasoning process of Question 1, we can also see AssistGPT’s self-
correction ability. When the visual model output unsatisfactory results, AssistGPT can dynamically
invoke other modules, like the ground module to reason over another path. In addition, for Question

9



1, the model’s first attempt did not yield effective results, and it will autonomously optimize the
plan because it did not pass the self-check. In addition, we also present the result of the reason-only
baseline. It first calls InstructBLIP to output a caption, then uses GPT-4 for inference. Since the
information from the caption does not meet the requirements, resulting incorrect results. However,
once the prediction fails, the model does not have a way to self-optimize. It’s worth mentioning that
the most significant feature of our method is that it can solve more complex problems than those in
the benchmark, as the example in Fig. 1. We show more in-the-wild examples in the Appendix.

5 Conclusions and Limitations

In this paper, we propose a novel multi-modal assistant system named AssistGPT that leverages
an interleaved code and language reasoning approach, namely Plan, Execute, Inspect, and Learn
(PEIL). This innovative system integrates LLM with various tools to address the challenges posed
by complex visual-based tasks. Our experimental results on A-OKVQA and NExT-QA benchmarks
demonstrate AssistGPT’s effectiveness. Furthermore, we showcase our system’s ability in handling
diverse and intricate real-world scenarios. Our system also has some limitations. Our approach does
not propose an end-to-end updating solution, which is crucial when the tools used make mistakes.
Another limitation is that the planning process requires an extensive explanation of tools, resulting in
a relatively large overhead, which could be improved by distilling a smaller size planner.

Appendix

In the appendix, we provide additional details for the main paper:

• More discussion with existing modular systems in Sec. A
• More details of AssistGPT in Sec. B.
• More qualitative results of A-OKVQA in Sec. C.
• More in-the-wild examples in Sec. D.

A Discussion with Existing LLM-driven Modular Systems

Table 5: Comparison of existing LLM-driven modular systems. We compare existing methods
from four dimensions: Task Focus, Reasoning Method, Source Management (how they manage
input and intermediate results), and whether they have learning capabilities. The term "ReAct" in
the table does not strictly refer to using the ReAct [24], but rather it denotes planning and executing
concurrently.

Model Task Focus Reasoning Source Management Learning
NLP Image Video Format ReAct Input format Method

Toolformer [25] ✓ ✗ ✗ lang. & prog. ✓ text-only - ✓
WebGPT [75] ✓ ✗ ✗ program ✓ test-only - ✓

Visual ChatGPT [8] ✗ ✓ ✗ language ✗ multi. V. Filename ✗
ViperGPT [21] ✗ ✓ ✓ program ✗ single V. Variable ✗
VisProg [22] ✗ ✓ ✗ program ✗ single V. Variable ✗
MM-ReAct [61] ✗ ✓ ✓ language ✓ multi V. Filename ✗
Chameleon [19] ✓ ✓ ✗ language ✗ single V. Cache update ✗
HuggingGPT [17] ✗ ✓ ✓ language ✗ multi V. Filename ✗

AssistGPT (ours) ✗ ✓ ✓ lang. & prog. ✓ multi V. Inspector ✓

In Table 5, we compare the existing LLM-driven modular systems with our AssistGPT from four
perspectives:

Task Focus. From the perspective of Task Focus, there are currently three works that can handle
videos: Hugging GPT [17], MM-ReAct [61], and ViperGPT [21]. Hugging GPT and MM-ReAct
merely demonstrate their capabilities in handling videos through a few simple examples (thus we mark
them with orange checkmarks ✓). For instance, Hugging GPT exhibits its video generation feature,
while MM-ReAct showcases its ability to perform tasks such as summarization and localization based
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on subtitles. However, these methods have not been validated on any benchmark. ViperGPT can
handle questions based on visual content. Compared to these works, AssistGPT is capable of dealing
with more complex and general video question-answering tasks, including understanding subtitles,
visual content, and OCR, and demonstrating long video comprehension capabilities.

Reasoning. In terms of reasoning, existing Multi-modal models primarily adopt a reason-only style,
that is, directly deriving the solution steps based on the question. This approach struggles with
handling complex visual inputs, and when the intermediate results don’t meet expectations, the
model also finds it hard to self-correct. MM-ReAct introduces the original ReAct for reasoning in
Multi-modal tasks, but due to the original ReAct’s inadequacy in dealing with complex non-text
intermediate results, its current planning scheme for addressing video-related issues is basically two
steps: extracting all information from the video and then having an LLM answer the question. In
contrast, this paper proposes a more general Plan, Execute, Inspect, and Learn (PEIL) reasoning
scheme. In the case of complex videos, our interleaved language and code reasoning approach
allows for flexible language planning for the next step, and structured code for invoking input and
intermediate results, thereby facilitating the handling of complex questions and visual content.

Source Management. Handling complex input and a large number of intermediate results is often
crucial in complex reasoning processes. Current language-based reasoning methods mainly use
filenames to label resources. Chameleon proposes an update mechanism with a cache that constantly
updates the current reasoning results. Program-based reasoning, on the other hand, uses variables
to store intermediate results. A deficiency of these methods is the inability of the language-based
Planner to quickly comprehend the content of visual sources, which impedes the effective use of
different sources to complete different subtasks. As a result, existing work struggles to handle flexible
input and intermediate results. Even though some work supports multiple visual sources as input, they
are more often batch-processed for similar tasks, with each source requiring similar operations. For
instance, in HuggingGPT, the task of calculating the sum of the number of zebras in several images
involves counting the number of zebras in each image. In contrast, our work introduces the Inspector,
which records the metadata and summary of each visual source and provides it to the Planner for
reasoning. This design can support complex input. For example, a user view image that describes
the current user’s problem, and a reference video as a source of knowledge, AssistGPT can then use
these two different types of sources to jointly answer the user’s question.

Learning. Most multi-modal modular systems lack the capability for continuous optimization. This
paper proposes a simple update mechanism that allows the model to self-check the reasonableness of
its output and ultimately continues to collect in-context learning examples.

B More details of AssistGPT

Table 6: Invoke Commands and Illustrations to the Modules in AssistGPT.

Module Invoke Command Illustration

(a) Image Caption caption(query, visual[i]) extract the visual information in an image.
(b) Video Narration video_narration(query, visual[i]) output narration based on video’s visual information.
(c) Object Detection object_detect(query, visual[i]) detect required objects in an image.
(d) Text Detection text_detect(None, visual[i]) extract the OCR in an image.
(e) ASR Translation asr(None, visual[i]) transcribe audio to text.
(f) Region Ground region_ground(query, visual[i]) locate the queried region in an image.
(g) Narration Ground narration_ground(query, visual[i]) find the clip based on the narration of a video.
(h) Text Ground text_ground(query, visual[i]) find the location of a specific text in an image.
(i) Subtitle Ground subtitle_ground(query, visual[i]) find the clip based on the subtitle of a video.
(j) Knowledge Reason knowledge_reason(query, []) infer the answer based on the commonsense.
(k) Narration Reason narration_reason(query, visual[i]) infer the answer based on narration of a video.
(l) Subtitle Reason subtitle_reason(query, visual[i]) infer the answer based on subtitle of a video.
(m) Temporal Reason temporal_reason(query, visual[i]) find the clip based on temporal relationship words.

In Table 6, we show the invoke commands and illustration of each module in AssistGPT. We provide
more details of how each module is implemented.

• Image Caption: The core model of this module is a text-conditioned captioning model, e.g.,
BLIP2 [54], InstructBLIP [11], similar to an open-ended Visual Question Answering model.
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• Video Narration: As the general video captioning models are not yet mature, we currently use
the image captioning model [54, 11] to accomplish this function. Specifically, we sample image
frames (1/3 FPS for current implementation) and perform text-conditioned captioning on each
frame. We employ text-conditioned captioning because, if we use dense captioning, the output
text will be excessively abundant, making it difficult for subsequent models to utilize. The Video
Narration feature can also optionally read the OCR content within the frames. The extracted OCR
will be appended to the caption of each frame.

• Object Detection: The main function of this module is to determine whether the image contains
the objects mentioned in the query and to address counting-related questions. Thus, it contains
an open-set object detection model, e.g., Grounding DINO [64], which can output the bounding
boxes of relevant objects based on the query. We also let the module calculate the number of
related objects.

• Text Detection: This model is used to extract OCR from images, and the extracted text is returned
to the Planner. We use Google OCR to achieve this purpose.

• ASR Translation: This model is used to convert audio from a video into text. We use Ope-
nAI’s open-source ASR (Automatic Speech Recognition) model, Whisper [65], to accomplish
this. The detected ASR organizes timestamps and text in a manner similar to subtitles. In the
implementation, we automatically run this module as soon as we receive a video with audio.

• Region Ground: The purpose of this module is to find a specific area of an image based on the
query. We use the OFA-Large [66], which is fine-tuned on RefCOCO, to achieve it.

• Narration Ground: This model’s function is to find time segments related to the query based
on the video’s narration. We propose two implementations: 1) We use GPT-4 [5], taking the
video’s narration and query as prompts, to output the timestamps of the time segments. 2) Another
solution is using CLIP [67] to do that. We can split the video into several segments, and calculate
the similarity between the frame in each segment and query. The time stamps of the segment with
the highest similarity will be outputted. In our preliminary experiments, the first solution showed
better interpretability and generalization ability, so it was adopted in the benchmark evaluation.

• Text Ground: The purpose of this model is to locate specific areas of an image that correspond to
a certain text. This capability can guide users in identifying crucial information in complex, text-
rich images, such as user interfaces. The query format is text[:object_name], wherein text
signifies the text to be located, and object_name (which is optional) is used to locate the text
on a specific object, for instance, "menu: button". Specifically, the model operates in two stages:
1) Based on the Optical Character Recognition (OCR) detection results, the model identifies
areas of the image that match the text segment of the query. This is achieved by calculating
the distance between the query and the OCR extracted, and when the edit distance is below a
particular threshold, it is considered a match. 2) If more than one textual area is identified, we
further refine the results based on the object’s name. We employ the Semantic Segment Anything
(SSA) [63] to segment the image semantically, identifying regions that match the object’s name
mentioned in the query.

• Subtitle Ground: This model is similar to the narration grounding model, but it uses the video’s
subtitles as input instead of the narration. Thus, we also use GPT-4 to achieve it.

• Knowledge Reason: The purpose of this model is to enable the model to apply external knowledge
to answer questions. We currently do not connect to the internet to retrieve knowledge, but use the
knowledge that GPT-4 has itself learned. Specifically, this model enables GPT-4 to use its own
knowledge to infer the answer based on the question and results of all previous reasoning steps.

• Narration Reason: The aim of this module is to infer some information based on the visual
content of the video. This module also uses GPT-4, taking the query and the input video’s
narration as prompts, to infer the answer.

• Subtitle Reason: The aim of this module is to infer some information based on the subtitle of the
video. It is similar to Narration Reason, but takes the input video’s subtitle and query as prompts,
to infer the answer.

• Temporal Reason: This model is able to find a video clip based on some temporal relation words.
The input to this module follows the following format: temporal_word: time stamps, e.g., after:
3 - 6. Temporal relation words include two types, one is absolute temporal relation words, such
as in the middle/beginning/end of the video. The second type is relative temporal relation words,
such as before and after. For the first type of words, we divide the video into 5 segments and then
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output the time stamps of the corresponding segment according to the temporal_word. For the
second type, we divide the video into 8 segments, and then, according to the input time stamps,
we output the time stamps of the segment before or after it. The current hyperparameters, the
division of video clips, are still preliminary. It would be much better to use the model to divide
them semantically, and then perform temporal reasoning in the future.

C Qualitative Results in A-OKVQA

In Figure 5, we showcase a successful instance along with several failure examples, illustrating the
most frequent error patterns in A-OKVQA. As is evident, AssistGPT can produce highly interpretable
answer processes. Moreover, even in cases where the questions are answered incorrectly, there are
relatively reasonable explanations provided. In the following, we illustrate the common error patterns
in detail:

• Undesired output format: For Direct Answer questions, like Q2, the results of AssistGPT are
the same as the correct answers in meaning, but the expression is different, which would be
considered as incorrect under the existing metrics.

• Fine-grained recognition: The recognition of fine-grained categories of some objects is still
not well done by existing visual models, resulting in the incorrect final answer. For example,
AssistGPT didn’t successfully recognize cough drops in Q3.

• Pose-to-text: Currently, there are very few models that can map the fine-grained pose or actions
of people or animals to natural language. For example, capturing the upward jump action of the
cat in Q4 is a challenge. AssistGPT currently does not incorporate a related model to grasp such
information. Instead, it makes prediction based on the surrounding objects in relation to the cat.

• Inconsistent reasoning: Despite AssistGPT having some self-error correction mechanisms, it
occasionally exhibits inconsistencies in its reasoning process, which can lead to final inaccuracies.
For instance, in Q5, the model initially identifies the orange vehicle as a truck, but in subsequent
steps, it is referred to as a shuttle bus. Unfortunately, AssistGPT fails to detect this inconsistency
and does not proceed to make necessary corrections.

D In-the-wild Prediction Examples

We show some examples of AssistGPT handling in-the-wild scenarios in Figure 6 and Figure 7.
From various in-the-wild examples, it’s clear that AssistGPT can adeptly handle a range of video
types, be it dense, subtitled instructional videos (Q2, Q3), or those featuring rich, visual content with
sporadic on-frame text (Q1, Q4, Q5). Impressively, when faced with high-level queries (Q2 and Q3),
the model exhibits a capacity to strategically locate useful content, accurately identify the correct
responses, and offer comprehensive, multimodal answers. A notable self-error correction capability
is also evident during its reasoning process, as demonstrated in Q2. Here, the narration model was
unable to generate meaningful narrations and, therefore, opted to utilize the subtitle to answer the
question.

Moreover, in Q5, we highlight that our model can effectively process multiple video inputs serving
different functions. This includes a User view image and a couple of reference videos. It’s important
to note that our model can accommodate any number of inputs. Consequently, with the incorporation
of a YouTube video search function, the model could autonomously seek out several reference videos
and then cross-reference them to discern the user’s intent.

In summary, we want to emphasize that AssistGPT is a comprehensive multi-modal assistant system,
capable of managing a wide array of real-world application queries that are far more complex and
comprehensive than the samples provided in benchmarks.
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Question3: What item on 
the desk could help with a 
cold? You must choose one 
answer from: cough drops, 
syringe, pills, herbal tea

visual-0: an image, user 
provided image, main 
content is  a woman 
reading a book in front 
of a laptop

Thought: Check the visual 
information about the 
items on the desk in the 
image.
Action:

caption("What items are on 
the desk in the image?", 
visual[0])

Observation:
On the desk in the image, 
there is a laptop computer, 
a notebook, and a pen.

Thought: None of the given 
options are present in the 
image. I need to choose the 
best option based on common 
sense knowledge. Action:

knowledge_reason("Which 
item is most likely to help with 
a cold: cough drops, syringe, 
pills, or herbal tea?", [])

Observation: herbal tea

Thought: I know the final 
answer.
Final Answer: herbal tea

Question4: What activity 
does the cat appear most 
likely to do? You must 
choose one answer from: 
drink, jump, eat, sleep

visual-0: an image, user 
provided image, main 
content is  a cat sitting 
on the floor looking at 
an oven

Thought: Check the visual 
information about the cat 
and its surroundings.
Action:

caption("What is the cat 
doing and what is around 
it?", visual[0])

Observation:
The cat is sitting on the 
floor in front of an open 
oven, staring up at the 
reflection of itself in 
the oven's glass door. 
There is also a bowl and 
a water bottle nearby.

Thought: Determine the 
most likely activity the 
cat will do based on the 
objects around it. Action:

knowledge_reason("Given 
that the cat is sitting in 
front of an open oven with 
a bowl and a water bottle 
nearby, what activity is 
it most likely to do: 
drink, jump, eat, sleep?", 
[])

Observation: drink

Thought: I know the final 
answer.
Final Answer: drink

Question5: What are the orange vehicles for? You must 
choose one answer from: police, shuttle, passengers, air 
traffic

visual-0: an image, user provided image, main 
content is  two airplanes on a runway

Thought: Check the visual 
information about the 
orange vehicles in the 
image. Action:

caption("What are the 
orange vehicles for in 
the image?", visual[0])
Observation:
The orange vehicles in 
the image are tow trucks.

Thought: I need more information about the tow trucks to 
determine their purpose. Check the choice one by one.
Action:

caption("Are the orange vehicles for police? Are the orange 
vehicles for shuttle? Are the orange vehicles for passengers? 
Are the orange vehicles for air traffic?", visual[0])

Observation: The answers for each question are: no, Yes, the 
orange vehicles are shuttle buses., No, Yes, the orange 
vehicles are for air traffic control.

Thought: I know the 
final answer.
Final Answer: shuttle

Question2: Which number 
birthday is probably being 
celebrated?

visual-0: an image, user 
provided image, main 
content is  a teddy bear 
cake on a table

Thought: Check the visual 
information about the 
birthday number in the 
image.
Action:

text_detect(None,visual[0])

Observation:
Figna,Troy,30,afo

Thought: I found the number 
30 in the image. It could be 
the birthday number 
Final Answer: 30
Ground truth: 
['thirty’, '30th’, 'thirty’,  
'thirty’, 'thirty’, '30th’,
'thirty’, 'thirty’, 
'thirty’, 'thirty']

Question1: What is the man 
in the gray suit on the 
left looking down to check? 
You must choose one answer 
from: phone, tablet, 
notebook, pager

visual-0: an image, user 
provided image, main 
content is  two men in 
gray suits sitting at a 
table

Thought: Check the visual 
information about the man 
in the gray suit on the 
left.
Action:

region_ground("man in the 
gray suit on the left", 
visual[0])

Observation:
region found

Thought: Check what the man 
in the gray suit on the left 
is looking down to check.
Action:

visual-1: an image, 
cropped image from visual-
0, main content is man in 
the gray suit on the left 
region

caption("What is the man 
is looking down to 
check.?", visual[0])
Observation:
The man is looking down to 
check his cell phone.

Thought: I know the final 
answer.
Final Answer: phone

Figure 5: Reasoning process of AssistGPT on A-OKVQA. The choice colored with green in the
question indicates the ground truth.

14



Question1: Which country was Messi's second goal scored against?

visual-0: a 146.59 seconds video, no meaningful 
subtitle, user provided video, Every Lionel Messi 
Goal from the 2022 FIFA World Cup

Thought: I need to find 
the segment of Messi's 
second goal
Action:

video_narration("Describe 
what Messi is doing.", 
visual[0])

Observation:
…
9-12: he is celebrating 
with his team mates
12-15: he is kicking the 
ball into the goal
15-18: he is dribbling 
the ball
…

Thought: Find the segment 
of Messi's second goal.
Action:

video_ground("when does 
Messi score his second 
goal?", visual[0])

Observation: the target 
clip is from 12-27

visual-1: a 15 seconds 
video, no meaningful 
subtitle, segmented from 
visual-0, …

Thought: Identify the 
country Messi scored his 
second goal against.
Action:

text_recognize(None, 
visual[0])

Observation: 
63:27
ARG O O MEX
WORLD'S BEST AIRLINE
QATAR AIRWAYS
QATAR AIRWAYS
16
VorldCr
FIFAⓇ
WORLD'S BEST AIRLINI

Thought: Infer which 
country was Messi‘s 
second goal scored 
against.
Action:

knowledge_reason("which 
country was Messi's 
second goal scored 
against?", [])

Observation: Mexico

Thought: I know the final 
answer. 
Final Answer: Mexico

AssistGPT

Question2: How to grip the racket when striking? And show me a 
video clip to illustrate it.

visual-0: a 279.08 seconds video,  Dense Subtitle, 
user provided video, Common Beginner Badminton 
Mistakes - Do And Don'ts 2

Thought: Find the video 
segment that shows how to 
grip the racket when 
striking.
Action:

subtitle_ground("How to grip 
the racket when striking?",
visual[0])

Observation:
The target clip is from 
32.16 to 42.8 in subtitle.

Thought: Describe the video 
clip to provide the answer.
Action:

video_narration("Describe 
it.", visual[1])

Observation:
0-3: badminton court - how 
to play badminton
3-6: how to hit a badminton 
ball
6-9: how to play badminton

visual-1: a 10.64 seconds 
video, dense subtitle, 
segmented video from visual-0,
Talking about "How to grip 
the racket when striking"

Thought: The narration 
doesn't provide enough 
information about gripping 
the racket. I need to watch 
the video more closely.
Action:

video_narration("Describe 
how to grip the racket when 
striking.", visual[1])

Observation: 
0-3: Describe how to grip 
the racket when striking
3-6: how to grip the racket 
when hitting the ball
6-9: Describe how to grip 
the racket when striking

Thought: The video narration 
still doesn't provide enough 
information about gripping 
the racket. I will try to 
find more information from 
the subtitles.
Action:

subtitle_reason("How to grip 
the racket when striking?", 
visual[1])

Observation: When striking, 
grip the racket with a 
forehand grip, which allows 
you to rotate the forearm 
and generate more power in 
your shots. This grip also 
enables you to get into a 
side-on position and bring 
your elbow back, giving you 
more control and deception 
with your overhead shots.

Thought: I know the final answer. 
Final Answer: When striking, grip the racket with a forehand grip, which allows you to rotate the forearm and generate more power 
in your shots. This grip also enables you to get into a side-on position and bring your elbow back, giving you more control and 
deception with your overhead shots. To see a video clip illustrating this, please check the visual output. (visual[1])

AssistGPT

Figure 6: The reasoning process of AssistGPT when handling in-the-wild questions.
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Question4: How to Cook Perfect Beef Stir Fry?

visual-0: a 197.12 seconds video, no meaningful subtitle, 
user provided video, How to Cook Perfect Beef Stir Fry 
Every Time

Thought: I need to watch the video and narrate the content.
Action:

video_narration("Describe it.", visual[0])

Observation: 
0-3: asian beef stir fry. Texts on the frame (Taste)
3-6: a chef is preparing a beef dish Texts on the frame (Beef 350 g
Taste)
6-9: a person is cutting a piece of meat. Texts on the frame (Taste)
9-12: a person is cutting a piece of meat. Texts on the frame (e
Taste)

Thought: I have the narration of the video, now I can 
summarize the steps to cook perfect beef stir fry.
Final Answer:
To cook perfect beef stir fry, follow these steps: 
1. Slice 350g of beef. 
2. Cut 100g of carrots and 200g of broccoli. 
3. Mince 15g of garlic. 
4. Heat a wok with cold oil to prevent sticking. 
5. Cook the beef in the wok. 
6. Add the vegetables and cook them. 
7. Add 1 tsp of soy sauce and some water. 
8. Mix water and cornstarch, then add it to the wok. 
9. Add some lemon juice. 
10. Serve the stir fry over cooked brown rice.

AssistGPT

Question5: List all the ingredients for the dish and their weights.

Thought: I need to find the ingredients and their weights 
in the video.
Action:

video_narration("Describe the ingredients and their 
weights.", visual[0])

Observation: 
0-3: asian beef stir fry. Texts on the frame (Taste) …
84-87: garlic. Texts on the frame (Garlic 15 g Taste) …
132-135: 1 cup of broccoli florets. Texts on the frame (Taste) …

Thought: I have found the ingredients and their 
weights in the video narration.
Final Answer:
The ingredients and their weights for the beef 
stir fry are: Beef 350g, Soy Sauce 1 1/2 tsp, 
Carrot 100g, Broccoli 200g, Garlic 15g, and Cooked 
Brown Rice.

AssistGPT

visual-0: a 917.51 seconds video, Dense subtitle, user provided video, GoPro Hero 8 Black Best Tips and Tricks!
visual-1: a 1783.08 seconds video, Dense subtitle, user provided video, GoPro Hero 10 Beginners Guide & Tutorial _ 
Getting Started 
visual-2: an image, user provided image, main content is a close up of a person holding a smart watch.

Thought: First, I need to 
understand what the 
setting in the image is. 
I will use the 
text_detect tool to read 
any visible settings or 
text in the image.
Action:

text_detect(None, 
visual[2])

Observation: 
Linear + Horizon Lock, Full 360 
rotation.

Thought: The text 
recognition tool provided 
the setting information, 
which is “Linear + Horizon 
Lock, Full 360 rotation.” 
It appears to be a setting 
or a feature of a device, 
possibly the smartwatch in 
the image. … I'll use the 
subtitle_ground tool on 
both videos to find a 
segment that mentions this 
setting. Action:

subtitle_ground("Linear 
+ Horizon Lock, Full 360 
rotation", visual[0])

Observation: Warning: 
Relevant clip didn’t 
found.

Thought: The first video 
doesn't contain the required 
information. I'll now try 
the same action with the 
second video.
Action:

subtitle_ground("Linear 
+ Horizon Lock, Full 360 
rotation", visual[1])

Observation: the target 
clip is from 18:02 –
18:44

Thought: The 
subtitle_ground tool found 
a clip from the second 
video that mentions "Linear 
+ Horizon Lock, Full 360 
rotation." This video 
segment should illustrate 
what these settings mean.
Final Answer: (The meaning 
of the setting 'Linear + 
Horizon Lock, Full 360 
rotation' is explained in 
the extracted video clip, 
visual[3])

AssistGPT

visual-3: a 42 seconds 
video, segmented video 
from visual-1, dense 
subtitle, target clip 
for query "Linear + 
Horizon Lock, Full 360 
rotation"

Question3: Show me a video to illustrate what is the meaning of the setting in the image? 

Figure 7: The reasoning process of AssistGPT when handling in-the-wild questions.
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