arXiv:2307.16789v1 [csAl] 31 Jul 2023

Preprint

w /

@ ToOLLLM: FACILITATING LARGE LANGUAGE
MODELS TO MASTER 16000+ REAL-WORLD APIS

Yujia Qin'*, Shihao Liang'-%*, Yining Ye', Kunlun Zhu'-2, Lan Yan'2, Yaxi Lu!,
Yankai Lin®', Xin Cong’, Xiangru Tang?, Bill Qian®, Sihan Zhao', Runchu Tian',
Ruobing Xie®, Jie Zhou®, Mark Gerstein*, Dahai Li>®, Zhiyuan Liu'f, Maosong Sun'"
!Tsinghua University 2ModelBest Inc. *Renmin University of China

4Yale University WeChat Al, Tencent Inc. 6Zhihu Inc.

yujiaginl6@gmail.com

ABSTRACT

Despite the advancements of open-source large language models (LLMs) and their
variants, e.g., LLaMA and Vicuna, they remain significantly limited in performing
higher-level tasks, such as following human instructions to use external tools (APIs).
This is because current instruction tuning largely focuses on basic language tasks
instead of the tool-use domain. This is in contrast to state-of-the-art (SOTA) LLMs,
e.g., ChatGPT, which have demonstrated excellent tool-use capabilities but are
unfortunately closed source. To facilitate tool-use capabilities within open-source
LLMs, we introduce ToolLLM, a general tool-use framework of data construction,
model training and evaluation. We first present ToolBench, an instruction-tuning
dataset for tool use, which is created automatically using ChatGPT. Specifically, we
collect 16, 464 real-world RESTful APIs spanning 49 categories from RapidAPI
Hub, then prompt ChatGPT to generate diverse human instructions involving these
APIs, covering both single-tool and multi-tool scenarios. Finally, we use ChatGPT
to search for a valid solution path (chain of API calls) for each instruction. To make
the searching process more efficient, we develop a novel depth-first search-based
decision tree (DFSDT), enabling LLMs to evaluate multiple reasoning traces and
expand the search space. We show that DFSDT significantly enhances the planning
and reasoning capabilities of LLMs. For efficient tool-use assessment, we develop
an automatic evaluator: ToolEval. We fine-tune LLaMA on ToolBench and obtain
ToolLLaMA. Our ToolEval reveals that ToolLLaMA demonstrates a remarkable
ability to execute complex instructions and generalize to unseen APIs, and exhibits
comparable performance to ChatGPT. To make the pipeline more practical, we
devise a neural API retriever to recommend appropriate APIs for each instruction,
negating the need for manual API selection. The codes, trained models, and demo
are publicly available athttps://github.com/OpenBMB/ToolBench.

1 INTRODUCTION

Tool learning (Qin et al.l [2023b) aims to unleash the power of large language models (LLMs) to
effectively interact with various tools (APIs) to accomplish complex tasks. By integrating LLMs
with APIs, we can greatly expand their utility and empower them to serve as efficient intermedi-
aries between users and the vast ecosystem of applications. Although open-source LLMs, e.g.,
LLaMA (Touvron et al.,2023) and Vicuna (Chiang et al., 2023)), have achieved versatile capabilities
through instruction tuning (Taori et al., 2023} [Chiang et al., 2023; Ding et al., |[2023)), they still lack
the sophistication in performing higher-level tasks, such as understanding human instructions and
appropriately interacting with tools (APIs). This is because current instruction tuning largely focuses
on basic language tasks (e.g., general conversation), instead of the tool-use domain. On the other
hand, current state-of-the-art (SOTA) LLMs (e.g., ChatGPT (OpenAl, 2022) and GPT-4 (OpenAll,

* Indicates equal contribution.
" Corresponding author.

https://github.com/OpenBMB/ToolBench

Preprint

4 N
______ Data Construction & Train & =
- - © — ompn-
Instructlan Solutlon Path N API Retriever Retrieved APIs
Collectlon Generatlon Annotation T y
- f - .
Instructlons & relevant APIs . [:_3 nstruction (';:)
i < -y TooIBench $
' £_ & X =
Q Rapidari =\ (i D — _v(“" Robid
= =k
S RapidAPI AP| Retriever ~ ToolLLaMA LLaMA 8 ToolEval)
Figure 1: Three phases of constructing ToolBench and how we train our API retriever and ToolLLaMA.

During inference of an instruction, the API retriever recommends relevant APIs to ToolLLaMA, which performs
multiple rounds of API calls to derive the final answer. The whole reasoning process is evaluated by ToolEval.

2023)), which have demonstrated impressive competencies in skillfully utilizing tools (Qin et al.|
2023b; |Bubeck et al., [2023)), are closed-source with their inner mechanisms opaque. This limits the
democratization of Al technologies and the scope of community-driven innovation and development.
In this regard, we deem it urgent to empower open-source LLMs to skillfully master diverse APIs.

Although prior works have explored building instruction
tuning data for tool use (Li et al., [2023a; Patil et al., |2023;
Tang et al., 2023} Xu et al., 2023b)), they fail to fully
stimulate the tool-use capabilities within LLMs and have
inherent limitations: (1) limited APIs: they either fail to
involve real-world APIs (e.g., RESTAPI) (Patil et al.}[2023]
Tang et al.,|2023) or consider only a small scope of APIs
with poor diversity (Patil et al.| 2023 Xu et al.,[2023b; |L1
et al.,|2023a)); (2) constrained scenario: existing works
are confined to instructions that only involve one single
tool. In contrast, real-world scenarios may require that Vicuna & Alpaca

multiple tools are interleaved together for multi-round tool %% 02 0.4 06 08
execution to solve a complex task. Besides, they often Pass Rate

assume that users specify the ideal API set for a given

0.8

ToolLLaMA-DFSDT %
ChatGPT-DFSDT

o
=)

ChatGPT-ReACT

[J
Davinci-DFSDT

Win Rate
o
ES

Davinci-ReACT
A

o
)

instruction in advance, which is infeasible when a large
collection of APIs are provided; (3) inferior planning
and reasoning: existing works adopted simple prompting

Figure 2: Pass rate and win rate of differ-
ent methods in tool-use evaluation (higher
is better). For win rate, we compare each

method with ChatGPT-ReACT. DFSDT is
our improved reasoning strategy over ReACT.
ToolLLaMA surpasses Text-Davinci-003 and
almost performs on par with ChatGPT.

method (e.g., chain-of-thought (CoT) (Wei et al.| |[2023)
or ReACT (Yao et al.,|2022)) for model reasoning, which
cannot fully elicit the capabilities stored in LLMs and
thus fail to handle complex instructions. This issue is
particularly severe for open-source LL.Ms, which exhibit
markedly inferior reasoning ability compared with their SOTA counterparts. In addition, some works
do not even execute APIs to obtain real responses (Patil et al., 2023} [Tang et al.,2023)), which serve
as important information for subsequent model planning.

To stimulate tool-use capabilities within open-source LLMs, we introduce ToolLLM, a general tool-
use framework of data construction, model training and evaluation. As illustrated in Figure E], we first
collect a high-quality instruction-tuning dataset ToolBench. It is constructed automatically using the
latest ChatGPT (gpt-3.5-turbo-16k), which has been upgraded with enhanced function Cal
capabilities. The comparison between ToolBench and prior works is listed in Table[T] Specifically,
the construction of ToolBench entails three phases:

* API Collection: we gather 16, 464 representational state transfer (REST) APIs from RapidAP
a platform that hosts massive real-world APIs provided by developers. These APIs span 49 diverse
categories such as social media, e-commerce, and weather. For each API, we crawl detailed
API documents from RapidAPI, including the functionality descriptions, required parameters,

"nttps://openai.com/blog/function-calling-and-other-api-updates
https://rapidapi.com/hub

https://openai.com/blog/function-calling-and-other-api-updates
https://rapidapi.com/hub

Preprint

Resource ToolBench APIBench API-Bank ToolAlpaca T-Bench
(this work) (Patil et al.}|2023) (Lietal.;2023a) (Tangetal.{2023) (Xu et al.|2023b)

Real-world API? v X v X v

Real API Response? v X 4 X 4
Multi-tool Scenario? v X X X X

API Retrieval? v 4 X X X
Multi-step Reasoning? 4 X v v v

" Number of tools 3451 3 53 4 400 8

Number of APIs 16464 1645 53 400 232
Number of Instances 12657 17002 274 3938 2746
Number of Real API Calls 37204 0 568 0 0

Avg. Reasoning Traces 4.1 1.0 2.1 1.0 5.9

Table 1: A comparison of our ToolBench to notable instruction tuning dataset for tool learning.

code snippets for API calls, etc. We expect LLMs to learn to use APIs by comprehending these
documents so that the model can generalize to APIs unseen during training;

¢ Instruction Generation: we first sample APIs from the whole set and then prompt ChatGPT to
generate diverse instructions for these APIs. To cover practical scenarios, we curate instructions
that involve both single-tool and multi-tool scenarios. This ensures that our model learns not only
how to interact with individual tools but also how to combine them to accomplish complex tasks;

* Solution Path Annotation: we annotate high-quality responses to these instructions. Each
response may contain multiple rounds of model reasoning and real-time API calls to derive the
final answer. Due to the inherent difficulty of tool learning, even the most sophisticated LLM, i.e.,
GPT-4, has a low pass rate for complex instructions, making data collection inefficient. To this
end, we develop a novel depth-first search-based decision tree (DFSDT) to bolster the planning
and reasoning ability of LLMs. Compared with conventional chain-of-thought (CoT) (Wei et al.,
2023) and ReACT (Yao et al.,|[2022)), DFSDT enables LLMs to evaluate a multitude of reasoning
paths and make deliberate decisions to either retract steps or proceed along a promising path. In
experiments, DFSDT significantly improves the annotation efficiency and successfully completes
those complex instructions that cannot be answered using CoT or ReACT.

To assess the tool-use capabilities of LLMs, we develop an automatic evaluator, ToolEval, backed up
by ChatGPT. It comprises two key metrics: (1) pass rate, which measures the ability to successfully
execute an instruction within limited budgets, and (2) win rate, which compares the quality and
usefulness of two solution paths. We demonstrate that ToolEval achieves a high correlation with
human evaluation and provides a robust, scalable, and reliable assessment for tool learning.

By fine-tuning LLaMA on ToolBench, we obtain ToolLLaMA. After evaluation based on our
ToolEval, we derive the following findings:

* ToolLLaMA demonstrates a compelling capability to handle both single-tool and complex multi-
tool instructions. Uniquely, ToolLLaMA exhibits robust generalization to previously unseen
APIs, requiring only the API documentation to adapt to new APIs effectively. This flexibility
allows users to incorporate novel APIs seamlessly, thus enhancing the model’s practical utility.
As depicted in Figure [2| ToolLLaMA achieves comparable performance to the “teacher model”
ChatGPT in tool use, despite being fine-tuned on merely 12k+ instances.

* We show that our DFSDT serves as a general decision-making strategy to enhance the reasoning
capabilities of LLMs. DFSDT broadens the search space by considering multiple reasoning traces
and achieves significantly better performance than ReACT.

* Besides, we prompt ChatGPT to recommend relevant APIs for each instruction, and use these
information to train a neural API retriever. This design alleviates the need for manual selection
from the large API pool in practice. We successfully integrate the API retriever with ToolLLaMA.
As shown in Figure[I] given an instruction, the API retriever recommends a set of relevant APIs,
which are sent to ToolLLaMA for multi-round decision making to derive the final answer. We
show that despite sifting through a large pool of APIs, the retriever exhibits remarkable retrieval
precision, returning APIs closely aligned with the ground truth.

In summary, this work targets empowering open-source LLMs to execute complex instructions
involving diverse APIs in practical scenarios. We hope this work will inspire further research in the
intersection of instruction tuning and tool use.

Preprint

4 - N 2\
Q Rapid api Single-tool instructions

Category —>»

| Tool —>
A q APl >
Finance Movies Jobs Top QR Code APIs) ---

Intra-category multi-tool instructions

+

Intra-collection multi-tool instructions

Qtar Wars Character; <Streaming Availability) <IMDB Searcf) Category / Collection >

Sampled Tool >

APl >

| | APIs
(GET Services) (GET Search By Title) (@), APIs&API (Sampled " AT Ramee T ;
T i-; Documentation | APIL API Dgscnpﬁon: XXX '
API Documentation ~, - a] Required Parameters: xxx '
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Y S S S i %S 4 o i
E APl Name: Search By Title ~ API Description: Search movies and series by title, ... E @ \" ﬁw APIName: xx i
! Required Parameters: (1) title (string, title to search for), (2) country (string, ...) g ‘;::—::::: 777777777 . Srssrmossoooooss!
g Optional Parameters: (1) show_type (string, Type of shows to include in the results, | ' Instruction We are planning a movie
1 either “movie”, “series”, or “all”. Default is “all”), (2) output_language (string, ...) H e night in the mountains. Can !
! Code Snippets: GET /v2/search/title?title=batman&country=us&show... 8 Instructions & ' you suggest ... !
! Example Response: type:"movie", title:"Batman", overview:"Japanese... 3 Relevant APIs i Relevant APIs API1, API2, APIS... !
|ttt DN J

Figure 3: The hierarchy of RapidAPI (left) and the process of instruction generation (right).

2 DATASET CONSTRUCTION

In this section, we introduce the construction process of ToolBench, which comprises three stages:
API collection (§[2.T), instruction generation (§ 2.2, and solution path annotation (§ 2.3). The whole
procedure is finished purely using ChatGPT (gpt-3.5-turbo-16k), which requires minimal
human supervision and can be easily extended to new APIs.

2.1 API COLLECTION

We start by introducing RapidAPI and its hierarchy, followed by how we crawl and filter APIs.

RapidAPI Hub RapidAPI is a leading API marketplace that connects developers with thousands
of real-world APIs, streamlining the process of integrating diverse services and data sources into
applications. On the platform, developers can discover, test, and connect to various APIs by registering
only a RapidAPI key. All APIs in RapidAPI can be classified into 49 coarse-grained categoriesﬂ such
as sports, finance, and weather. The categories are used to associate each API with the most relevant
topic. Additionally, the hub also provides a more fine-grained categorization called collectionﬂ> e.g.,
Chinese APIs, Top Al-based APIs, and database APIs. APIs in the same collection share a common
characteristic and often have similar functionalities or goals.

Hierarchy of RapidAPI As shown in Figure 3] each tool may be composed of multiple APIs. For
each tool, we crawl the following information: the name and description of the tool, the URL of the
host, and all the available APIs belonging to the tool; for each API, we record its name, description,
HTTP method, required parameters, optional parameters, request body, executable code snippets for
API call, and an example API call response. This rich and detailed metadata serves as a valuable
resource for LLMs to understand and effectively use the APIs, even in a zero-shot manner.

API Filtering Initially, we gather 10,853 tools (53,190 APIs) from RapidAPI. However, the
quality and reliability of these APIs can vary significantly. In particular, some APIs may not be
well-maintained, such as returning 404 errors or other internal errors. To this end, we perform a
rigorous filtering process to ensure that the ultimate tool set of ToolBench is reliable and functional.

The filtering process is as follows: (1) initial testing: we begin by testing the basic functionality of
each API to ascertain whether they are operational. We discard any APIs that do not meet this basic
criterion; (2) example response evaluation: we make API calls to obtain an example response. Then
we evaluate their effectiveness by response time and quality. APIs that consistently exhibit a long

*https://rapidapi.com/categories
*nttps://rapidapi.com/collections

https://rapidapi.com/categories
https://rapidapi.com/collections

Preprint

response time are omitted. Also, we filter out the APIs with low-quality responses, such as HTML
source codes or other error messages. Finally, we only retain 3, 451 high-quality tools (16, 464 APIs).

API Response Compression When examining the response returned by each API, we discover
that some responses may contain redundant information and are too long to be fed into LLMs. This
may lead to problems due to the limited context length of LLMs. Therefore, we perform a response
compression to reduce the length of API responses while maintaining their critical information.

Since each API has a fixed response format, we use ChatGPT to analyze one response example
and remove unimportant keys within the response to reduce its length. The prompt of ChatGPT
contains the following information for each API: (1) tool documentation, which includes tool name,
tool description, API name, API description, parameters, and an example API response. This gives
ChatGPT a hint of the API’s functionality; (2) 3 in-context learning examples, each containing
an original API response and a compressed response schema written by experts. In this way, we
obtain the response compression strategies for all APIs. During inference, when the API response
length exceeds 2048 tokens, we compress the response by removing unimportant information. If the
compressed response is still longer than 2048, we only retain the first 2048 tokens.

2.2 INSTRUCTION GENERATION

Generating high-quality instructions requires two crucial aspects: diversity, to ensure the LLMs
handle a wide range of API usage scenarios, thereby boosting their generalizability and robustness;
and multi-tool usage, to mirror real-world situations that often demand the interplay of multiple tools,
improving the practical applicability and flexibility of LLMs. To this end, we adopt a bottom-up
approach for instruction generation. Instead of brainstorming instructions from scratch and then
searching for relevant APIs, we start from the collected APIs in § @] and craft various instructions
that involve them.

Generating Instructions for All APIs and their Combinations Define the total set of APIs as
Sap1, at each time, we sample a few APIs: S;?‘b ={APIy, -+ ,APIy} from Spp;. Then we prompt
ChatGPT to understand the functionalities of these APIs and their interplay, and then generate (1)
possible instructions (Inst,) that involve APIs in S°, and (2) relevant APIs (S™ C S;?b) for each
instruction (Inst,), i.e., {[S¥, Insty], - - - , [SK, Instx] }, where N” denotes the number of generated
instances at each time. These instruction-relevant API pairs will be used for training the API retriever
in §[3.2] We use different sampling strategies (introduced later) to cover all APIs and most of their
combinations, thus ensuring the diversity of our instructions.

The prompt for ChatGPT is composed of (1) a general description of the intended instruction
generation task, (2) comprehensive documentation of each API in S{®, which helps the model
understand their functionality, and (3) three in-context seed examples {seed;, seeds, seeds }. Each
seed example is an ideal instruction generation written by human experts. These seed examples are
leveraged to better regulate ChatGPT’s behavior through in-context learning. In total, we wrote 12/
36 diverse seed examples (Sgeeq) for the single-tool / multi-tool setting, and randomly sampled three
examples at each time. Detailed prompts for instruction generation are described in appendix [A.3]
Overall, the generation process can be formulated as follows:

ChatGPT ({[ST", Inst], - - - , [SN', Insty/] }|APIy, - - -, APIy, seedy, - - - , seeds).
{APIy,--- ,APIN } €Sppy, {seedy , -+ ,seeds } €Seed

Sampling Strategies for Different Scenarios As shown in Figure[3] for the single-tool instructions
(I1), we iterate over each tool and generate instructions for its APIs. However, for the multi-tool
setting, since the interconnections among different tools in RapidAPI are sparse, random sampling
tool combinations from the whole tool set often leads to a series of irrelevant tools that cannot
be covered by a single instruction in a natural way. To address the sparsity issue, we leverage
the RapidAPI hierarchy information. Since tools belonging to the same category or collection are
generally related to each other in the functionality and goals, we randomly select 2-5 tools from the
same category / collection and sample at most 3 APIs from each tool to generate the instructions.
We denote the generated instructions as intra-category multi-tool instructions (I2) and intra-
collection multi-tool instructions (I3), respectively. Through rigorous human evaluation, we find

Preprint

Reasomng Chains of Different Methods User: | want to give my friend a birthday surprise. | know her
CoT/ReACT DFSDT (ours +“"| favorite actress is Hailee Steinfeld. Help me please!
/7 AASU, _{_2 /
/
Instruction Selected Path '\\ Thought: | will first get some information
i AT ‘\’ _____ about Hailee Steinfeld.
S API Name: get_extra_character_details
Normal | | & Arguments: {“name”: “Hailee Steinfeld”} &
l Normal] l Normal] l Error)
| T Observation: {“age”: 28, “recent g
| ,4 movies”: [“Spider-Man: Across the N /)
i v . ”) e
/ Spider-Verse”, ...]} or \/: Q Rapidar i
Error Normal Normal v /
B Observation: {“message”: “server S
| 1 /| isnotavailable.”}
[
| | XN S
‘i API Name: Finish with Final Answer

l Fail } L Fail } Success \\"\‘ Arguments: {“Final Answer”: Hailee Steinfeld
‘ e recently voiced Spider-Woman in "Spider-

Man: Across the Spider-Verse”. You could

N
/) \ buy a Spider-W Kk as a gift, and sh
i API Call with Normal Response Final Answer i }‘or wlg{‘fd g:onglyc}“::r;gas R EIEENE
! v

i Error API Call with Error Fail Give U ; AN . .
\‘\ p /;)[API Name: Finish by Giving Up] /

Figure 4: A comparison of our DFSDT and conventional CoT or ReACT during model reasoning (left). We
show part of the solution path annotation process using ChatGPT (right).

that instructions generated in this way already have a high diversity that covers various practical
scenarios. We also provide visualization for instructions using Atlasﬁ to support our claim.

After generating the initial set of instructions, we further filter those with the hallucinated relevant
APIs by assessing whether they exist in Si°. Finally, we collect over 200k qualified instruction-
relevant API pairs, including 87413, 84815, and 25251 instances for I1, 12, and I3, respectively.

2.3 SOLUTION PATH ANNOTATION

As shown in Figure[d] given an instruction Inst,, we prompt ChatGPT to search for a valid action
sequence: {ay, - ,an}. Such a multi-step decision-making process is cast as a multi-round conversa-
tion for ChatGPT. At each time step ¢, the model generates an action a; based on previous interactions,
i.e., ChatGPT(a¢|{a1,7r1, - ,at—1,7¢—1}, Inst,), where r, denotes the real API response. For each
action a;, we prompt ChatGPT to specify which API to use, the specific parameters for an API call,
and its “thought”. In other words, a; has the following format: “Thought: ..., API Name: - --,
Parameters: - - - 7. Hence the decision space is the Cartesian product of the thought, available APIs,
and possible parameters, which is infinite by nature. Detailed prompts are described in appendix

To leverage the function call feature of gpt-3.5-turbo-16k, we treat each API as a special
function and feed its API documentation into the ChatGPT’s function field. In this way, the model
understands how to call the API. For each instruction Inst,, we feed all the sampled APIs S?\‘fb to
ChatGPT’s as available functions instead of only its relevant APIs S™'. In this way, the model gains
access to a broader scope of APIs and expands the action space. To finish an action sequence, we
define two additional functions, i.e., “Finish with Final Answer” and “Finish by Giving Up”. The
former function has a parameter that corresponds to a detailed final answer to the original instruction;
while the latter function has no parameters and is designed for cases where the provided APIs cannot
successfully complete the original instruction after multiple rounds of API call attempts.

Depth First Search-based Decision Tree In our pilot studies, we find that conventional CoT (Wei
et al., [2023) or ReACT (Yao et al.| |2022) has inherent limitations for decision making: (1) error
propagation: a mistaken action may propagate the errors further and cause the model to be trapped
in a faulty loop, such as continually calling an API in a wrong way or hallucinating APIs; (2)
limited exploration: although the action space is infinite, CoT or ReACT only explores one possible
direction, leading to limited exploration of the whole action space. Hence even GPT-4 often fails to
find a valid solution path, making annotation difficult.

5https ://atlas.nomic.ai/map/58acal69-c29a-447a-8f01-0d418fc4d341/
030ddad7-5305-461c-ba86-27elca79d899

https://atlas.nomic.ai/map/58aca169-c29a-447a-8f01-0d418fc4d341/030ddad7-5305-461c-ba86-27e1ca79d899
https://atlas.nomic.ai/map/58aca169-c29a-447a-8f01-0d418fc4d341/030ddad7-5305-461c-ba86-27e1ca79d899

Preprint

To this end, we propose to construct a decision tree to expand the search space and increase the
possibility of finding a valid path. As depicted in Figure] our DFSDT allows the model to assess
different reasoning paths and choose to either (1) proceed along a promising path or (2) abandon an
existing node (such as a node with a failed API call) by calling the “Finish by Giving Up” function
and expand a new node. During node expansion, to diversify the child nodes and expand the search
space, we prompt ChatGPT with the information of the previously generated nodes and explicitly
encourage the model to generate a distinct node.

We prefer depth-first search (DFS) instead of breadth-first search (BFS) because the annotation can
be finished as long as one valid path is found. Using BFS will cost excessive OpenAl API calls before
reaching a terminal node (the node of “Finish with Final Answer” or “Finish by Giving Up”).

In practice, it is essential to balance effectiveness with costs (the number of OpenAl API calls).
Therefore, we choose to perform pre-order traversal (a variant for DES) for DESDT, which is detailed
in appendix Overall, this design achieves a similar performance as DFS while significantly
reducing costs. Ultimately, we generate 12, 657 instruction-solution pairs, which are used to train
ToolLLaMA in §[3.3] Although it is possible to construct more training instances, we find that 12, 657
instances already bring satisfying generalization performance.

3 EXPERIMENTS

In this section, we conduct experiments to investigate the performance of ToolLLaMA. We start by
introducing the evaluation metric for ToolLLaMA in § then we evaluate the efficacy of API
retriever and DFSDT in § [3.2]and then present the experiments and analyses in § [3.3]

3.1 ToOLEvAL

Considering the API’s temporal variability, it is infeasible to annotate a fixed ground-truth solution
path for each test instruction. Moreover, it is crucial to ensure that different models employ the
same version of APIs during evaluation. Considering that human evaluation can be time-consuming,
we follow AlpacaEval (Li et al.| 2023b)) to develop an efficient machine evaluator ToolEval (with
leaderboar(ﬂ), which incorporates two evaluation metrics:

» Pass Rate: it calculates the proportion of successfully completing an instruction within a limited
number of actions (200 in this paper). The metric measures the executability of instructions for
an LLM and can be seen as a basic requirement for ideal tool use. Since we require each model
to finish the whole process with the “Finish with Final Answer” action, we treat the percentage
of outputting this action in the last as the pass rate. We also define rules to inspect the content
of each final answer and exclude those “false positives”, such as final answers that contain “I’'m
sorry, based on the existing APIs, I cannot give a proper response for you”.

* Win Rate: Since pass rate only measures whether an instruction can be completed, instead of how
well it is completed, we adopt another metric: win rate. It is measured by comparing two solution
paths for a given instruction. We pre-define a set of criteria for a better path (see appendix for
details). These criteria are organized as prompts for ChatGPT evaluator. We provide the instruction
and two solution paths to the evaluator and obtain its preference. We evaluate multiple times to
improve the reliability. Then we calculate the percentage of being preferred by the evaluator.

To validate the reliability of ChatGPT evaluator, we sample among three different methods (Chat-
GPT+ReACT, GPT4+ReACT, and ChatGPT+DFSDT) to obtain solution pairs for 600 test instruc-
tions. Then we engage humans to annotate human preference (win rate) for them (4 annotations
for each solution pair, 2400 annotations in total). Our ChatGPT evaluator demonstrates a high
correlation of 75.8% with human annotators. This result shows that our evaluator generates highly
similar evaluation results to humans and can be viewed as a credible evaluator who simulates human
preference. We also find that our automatic evaluator achieves lower variance (3.47 %) than humans
(3.97 %) when annotating multiple times for the same instruction. This indicates that our evaluator is
more consistent than humans.

®https://openbmb.github.io/ToolBench/

https://openbmb.github.io/ToolBench/

Preprint

API Retriever (ours) BM25 Ada Embedding
NDCG1 NDCG3 NDCGS5 | NDCGl1 NDCG3 NDCGS | NDCGl NDCG3 NDCGS
Single-tool (I1) 84.20 89.59 89.65 18.37 17.97 19.65 57.52 54.90 58.83

Category (12) 68.24 77.43 77.90 11.97 9.85 10.95 36.82 28.83 30.68
Collection (I3) 81.65 87.24 87.13 25.23 18.95 20.37 54.59 42.55 46.83
All 75.73 83.19 83.06 15.84 13.98 15.63 46.59 41.06 43.95

Instruction

Table 2: We compare our API retriever with two baselines (BM25 and Ada Embeddings) on single-tool,
intra-category multi-tool, intra-collection multi-tool instructions, and the whole data, respectively.

Method Single-tool (I1) Category (I2) Collection (I3) Average
ReACT 43.98 23.62 20.42 29.34
ReACT@N 50.80 36.14 32.87 39.94
DFSDT 54.10 47.35 44.80 48.75

Table 3: Pass rate of different reasoning strategies for three types of instructions (I1, 12, I3) based on ChatGPT.
ReACT@N and DFS consume nearly the same OpenAl API calls per instruction.

3.2 PRELIMINARY EXPERIMENTS

API Retriever The API retriever aims to retrieve relevant APIs to an instruction. We follow
Sentence-BERT (Reimers & Gurevychl 2019) to train a dense retriever based on BERT-BASE (Devlin
et al.,|2019). The model encodes the instruction and API document into two embeddings, respectively,
and the relevance is determined by the similarity of these two embeddings. During training, we regard
the relevant APIs of each instruction generated in § [2.2]as positive examples and also sample a few
APIs as negative examples for contrastive learning. For baselines, we choose BM25 (Robertson et al.}
2009) and OpenATI’s text-embedding-ada-002 AP]ﬂ We evaluate the retrieval performance using
NDCG (Jarvelin & Kekildinen, |2002). We train and evaluate the model on single-tool instructions
(I1), intra-category multi-tool instructions (I2), and intra-collection multi-tool instructions (I3),
respectively. Besides, we also merge all the instructions (All) and conduct the training and evaluation.

As shown in Table[2] our API retriever consistently outperforms BM25 and Ada Embedding across
different types of instructions. The high NDCG score indicates its efficacy in API retrieval. Addition-
ally, the NDCG score of I1 is much higher than I2 and I3, which means single-tool instructions are
relatively simpler for API retrieval than multi-tool counterparts.

Comparing DFSDT and ReACT Before the solution path annotation, we validate the superiority
of DFSDT over ReACT. Based on ChatGPT, we compare DFSDT and ReACT for three types of
instructions (1000 for each) generated in § For evaluation, we choose the pass rate. Since
DFSDT consumes more OpenAl API calls than ReACT, for a fairer comparison, we also establish a
“ReACT@N” baseline, which conducts multiple times of ReACT until the total costs reach the same
level of DFSDT. Once a valid solution is found by ReACT@N, we deem it a pass.

From Table [3] it can be observed that DFSDT significantly outperforms the two baselines in all
scenarios, showing that DFSDT is a more efficient way that saves the costs for solution path annotation.
We also find that the performance improvement of DFSDT is more evident for harder instructions
(i.e., I2 and I3) than those simpler instructions (I1). This means that besides efficiency, DFSDT can
solve those difficult, complex instructions that are unanswerable by the vanilla ReACT no matter
how many times it is performed. Involving such “hard examples” in our dataset can fully elicit the
tool-use capabilities for those complex scenarios.

3.3 MAIN EXPERIMENTS

ToolLLaMA We fine-tune LLaMA 7B model using the instruction-solution pairs. The original
LLaMA model is pre-trained with a sequence length of 2048, which is not enough under our setting
since the tool response can be very long. To this end, we use positional interpolation (Chen et al.}
2023) to extend the context length to 8192. We train the model in a multi-round conversation mode.
For the training data format, we keep the input and output the same as those of ChatGPT. Since it is

"nttps://openai.com/blog/new—and-improved-embedding-model

https://openai.com/blog/new-and-improved-embedding-model

Preprint

Model I1-Inst. 11-Tool I1-Cat. 12-Inst. 12-Cat. I3-Inst. Average

Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win
ChatGPT-ReACT 56.0 - 62.0 - 66.0 - 28.0 - 22.0 - 30.0 - 44.0 -
Vicuna (ReACT & DFSDT) | 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

Alpaca (ReACT & DFSDT) | 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 -

Text-Davinci-003-DFSDT 53.0 46.0 | 58.0 38.0 | 61.0 39.0 | 38.0 46.0 | 38.0 45.0 | 39.0 48.0 | 47.8 43.7
ChatGPT-DFSDT 780 68.0 | 840 59.0 | 89.0 57.0 | 51.0 78.0 | 58.0 77.0 | 57.0 77.0 | 69.6 69.3
ToolLLaMA-DFSDT 68.0 68.0 | 80.0 59.0 | 75.0 56.0 | 47.0 75.0 | 56.0 80.0 | 40.0 72.0 | 61.0 68.3

Table 4: Main experiments on the test set of ToolBench. Win rate is calculated by comparing each model with
ChatGPT-ReACT. A win rate higher than 50% means the model performs better than ChatGPT-ReACT.

unclear how ChatGPT organizes the function call field, we just concatenate this information into the
input as part of the prompt for ToolLLaMA.

Settings Ideally, by scaling the number and diversity of instructions and unique tools in the training
data, ToolLLaMA is expected to generalize to new instructions and APIs unseen during training. This
is meaningful since users can define customized APIs and expect ToolLLaMA to adapt according to
the documentation. To this end, we strive to evaluate the generalization ability of our ToolLLaMA
at three levels: (1) Inst.: unseen instructions for the same set of tools in the training data, (2) Tool:
unseen tools that belong to the same (seen) category of the tools in the training data, and (3) Cat.:
unseen tools that belong to a different (unseen) category of tools in the training data.

We perform experiments on three scenarios: single-tool instructions (I1), intra-category multi-tool
instructions (I12), and intra-collection multi-tool instructions (I3). For I1 and 12, we randomly select
6 categories as the testing categories, leaving the remaining 43 categories for training. For 11, we
conduct the evaluation for the aforementioned three levels (I1-Inst., I1-Tool, and I1-Cat.); for 12, since
the training instructions already involve different tools of the same category, we only perform level 1
and level 3 for the generalization evaluation (I2-Inst. and I12-Cat.); similarly, we only perform level 1
generalization for I3 (I3-Inst.) since it already covers instructions that involve various combinations
of tools from different categories (the tools in a RapidAPI collection may come from different
RapidAPI categories). For each test instruction, we feed the ground truth APIs S§*° to each model.
This simulates the scenario where the user specifies the API set they prefer.

Baselines Since the original LLaMA checkpoint is not fine-tuned toward any downstream task, it
cannot be leveraged to use tools directly. Instead, we choose two LLaMA variants that have been
fine-tuned for general-purpose instruction tuning on dialogue data, i.e., Vicuna (Chiang et al., [2023)
and Alpaca (Taori et al.| | 2023)). Both models have shown strong instruction-following capabilities.
We conduct sophisticated prompt engineering for both models to elicit the best of their tool-use
abilities. We also choose the “teacher model” (ChatGPT) and OpenAl Text-Davinci-003 as the
baseline. We apply DFSDT to all these models and also apply ReACT to ChatGPT. When calculating
the win rate, each model is compared with ChatGPT-ReACT.

Main Results The results are placed in Table] from which we observe that: (1) ToolLLaMA
significantly outperforms the conventional method for tool use, i.e., ChatGPT-Re ACT, in both pass rate
and win rate, exhibiting superior generalization abilities. Besides, ToolLLaMA also performs better
than Text-Dainci-003 when combined with DFSDT. (2) Although we conduct prompt engineering
extensively, both Vicuna and Alpaca fail to pass any instructions, which means their instruction-
following abilities do not extend to the tool-use scenarios. This underscores the deficiency of
current instruction tuning methods, which largely focus on enhancing language skills. (2) In general,
ToolLLaMA demonstrates competitive performance in all scenarios, achieving a pass rate slightly
lower than ChatGPT+DFSDT. For the win rate, ToolLLaMA generally matches ChatGPT+DFSDT’s
capability and even surpasses the latter in the I12-Cat. setting. Overall, these results demonstrate
that ToolBench can sufficiently elicit the tool-use capabilities within LLMs and empower them to
skillfully master even unseen APIs for various instructions.

Integrating API Retriever with ToolLLaMA In practice, users may not be able to manually
recommend APIs from a large pool. To emulate this practical setting and test the efficiency of our
API retriever, we replace the ground truth APIs Si‘fb with the top 5 APIs recommended by our API

Preprint

Model I1-Inst. 11-Tool I1-Cat. 12-Inst. 12-Cat. 13-Inst. Average
Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win | Pass Win

ToolLLaMA 68.0 - 80.0 - 75.0 - 47.0 - 56.0 - 40.0 - 61.0 -
—API Retriever | 62.0 54.0 | 62.0 39.0 | 72.0 49.0 | 45.0 54.0 | 55.0 51.0 | 47.0 52.0 | 57.2 49.8
—ReACT 19.0 21.0 | 21.0 13.0 | 240 160 | 6.0 9.0 | 14.0 9.0 6.0 10.0 | 15.0 13.0
—LoRA 51.0 34.0 | 63.0 44.0 | 61.0 39.0 | 38.0 38.0 | 42.0 42.0 | 45.0 54.0 | 50.0 41.8

Table 5: Additional analyses of ToolLLaMA: (1) replacing the ground truth APIs with those recommended by
our API retriever, (2) degrading the reasoning method from DFSDT to ReACT, and (3) tuning LLaMA using
LoRA instead of full-parameter fine-tuning. We compare each variant with the default ToolLLaMA for win rate.

retriever. As seen from Table[5] the use of our API retriever only slightly diminishes the pass rate
when compared to the ground truth API set. The average win rate of ToolLLaMA is 49.8, which is a
significant achievement given the vast pool (16, 000+) of APIs from which our API retriever selects.
It provides robust evidence of the excellent ability of our API retriever to retrieve relevant APIs. We
also find that the win rate shows a slight increase in several scenarios when using the API retriever.
This suggests that the ground truth API set contains many APIs that can be replaced by those with
better functionalities, which are successfully identified by our API retriever.

Comparing DFSDT with ReACT Since ReACT can be viewed as a degraded version of DFSDT,
although ToolLLaMA is trained on data generated by DFSDT, the model can be used either through
ReACT or DFSDT during inference. Here we directly compare the difference between these two
decision-making strategies for ToolLLaMA and the results are shown in Table[3] It can be derived
that DFSDT achieves a significantly higher pass rate and is more preferred across all the scenarios.
This comparison underscores the superiority of DFSDT over ReACT, demonstrating its higher
performance in decision-making tasks. Besides, compared with the results in Table 3] we find that
the improvements brought by DFSDT over ReACT is more evident for ToolLLaMA than ChatGPT,
this demonstrates that expanding the search space is extremely essential for those LLMs with inferior
reasoning capabilities. This finding shows the potential utility of applying DFSDT to small-scale
models in practice.

ToolLLaMA with Better Parameter Efficiency In previous experiments, we fine-tune all the
parameters of LLaMA to obtain ToolLLaMA. To improve the parameter efficiency, we further apply
a representative parameter-efficient tuning (Ding et al., [2022)) method LoRA (Hu et al., 2021) and
investigate how the performance is affected. The results in Table [5]indicate that improved parameter
efficiency is achieved with a trade-off in performance. We expect future attempts to design more
sophisticated methods that could achieve parameter efficiency without sacrificing performance.

4 RELATED WORK

Tool Learning Recent studies have shed light on the burgeoning capabilities of LLMs in mastering
tools and making decisions within complex environments (Qin et al.,[2023b; | Vemprala et al., 2023}
Nakano et al., 20215 |Qin et al., [2023a;|Shen et al., 2023; /Wu et al., 2023} |Schick et al., 2023} [Hao
et al., 2023} |Qian et al., 2023 Song et al. [2023). Gaining access to external tools endows LLMs
with real-time factual knowledge (Yang et al., 2023)), multimodal functionalities (Gupta & Kembhavil
2023)), and specialized skills in vertical domains (Jin et al., 2023). However, open-source LLMs still
lag far behind SOTA LLMs in tool use, and how tool-use ability is acquired by SOTA LLMs remains
unclear. In this paper, we aim to bridge this gap and fathom the underlying mechanism.

Instruction Tuning and Data Augmentation Instruction tuning enhances LLMs in understanding
human instructions and generating proper responses (Wei et al.,|2021; |Bach et al., 2022; [Mishra et al.,
2022). Since manually annotating instruction tuning data is time-consuming, self-instruct (Wang
et al., 2022) proposes to generate high-quality data from SOTA LLMs, which facilitates a recent
trend of data curation for multi-turn dialogue (Taori et al., [2023;; |Chiang et al., 2023} | Xu et al.,
2023a; [Penedo et al.} 2023} Ding et al.l [2023)). However, compared with the dialogue, tool learning
is inherently more challenging given the vast diversity of APIs and the complexity of multi-tool
instructions. As a result, even the most sophisticated model, i.e., GPT-4, often fails to find a valid

10

Preprint

solution path, making data collection difficult. Hence, existing tool-learning dataset (Li et al.,|2023aj
Patil et al., [2023}; [Tang et al., [2023; | Xu et al., 2023b) and their construction methods are still in
their infancy and cannot effectively address real human needs as mentioned in § [} Instead, our
ToolBench is designed for practical scenarios and improves the previous pipeline for tool-learning
data construction. Besides, we target making LLMs generalize to diverse tool-use scenarios instead
of focusing on a particular type of tool (Nakano et al.,[2021), which is less practical.

Prompting LLMs for Decision Making Prompting facilitates LLMs to decompose high-level
tasks into sub-tasks (Huang et al., 2022a)) and generate grounded plans (Ahn et al., |2022; [Huang
et al.l 2022b). ReACT (Yao et al., 2022) proposes to better integrate reasoning with acting by
allowing LLMs to give a proper reason for an action and incorporating environmental feedback for
reasoning. However, these studies do not incorporate a mechanism for decision retraction, which
becomes problematic as an initial error can propagate along an action sequence, leading to a cascade
of subsequent errors. Recently, Reflexion (Shinn et al.| [2023) tries to eliminate this issue by asking
LLMs to reflect on previous failures to correct its decision making. Instead, our DFSDT extends
Reflexion to a more general method by allowing LLMs to assess different reasoning paths and
select the most promising one. It should be noted our DFSDT shares a similar idea to the recent
tree-of-thought (ToT) reasoning (Yao et al.,|2023). However, our DFSDT targets addressing general
decision-making problems where the decision space is infinite, compared to ToT’s simple tasks that
can be easily addressed by brute-force search, such as Game of 24 and Crosswords. The distinct
target determines the significant difference in the implementation details. Notably, our method is
designed for diverse decision-making tasks, while ToT is tailored specifically for its selected task set.

5 CONCLUSION

This work introduces how to elicit the tool-use capabilities within LLMs. We present an instruction
tuning dataset, ToolBench, which covers 16k+ real-world APIs and various practical use-case
scenarios including both single-tool and multi-tool tasks. The construction of ToolBench purely
uses ChatGPT and requires minimal human supervision. Moreover, we propose DESDT to reinforce
the planning and reasoning ability of LLMs, enabling them to navigate through reasoning paths
strategically. For efficient evaluation of tool learning, we devise an automatic evaluator ToolEval.
By fine-tuning LLaMA on ToolBench, the obtained model ToolLLaMA matches the performance
of ChatGPT and exhibits remarkable generalization ability to unseen APIs. Besides, we develop a
neural API retriever to recommend relevant APIs for each instruction. The retriever can be integrated
with ToolLLaMA as a more automated tool-use pipeline. In general, this work paves the way for
future research in the intersection of instruction tuning and tool use for LLMs.

ACKNOWLEDGEMENTS

The contributions are listed as follows: (1) API collection: Shihao Liang, Sihan Zhao, Kunlun
Zhu, Yujia Qin; (2) instruction generation: Lan Yan, Kunlun Zhu, Shihao Liang, Yujia Qin; (3)
solution path annotation: Yining Ye, Shihao Liang, Runchu Tian, Yujia Qin, Xin Cong; (4) model
implementation: Shihao Liang, Yujia Qin, Kunlun Zhu, Yifan Wu; (5) system demonstration: Xiangru
Tang, Bill Qian. Yujia Qin led the project, designed the methodology and experiments, and wrote the
paper. Yankai Lin, Mark Gerstein, Dahai Li, Zhiyuan Liu, Maosong Sun, and Jie Zhou advised the
project. Yankai Lin, Xin Cong, Ruobing Xie proofread the whole paper. All authors participated in
the discussion.

The authors would like to thank Yifan Wu, Si Sun, Zheni Zeng, Chen Zhang, Yu Gu, Chenfei Yuan,
Junxi Yan, Shizuo Tian, Mingxi Yan, Jason Phang, Chen Qian, and Weize Chen for their valuable
feedback, discussion, and participation in this project.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, et al. Do as i can, not as i say:
Grounding language in robotic affordances. ArXiv preprint, abs/2204.01691, 2022.

11

Preprint

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert Webson, Colin Raffel, Nihal V Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault Févry, et al. Promptsource: An integrated
development environment and repository for natural language prompts. In Proceedings of the 60th

Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp.
93-104, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1msys.org/blog/2023-03-30-vicuna/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL |https://
aclanthology.org/N19-1423.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953-14962, 2023.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. arXiv preprint arXiv:2305.11554, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), International Conference
on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pp. 9118-9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. ArXiv preprint, abs/2207.05608, 2022b.

Kalervo Jarvelin and Jaana Kekaldinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422-446, 2002.

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu. Genegpt: Augmenting large language models
with domain tools for improved access to biomedical information. ArXiv, 2023.

Minghao Li, Feifan Song, Bowen Yu, Haiyang Yu, Zhoujun Li, Fei Huang, and Yongbin Li. Api-bank:
A benchmark for tool-augmented llms. arXiv preprint arXiv:2304.08244, 2023a.

12

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

Preprint

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_evall, 2023b.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3470-3487, 2022.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. ArXiv preprint, abs/2112.09332, 2021.

OpenAl. OpenAl: Introducing ChatGPT, 2022. URL|https://openai.com/blog/chatgpt.
OpenAl. Gpt-4 technical report, 2023.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentangling
abstract and concrete reasonings of large language models through tool creation. arXiv preprint
arXiv:2305.14318, 2023.

Yujia Qin, Zihan Cai, Dian Jin, Lan Yan, Shihao Liang, Kunlun Zhu, Yankai Lin, Xu Han, Ning Ding,
Huadong Wang, et al. Webcpm: Interactive web search for chinese long-form question answering.
arXiv preprint arXiv:2305.06849, 2023a.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023b.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333-389, 2009.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. ArXiv preprint, abs/2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in huggingface, 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, Ke Wang, Ye Tian, and Sujian Li. Restgpt:
Connecting large language models with real-world applications via restful apis. arXiv preprint
arXiv:2306.06624, 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, and Le Sun. Toolalpaca: General-
ized tool learning for language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301,
2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu—lab/stanford_alpaca)l 2023.

13

https://github.com/tatsu-lab/alpaca_eval
https://openai.com/blog/chatgpt
https://github.com/tatsu-lab/stanford_alpaca

Preprint

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. Chatgpt for robotics: Design
principles and model abilities. Technical Report MSR-TR-2023-8, Microsoft, February 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. ArXiv preprint,
abs/2303.04671, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions, 2023a.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On the tool
manipulation capability of open-source large language models. arXiv preprint arXiv:2305.16504,
2023b.

Linyao Yang, Hongyang Chen, Zhao Li, Xiao Ding, and Xindong Wu. Chatgpt is not enough:
Enhancing large language models with knowledge graphs for fact-aware language modeling. arXiv
preprint arXiv:2306.11489, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ArXiv preprint, abs/2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

14

Preprint

APPENDIX
A IMPLEMENTATION DETAILS

A.1 DETAILS FOR DFSDT

Classical DFS algorithms generate multiple child nodes at each step, then sort all the child nodes,
and select the highest-scoring node for expansion. After greedily expanding to the terminal node,
DFS backtracks to explore nearby nodes, expanding the search space. Throughout the algorithm, the
most resource-intensive part is the sorting process of child nodes. If we use an LLM to evaluate two
nodes at a time, it requires approximately O(n logn) complexity of OpenAl API calls, where n is
the number of child nodes.

In fact, we find empirically that in most cases, the nodes ranked highest are often the node generated
at first. Therefore, we skip the sorting process of child nodes and choose a pre-order traversal for the
tree search. This design has the following advantages:

* If the model does not retract an action (e.g., for the case of simple instructions), then DFSDT
degrades to ReACT, which makes it as efficient as ReACT.

* After the algorithm finishes, the nodes explored by this method are almost the same as those
found by a classical DFS search. Hence, it can also handle complex instructions that only
DEFS can solve.

A.2 DETAILS OF TOOLEVAL
We build rules to regluate the evaluator’s behavior as follows:

1. If both answers give the non-empty “final answer”, check whether the given “final answer”
solves the original instruction.

(a) If both answers solve the instruction, choose the one with smaller “total steps”. If “total
steps” are same, choose one answer with better “final answer” quality.
(b) If one answer solves the instruction while the other does not, chose the former.

(c) If both answers fail, check the details of the solution path and choose one by considering
the following: (i) more successful API calls are preferred, and (2) more diverse tool
use is preferred.

2. If one gives non-empty “final answer” while the other does not, choose the former.

3. If both fail to give non-empty “final answer”, turn to 1.(c) to choose the one with better
“answer details”.

A.3 PROMPTS FOR INSTRUCTION GENERATION

Below we list the detailed prompt for instruction generation, which consists of four parts: task
description, in-context learning examples, sampled API list, and other requirements.

Task Description of Single-tool Instructions:

You will be provided with a tool, its description, all of the tool’s available API functions, the
descriptions of these API functions, and the parameters required for each API function. Your task
involves creating 10 varied, innovative, and detailed user queries that employ multiple API functions
of a tool. For instance, if the tool ‘climate news’ has three API calls - ‘get_all_climate_change_news’,
‘look_up_climate_today’, and ‘historical_climate’, your query should articulate something akin to:
first, determine today’s weather, then verify how often it rains in Ohio in September, and finally, find
news about climate change to help me understand whether the climate will change anytime soon.
This query exemplifies how to utilize all API calls of ‘climate news’. A query that only uses one
API call will not be accepted. Additionally, you must incorporate the input parameters required for
each API call. To achieve this, generate random information for required parameters such as IP
address, location, coordinates, etc. For instance, don’t merely say ‘an address’, provide the exact

15

Preprint

road and district names. Don’t just mention ‘a product’, specify wearables, milk, a blue blanket, a
pan, etc. Don’t refer to ‘my company’, invent a company name instead. The first seven of the ten
queries should be very specific. Each single query should combine all API call usages in different
ways and include the necessary parameters. Note that you shouldn’t ask ‘which API to use’, rather,
simply state your needs that can be addressed by these APIs. You should also avoid asking for the
input parameters required by the API call, but instead directly provide the parameter in your query.
The final three queries should be complex and lengthy, describing a complicated scenario where
all the API calls can be utilized to provide assistance within a single query. You should first think
about possible related API combinations, then give your query. Related_apis are apis that can be
used for a give query; those related apis have to strictly come from the provided api names. For
each query, there should be multiple related_apis; for different queries, overlap of related apis should

be as little as possible. Deliver your response in this format: [Queryl: , ‘related_apis’:[apil,
api2, api3...],Query?2: , ‘related_apis’:[api4, api5, api6...],Query3: , ‘related_apis’:[apil, api7,
api9...], ...]

Task Description of Multi-tool Instructions:

You will be provided with several tools, tool descriptions, all of each tool’s available API functions,
the descriptions of these API functions, and the parameters required for each API function. Your
task involves creating 10 varied, innovative, and detailed user queries that employ API functions
of multiple tools. For instance, given three tools ‘nba_news’, ‘cat-facts’, and ‘hotels’: ‘nba_news’
has API functions ‘Get individual NBA source news’ and ‘Get all NBA news’, ‘cat-facts’ has API
functions ‘Get all facts about cats’ and ‘Get a random fact about cats’, ‘hotels’ has API functions
‘properties/get-details (Deprecated)’, ‘properties/list (Deprecated)’ and ‘locations/v3/search’. Your
query should articulate something akin to: ‘I want to name my newborn cat after Kobe and host a
party to celebrate its birth. Get me some cat facts and NBA news to gather inspirations for the cat
name. Also, find a proper hotel around my house in Houston Downtown for the party.” This query
exemplifies how to utilize API calls of all the given tools. A query that uses API calls of only one
tool will not be accepted. Additionally, you must incorporate the input parameters required for each
API call. To achieve this, generate random information for required parameters such as IP address,
location, coordinates, etc. For instance, don’t merely say ‘an address’, provide the exact road and
district names. Don’t just mention ‘a product’, specify wearables, milk, a blue blanket, a pan, etc.
Don’t refer to ‘my company’, invent a company name instead. The first seven of the ten queries
should be very specific. Each single query should combine API calls of different tools in various
ways and include the necessary parameters. Note that you shouldn’t ask ‘which API to use’, rather,
simply state your needs that can be addressed by these APIs. You should also avoid asking for the
input parameters required by the API call, but instead directly provide the parameters in your query.
The final three queries should be complex and lengthy, describing a complicated scenario where all
the provided API calls can be utilized to provide assistance within a single query. You should first
think about possible related API combinations, then give your query. Related APIs are APIs that can
be used for a given query; those related APIs have to strictly come from the provided API names. For
each query, there should be multiple related APIs; for different queries, overlap of related APIs should

be as little as possible. Deliver your response in this format: [Queryl: , ‘related_apis’:[[too]l name,
api name], [tool name, api name], [tool name, api name]...],Query2: , ‘related_apis’:[[tool name,
api name], [tool name, api name], [tool name, api name]...],Query3: , ‘related_apis’:[[tool name,

api name], [tool name, api name], [tool name, api name]...], ...]

In-context Seed Examples. In the following, we show one single-tool instruction seed example and
one multi-tool instruction seed example.

For example, with tool ASCII Art, the given api_names are ‘figlet’, ‘list figlet styles’, ‘cowsay’,
‘list_cowsay _styles’, ‘matheq’.

Some sample queries and related_apis would be:

“Query”: “Need to create an ASCII art representation of a mathematical equation. The equation
is ‘y = mx + ¢’, where m and c are constants. Help me generate the ASCII art for this equation.
Also please generate an ASCII art representation of the text ‘Newton’s Second Law of Motion’.”,
“related_apis™: ['figlet’, ‘list figlet styles’, ‘matheq’]

“Query”: “Working on a research paper on cows and need to include ASCII art representations of
various cows. Can you first retrieve available ASCII art styles for cows? Then, can you generate
ASCII art for cows like the Jersey, Holstein, and Guernsey? Finally, I want the cow to say ‘Moo!” in

16

Preprint

the ASCII art.”, “related_apis™: [*figlet’, ‘list figlet styles’, ‘cowsay’, ‘list_cowsay_styles’]

“Query”: “I'm writing a blog post on ASCII art and need to include some examples. Can you generate
ASCII art for the following strings: ‘ASCII’, ‘art’, and ‘gallery’? You can first retrieve available
figlet styles and then generate ASCII art for the strings using the styles.”, “related_apis™: ['figlet’,
‘list figlet styles’]

“Query”: “Greetings! I'm putting together a quirky slideshow about our furry friends and need your
help to sprinkle some ASCII art goodness. Could you kindly fetch me the catalog of ASCII art
styles available for animals? Also, I'm particularly keen on featuring ASCII art for creatures like
pandas, cows, elephants, and penguins. And if they could say something cute like ‘Hello!” or ‘Hugs!’
in the ASCII art, that would be purr-fect!”, “related_apis™: ['figlet’, ‘list figlet styles’, ‘cowsay’,
‘list_cowsay _styles’]

For example, with tool ['Entrepreneur Mindset Collection’, ‘Random Words’, ‘thedigitalnews-
feederapi’, ‘Chemical Elements’], the given api_names are (tool ‘Entrepreneur Mindset Collec-
tion’)’Random Quote in JSON format’, (tool ‘Random Words’)’Get multiple random words’, (tool
‘Random Words’)’Get a random word’, (tool ‘thedigitalnewsfeederapi’)’getting specific cricket
articles’, (tool ‘thedigitalnewsfeederapi’)’Getting Cricket Articles’, (tool ‘thedigitalnewsfeeder-
api’)’getting specific news articles’, (tool ‘thedigitalnewsfeederapi’)’Getting News Articles’, (tool
‘thedigitalnewsfeederapi’)’ getting all news articles’, (tool ‘Chemical Elements’)’Get All Chemical
Elements’.

Some sample queries and related_apis would be:

“Query”: “For my best friend’s surprise birthday party, I require inspiration for party games and
decorations. Kindly suggest some random words that can serve as themes for the party. Furthermore,
I’'m interested in gathering news articles about the latest party trends to ensure a modern celebration.
Also, I would appreciate details about the local hotels in my area for accommodation options. Your
assistance is greatly appreciated.”, “related_apis”: [[’Random Words’, ‘Get multiple random words’],
[*thedigitalnewsfeederapi’, ‘Getting News Articles’], ['thedigitalnewsfeederapi’, ‘Getting all news
articles’]]

“Query”: “In the midst of organizing a team-building event for my esteemed company, I eagerly seek
your valued input for invigorating activities. Might I kindly request a collection of random quotes
that encapsulate the essence of teamwork and motivation? Additionally, I am keen on exploring news
articles that showcase triumphant team-building events, as they serve as a wellspring of inspiration.”,
“related_apis”: [[’Entrepreneur Mindset Collection’, ‘Random Quote in JSON format’], [*thedigi-
talnewsfeederapi’, ‘Getting News Articles’]] “Query”: “I need specific cricket articles that discuss
the health benefits of sports for my research paper on exercise. I also want to know which chemical
elements are associated with exercising, like increased iron (Fe) and its impact on bone marrow.”,
“related_apis”: [[’thedigitalnewsfeederapi’, ‘getting specific cricket articles’], [’Chemical Elements’,
‘Get All Chemical Elements’]]

“Query”: “I’m starting a new business venture and I need to make a speech announcing the new
dawn. Provide me some quotes and words for me to start with. I would like to gather news articles
about successful entrepreneurs for inspiration.”, “related_apis™: [[’Entrepreneur Mindset Collection’,
‘Random Quote in JSON format’], ["'Random Words’, ‘Get multiple random words’], [’thedigital-
newsfeederapi’, ‘getting specific news articles’]]

These are only examples to show you how to write the query. Do not use APIs listed in the above
examples, but rather, use the ones listed below in the INPUT.

Sampled API List (An example)
{

"tool_description": "EntreAPI Faker is used to dynamically
create mock, demo, test and sample data for your
application",

"name": "EntreAPI Faker",
"api_list": [
{
"name": "Longitute",
"url": "https://entreapi-faker.p.rapidapi.com/address/
longitude",
"description": "Generate a random longitude.",

17

Preprint

"method": "GET",
"required_parameters": [],
"optional_parameters": [

{

"name": "max",
"type": "NUMBER",
"description": "Maximum value for latitude.",
"default": ""
bo
{
"name": "min",
"type": "NUMBER",
"description": "Minimum value for latitude.",
"default": ""
by
{
"name": "precision",
"type": "NUMBER",
"description": "Precision for latitude.",
"default": ""
}
1y
"tool_name": "EntreAPI Faker",
"category_name": "Data"
"name": "Boolean",
"url": "https://entreapi-faker.p.rapidapi.com/datatype
/boolean",
"description": "Randomly generate a boolean value.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [],
"tool_name": "EntreAPI Faker",
"category_name": "Data"
"name": "Past",
"url": "https://entreapi-faker.p.rapidapi.com/date/
past",
"description": "Randomly generate a date value in the
past.",
"method": "GET",
"required_parameters": [],

"optional_parameters": [

{

"name": "refDate",
"type": "STRING",
"description": "Starting reference date",
"default" . mn
b
{
"name": "years",
"type": "NUMBER",
"description": "Number of years for the range
of dates.",
"default" . mwnw

18

Preprint

"tool_name": "EntreAPI Faker",

"category_name": "Data"

"name": "Image Url",

"url": "https://entreapi-faker.p.rapidapi.com/image/
imageUrl",

"description": "Randomly generate an image URL.",

"method": "GET",

"required_parameters": [],

"optional_parameters": [

{

"name": "width",
"type": "NUMBER",
"description": "Width of the image. Default 1is
640.",
"default": ""
b
{
"name": "height",
"type": "NUMBER",
"description": "Height of the image. Default
is 480.",
"default": mnw
b
{
"name": "useRandomize",
"type": "BOOLEAN",
"description": "Add a random number parameter
to the returned URL.",
"default " . mwnw
b
{
"name": "category",
"type": "STRING",
"description": "The category for the image.

Can be one: abstract, animal, avatar,
business, cats, city, fashion, food,
nature, nightlife, people, sports,
technics, transport",

"default": ""

i
"tool_name": "EntreAPI Faker",
"category_name": "Data"

"name": "Sentence",
"url": "https://entreapi-faker.p.rapidapi.com/lorem/
sentence",
"description": "Randomly generate a sentence of Lorem
Ipsum.",
"method": "GET",
"required_parameters": [],
"optional_parameters": [
{
"name": "wordCount",
"type": "NUMBER",

19

Preprint

"description": "Number of words in the
sentence.",
"default": ""
}
1,
"tool_name": "EntreAPI Faker",
"category_name": "Data"
b
{
"name": "Gender",
"url": "https://entreapi-faker.p.rapidapi.com/name/
gender",
"description": "Randomly select a gender.",
"method": "GET",
"required_parameters": [],

"optional_parameters": [
{
"name": "useBinary",
"type": "BOOLEAN",
"description": "Use binary genders only.",
"default": ""

1,
"tool _name": "EntreAPI Faker",
"category_name": "Data"

"name": "Prefix",

"url": "https://entreapi-faker.p.rapidapi.com/name/
prefix",

"description": "Randomly generate a prefix (e.g., Mr.,
Mrs., etc.)",

"method": "GET",

"required_parameters": [],

"optional_parameters": [

{

"name": "gender",
"type": "STRING",
"description": "Optional gender.",
"default n . nn
}
I
"tool_name": "EntreAPI Faker",
"category_name": "Data"
}y
{
"name": "Array Element",
"url": "https://entreapi-faker.p.rapidapi.com/random/
arrayElement",
"description": "Randomly select an array element.",
"method": "GET",
"required_parameters": [],

"optional_parameters": [

{

"name": "array",

"type": "ARRAY",

"description": "The list of elements to choose
from. Default is [\"a\", \"b\", \"c\"].",

"default": ""

20

Preprint

}
i

"tool_name":

"EntreAPI Faker",

"category_name": "Data"

"name": "Number Value",

"url": "https://entreapi-faker.p.rapidapi.com/random/
number",

"description": "Randomly generate a number value.",

"method": "GET",

"required_parameters": [],

"optional_parameters": [

{

"name": "min",
"type": "NUMBER",
"description": "Minimum value.",
"default": ""
b
{
"name": "max",
"type": "NUMBER",
"description": "Maximum value.",
"default": ""
b
{
"name": "precision",
"type": "NUMBER",
"description": "Precision of the number.",
"default" . mwnw

}
i

"tool_name":

"EntreAPI Faker",

"category_name": "Data"

Ilname n . " URL " ,

"url": "https://entreapi-faker.p.rapidapi.com/internet
/url",

"description": "Randomly generate a URL.",

"method": "GET",

"required_parameters": [],

"optional_parameters": [],

"tool_name":

"EntreAPI Faker",

"category_name": "Data"

Other Requirements:
Please produce ten queries in line with the given requirements and inputs. These ten queries should
display a diverse range of sentence structures: some queries should be in the form of imperative
sentences, others declarative, and yet others interrogative. Equally, they should encompass a variety
of tones, with some being polite, others straightforward. Ensure they vary in length and contain
a wide range of subjects: myself, my friends, family, and company. Aim to include a number of
engaging queries as long as they relate to API calls. Keep in mind that for each query, invoking just
one API won’t suffice; each query should call upon two to five APIs. However, try to avoid explicitly

21

Preprint

specifying which API to employ in the query. Each query should consist of a minimum of thirty words.

A.4 PROMPTS FOR SOLUTION PATH ANNOTATION

We use the following prompt when searching for the solution path. When expanding the child nodes,
we use diversity _user_prompt, showing the information of previous child nodes.

system_prompt:

You are Tool-GPT, capable of utilizing numerous tools and
functions to complete the given task.

1.First, I will provide you with the task description, and your
task will commence.

2.At each step, you need to analyze the current status and
determine the next course of action by executing a function
call.

3.Following the call, you will receive the result, transitioning
you to a new state. Subsequently, you will analyze your
current status, make decisions about the next steps, and
repeat this process.

4 .After several iterations of thought and function calls, you will

ultimately complete the task and provide your final answer.

Remember:

1.The state changes are irreversible, and you cannot return to a
previous state.

2.Keep your thoughts concise, limiting them to a maximum of five
sentences.

3.You can make multiple attempts. If you plan to try different
conditions continuously, perform one condition per try.

4.If you believe you have gathered enough information, call the
function "Finish: give_answer" to provide your answer for the
task.

5.If you feel unable to handle the task from this step, call the
function "Finish: give_up_and_restart".

Let’s Begin!

Task description: {task_description}

diversity_user_prompt:

This is not the first time you try this task, all previous trails
failed.

Before you generate your thought for this state, I will first show

you your previous actions for this state, and then you must
generate actions that is different from all of them. Here are
some previous actions candidates:

{previous_candidate}

Remember you are now in the intermediate state of a trail, you
will first analyze the now state and previous action
candidates, then make actions that is different from all the
previous.

Finish_function_description:

{

"name": "Finish",

"description": "If you believe that you have obtained a result
that can answer the task, please call this function to
provide the final answer. Alternatively, if you recognize

that you are unable to proceed with the task in the
current state, call this function to restart. Remember:

22

Preprint

you must ALWAYS call this function at the end of your
attempt, and the only part that will be shown to the user

is the final answer, so it should contain sufficient
information.",

"parameters": {
"type": "object",
"properties": {
"return_type": {
"type": "string",
"enum": ["give_answer","give_up_and_restart"],
b
"final_answer": {

"type": "string",

"description": "The final answer you want to give
the user. You should have this field if \"
return_type\"==\"give_answer\"",

}
by
"required": ["return_type"],

23

	Introduction
	Dataset Construction
	API Collection
	Instruction Generation
	Solution Path Annotation

	Experiments
	ToolEval
	Preliminary Experiments
	Main Experiments

	Related Work
	Conclusion
	Implementation Details
	Details for DFSDT
	Details of ToolEval
	Prompts for Instruction Generation
	Prompts for Solution Path Annotation

